ライン

Research

ライン


Updated 12 Feb. 2019

Publications

Refereed papers and proceedings

  1. M. Molati and H. Murakawa, Exact solutions of nonlinear diffusion-convection-reaction equation: A Lie symmetry analysis approach, Commun. Nonlinear Sci. Numer. Simul. , 67 (2019), pp. 253–263. DOI: 10.1016/j.cnsns.2018.06.024 link
  2. M. Molati and H. Murakawa, An efficient linear numerical scheme for the Stefan problem, the porous medium equation and nonlinear cross-diffusion systems, In K. Mikula, D. Sevcovic and J. Urban Eds. Proceedings of Equadiff 2017 Conference, (2017), pp. 305–314. link
  3. H. Murakawa, An efficient linear scheme to approximate nonlinear diffusion problems, Jpn. J. Ind. Appl. Math., 35(1) (2018), pp. 71–101. DOI: 10.1007/s13160-017-0279-3 link
  4. E. Mainini, H. Murakawa, P. Piovano and U. Stefanelli, Carbon-nanotube geometries as optimal configurations, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 15(4) (2017), pp.1448–1471. DOI: 10.1137/16M1087862 link
  5. M. Iida, H. Monobe, H. Murakawa and H. Ninomiya, Vanishing, moving and immovable interfaces in fast reaction limits, J. Differential Equations, 263 vol. 5 (2017), 2715–2735. DOI: 10.1016/j.jde.2017.04.009 link
  6. Y. Matsunaga, M. Noda, H. Murakawa, K. Hayashi, A. Nagasaka, S. Inoue, T. Miyata, T. Miura, K. Kubo and K. Nakajima, Reelin transiently promotes N-cadherin-dependent neuronal adhesion during mouse cortical development, Proc. Natl. Acad. Sci. USA, 114 vol. 8 (2017), 2048–2053. DOI: 10.1073/pnas.1615215114 link
  7. H. Murakawa, A linear finite volume method for nonlinear cross-diffusion systems, Numer. Math., 136(1) (2017), 1–26. doi:10.1007/s00211-016-0832-z link
  8. E. Mainini, H. Murakawa, P. Piovano and U. Stefanelli, Carbon-nanotube geometries: analytical and numerical results, Discrete Contin. Dyn. Syst. S, 10, No.1 (2017), 141–160. doi:10.3934/dcdss.2017008 link
  9. H. Murakawa and H. Togashi, Continuous models for cell-cell adhesion, J. Theor. Biol., 372 (2015), 1–12. doi:10.1016/j.jtbi.2015.03.002 link
  10. H. Murakawa, Numerical solution of nonlinear cross-diffusion systems by a linear scheme, in Proceedings for the 4th MSJ-SI Conference on Nonlinear Dynamics in Partial Differential Equations, S. Kawashima, S. Ei, M. Kimura and T. Mizumachi, eds., Adv. Stud. Pure Math, 64 (2015), 243–251.
  11. D. Hilhorst and H. Murakawa, Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium, Networks and Heterogeneous Media, 9(4) (2014), 669–682. doi:10.3934/nhm.2014.9.669 link
  12. H. Murakawa, Error estimates for discrete-time approximations of nonlinear cross-diffusion systems, SIAM J. Numer. Anal., 52(2) (2014), 955–974. doi:10.1137/130911019 link
  13. H. Murakawa and H. Ninomiya, A free boundary problem in a singular limit of a three-component reaction-diffusion system, RIMS Kokyuroku Bessatsu, B35 (2012), 77–93.
  14. A. Ducrot, F. Le Foll, P. Magal, H. Murakawa, J. Pasquier and G. Webb, An in vitro cell population dynamics model incorporating cell size, quiescence, and contact inhibition, Math. Models Methods Appl. Sci., 21 (2011), 871–892. DOI: 10.1142/S0218202511005404 link
  15. R. Eymard, D. Hilhorst, H. Murakawa and M. Olech, Numerical approximation of a reaction-diffusion system with fast reversible reaction, Chinese Annals of Mathematics B, 31 (2010), 631–654. link
  16. H. Murakawa, A linear scheme to approximate nonlinear cross-diffusion systems, Math. Mod. Numer. Anal., 45 (2011), 1141–1161. DOI: 10.1051/m2an/2011010 link
  17. H. Murakawa and H. Ninomiya, Fast reaction limit of a three-component reaction-diffusion system, DOI: 10.1016/j.jmaa.2010.12.040 J. Math. Anal. Appl., 379 (2011), 150–170. link
  18. H. Murakawa, A relation between cross-diffusion and reaction-diffusion, Discrete Contin. Dyn. Syst. S, 5 (2012), 147–158. doi:10.3934/dcdss.2012.5.147 link
  19. H. Murakawa, A solution of nonlinear diffusion problems by semilinear reaction-diffusion systems, Kybernetika, 45 (2009), 580–590. link
  20. H. Murakawa, Reaction-diffusion system approximation to degenerate parabolic systems, Nonlinearity, 20 (2007), 2319–2332. link
  21. H. Murakawa, A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem, Nonlinear Anal., 69 (2008), 3512–3524. link
  22. H. Murakawa, On reaction-diffusion system approximations to the classical Stefan problems, Proceedings of the Czech-Japanese Seminar in Applied Mathematics 2005, ISSN 1881-4042 (2006), 117–125.
  23. T. Nakaki and H. Murakawa, A numerical method to Stefan problems and its application to the flow through porous media, European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004, 495.pdf (2004), 1–12.
  24. H. Murakawa and T. Nakaki, A singular limit method for the Stefan problems, Numerical Mathematics and Advanced Applications, Springer-Verlag, (2004), 651–657.
  25. H. Murakawa and T. Nakaki, A singular limit approach to moving boundary problems and its applications, Theoretical and Applied Mechanics Japan, 52 (2003), 255–260.

