Martingales and Determinantal Processes

Makoto Katori (Chuo University)

Let $Y(t), t \in \mathcal{T}(\ni 0)$ be a diffusion process in the one-dimensional space \mathcal{S} with $(\Omega, \mathcal{F}, \mathbf{P})$ and the natural filtration $\mathcal{F}_t = \sigma(Y(s) : 0 \le s \le t), t \in \mathcal{T}$. For a fixed integer $N \in \mathbb{N}$, we choose an N distinct points in $\mathcal{S}, u_1 < u_2 < \cdots < u_N$. Then we assume a set of analytic functions $M_j(t, x), t \in \mathcal{T}, x \in \mathcal{S}, j = 1, 2, \ldots, N$ depending on $\mathbf{u} = (u_1, \ldots, u_N)$ and satisfying the following.

(i) For any $t \in \mathcal{T}$, $\{M_j(t, x)\}_{j=1}^N$ are linearly independent functions of $x \in \mathcal{S}$. (ii) $M_j(0, u_k) = \delta_{jk}, j, k = 1, \dots, N$.

(iii) $\mathbb{E}[M_i(t, Y(t))|\mathcal{F}_s] = M_i(s, Y(s))$ a.s. for all $0 \le s \le t \in \mathcal{T}$.

We define an N-dimensional vector $\mathbf{M}(t,x) = (M_1(t,x),\ldots,M_N(t,x))$. Let $Y_k(t), k = 1, 2, \ldots, N$ be independent copies of $Y(t), t \in \mathcal{T}$ and set $Y_k^{u_k}(t) = u_k + Y_k(t), k = 1, 2, \ldots, N$. Thus we have N independent vector-valued martingales $\{\mathbf{M}(t, Y_k^{u_k}(t))\}_{k=1}^N, t \in \mathcal{T}$, and consider time-evolution of a random polyhedron in \mathcal{S}^N spanned by them;

$$\Lambda(t) = \left\{ \sum_{k=1}^{N} a^{(k)} \mathbf{M}(t, Y_k^{u_k}(t)) : 0 \le a^{(k)} \le 1, k = 1, 2..., N \right\}, \quad t \in \mathcal{T}.$$

Its signed volume is given by $\operatorname{vol}^*(\Lambda(t)) = \det_{1 \leq j,k \leq N} \left[M_j(t, Y_k^{(u_k)}(t)) \right], t \in \mathcal{T}$, which is a martingale; $\operatorname{E}[\operatorname{vol}^*(\Lambda(t))] = \operatorname{vol}^*(\Lambda(0)) = 1, 0 \leq t \in \mathcal{T}$.

We consider the interacting particle systems $\mathbf{X}(t) = (X_1(t), \ldots, X_N(t)), t \in \mathcal{T}$ starting from **u**, whose probability laws have the following absolutely continuity relations to P^{**u**},

$$\mathbb{P}^{\mathbf{u}}\Big|_{\mathcal{F}_t} = \operatorname{vol}^*(\Lambda(t \wedge \tau)) \mathbb{P}^{\mathbf{u}}\Big|_{\mathcal{F}_t}, \quad t \in \mathcal{T},$$

where $\tau = \inf\{t > 0 : \operatorname{vol}^*(\Lambda(t)) = 0\}$. We regard the above as N-dimensional extensions of the relation between the three-dimensional Bessel process and the Brownian motion $B \sim W$,

$$\mathbb{P}^{u}_{\mathrm{BES}^{(3)}}\Big|_{\mathcal{F}_{t}} = M(B(t \wedge \tau)) \mathbf{W}^{u}\Big|_{\mathcal{F}_{t}}, \quad u > 0, \quad t \ge 0$$

with M(x) = x/u, $\tau = \inf\{t > 0 : B(t) = 0\}$. In the present talk, we will show that such processes have been realized as determinantal processes related to random matrix theory and the KPZ universality class.