Preprints

  1. Hideki Murakawa, Fast reaction limit of reaction-diffusion systems, submitted.
  2. Jose A. Carrillo, Hideki Murakawa, Makoto Sato, Hideru Togashi and Olena Trush, A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, submitted.
    Supplementary Material: Movies
  3. O. Trush, C. Liu, X. Han, Y. Nakai, R. Takayama, H. Murakawa, J.A. Carrillo, H. Takechi, S. Hakeda-Suzuki, T. Suzuki and M. Sato, 3D organization of columnar units by N-cadherin-dependent differential adhesion and inter-layer interactions in the fly visual center, submitted.

Others

  1. G, Efp, u^
  2. G, Numerical analysis for nonlinear diffusion problems, u^
  3. H. Murakawa, Cross-diffusion systems: RDS approximation and Numerical analysis, u^, 1924 (2014), 21–29.
  4. M. Iida, H. Monobe, H. Murakawa and H. Ninomiya, The behavior of the interfaces in the fast reaction limits of some reaction-diffusion systems with unbalanced interactions, u^, 1892 (2014), 88–94.
  5. G, `gU`, u^, 1810 (2012), 189–206.
  6. G, gUnF_p, {w 2011 NxHG uAuXgNg, (2011). pdf
  7. G, - gUp`gU, u^, 1704 (2010), 187–194.
  8. G, ^REE, u^, 1633 (2009), 62–79.
  9. G, REgUnp, pw WW, (2008), 35–54.
  10. H. Murakawa, A reaction-diffusion system approximation to nonlinear diffusion problems, In Ozawa, Tohru, Eds. Proceedings The 31st Sapporo Symposium on Partial Differential Equations, Department of Mathematics, Faculty of Science, Hokkaido University (2006).
  11. G, c, BK, Approximation scheme for two-phase Stefan problems: application to the singular limit of reaction-diffusion systems, u^, 1416 (2005), 134–147.

Presentations

Presentations (in English)

  1. A population dynamics model of cell-cell adhesion and its applications, Karlstad Applied Analysis Seminar, Karlstad University, Karlstad, Sweden, 26 Sep. 2018.
  2. Applications of a population dynamics model of cell-cell adhesion, Journee d’Analyse Non Lineaire, Universite Paris-Sud 11, France, 21 Sep. 2018.
  3. An efficient linear scheme for nonlinear diffusion problems, The Seventh China-Japan-Korea Joint Conference on Numerical Mathematics, Shiinoki Cultural Complex, Kanazawa, Japan, 23 Aug. 2018.
  4. A continuous model of cell-cell adhesion and its applications, Czech-Japanese Seminar in Applied Mathematics 2018, Hotel Noto Kinpura, Noto-cho, Japan, 15 July 2018.
  5. A mathematical model of cell-cell adhesion and its application, The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications, National Taiwan University, Taipei, Taiwan, 7 July 2018.
  6. Mathematical Modeling of Cell-cell Adhesion and its Applications, Joint Annual Meeting of 70th JSCB and 51st JSDB, Tower Hall Funabori, Tokyo, Japan, 7 Jun 2018. Poster.
  7. Fast reaction limit : classification and analysis, ReaDiNet 2017: International Conference on Mathematical Biology, National Center for Theoretical Sciences Mathematics in Taiwan, Taiwan, 12 Oct. 2017.
  8. Modeling of cell-cell adhesion and its application, Reaction-Diffusion Systems and Mathematical Modelling in Biology, IECL Site de Nancy, Nancy, France, 18 Sept. 2017.
  9. Classification and analysis of fast reaction limit problems, Ito Workshop on Partial Differential Equations, Kyushu Univ., Fukuoka, Japan, 24 Aug. 2017.
  10. An efficient linear scheme for the Stefan problem, the porous medium equation and nonlinear cross-diffusion systems, Equadiff2017, Slovak university of technology, Bratislava, Slovakia, 28 July 2017.
  11. Mathematical models of cell-cell adhesion, Applied PDEs Seminar, Imperial College London, London, UK, 14 March 2017.
  12. Mathematics of cell-cell adhesion: modeling and analysis, International Workshop on Multi-Phase Flow, Waseda Univ., Tokyo, Japan, 11 Nov. 2016.
  13. A mathematical model of cell-cell adhesion, Reaction-Diusion Systems in Mathematics and Biomedecine, Villa Clythia, Frejus, France, 23 Sep. 2016.
  14. Toward elucidation of cell adhesion and cell sorting, Czech-Japanese-Polish Seminar in Applied Mathematics 2016, AGH University of Science and Technology, Krakow, Poland, 5 Sep. 2016. Poster.
  15. Mathematics of cell adhesion and cell sorting: experimentsC modeling and analysis, Patterns and Waves 2016, Hokkaido univ., Hokkaido, Japan, 3 Aug. 2016. Poster.
  16. On a free boundary arising in a model of cell-cell adhesion, Workshop on interface motions and free boundary problems:mathematical analysisC numerical analysisC modellings and experiments, Isurunoie, Karuizawa, Nagano, Japan, 10 Jul. 2016.
  17. Mathematics of cell-cell adhesion: experimentsC modeling and analysis, The 11th AIMS Conference on Dynamical SystemsC Differential Equations and Applications, Hyatt Regency, Orlando, Florida, USA, 2 Jul. 2016.
  18. A modified model of cell-cell adhesion, ALGORITMY 2016 Conference on Scientific Computing, Vysoke Tatry, Podbanske, Slovakia, 17 Mar. 2016.
  19. Towards understanding of cell adhesion and cell sorting, Groupe de Travail: Equations Elliptiques et Paraboliques non Lineaires, Univ. Paris-sud, France, 15 Feb. 2016.
  20. Modeling and analysis of cell-cell adhesion, International conference on mathematical modeling and applications 2015 Self-Organization Modeling and Analysis, Meiji Univ., Tokyo, Japan, 26 Oct. 2015.
  21. A modified continuous model for cell-cell adhesion, 2015 Joint Meeting of JSMB and CJK Colloquium on Mathematical Biology, Doshisya Univ., Kyoto, Japan, 29 Aug. 2015.
  22. A linear finite volume method for nonlinear cross-diffusion systems, Mathematical Biology Conference on Cross-diffusion, chemotaxis, and related problems, KAIST, Daejeon, Korea, 10 July 2015.
  23. Reaction-diffusion system approximation and fast reaction limit, 2nd Slovak-Japan Conference on Applied Mathematics, Radzovce-Obrucna, Cerova vrchovina, Slovakia, 14 Sept. 2014. Plenary.
  24. Recent topics in fast reaction limit, Workshop on Mathematical Sciences, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka, 31 Aug. 2014.
  25. Reaction-diffusion system approximation: Theory and Applications, Wayamba International Conference WinC 2014, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka, 29 Aug. 2014
  26. Mathematical models of cell-cell adhesion: diffusion vs. advection, The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, the Universidad Autonoma de Madrid, Madrid, Spain, 8 Jul. 2014.
  27. Semilinear and linear approximations to nonlinear diffusion problems, The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, the Universidad Autonoma de Madrid, Madrid, Spain, 7 Jul. 2014.
  28. Cross-diffusion systems: RDS approximation and Numerical analysis, RIMS Workshop Mathematical Analysis of Pattern Formation Arising in Nonlinear Phenomena, Kyoto University, Japan, 31 Oct. 2013.
  29. Reaction-diffusion system approximation to nonlinear diffusion problems and its application to numerical analysis, Kyushu-Euskadi 2013 Workshop on Applied Mathematics, Fukuoka university seminar house, Japan, 12 Nov. 2013.
  30. Convergence rates of discrete-time schemes to approximate nonlinear cross-diffusion systems, Czech-Japanese Seminar in Applied Mathematics 2013, Meiji University, Japan, 7 Sep. 2013.
  31. Error estimates for discrete-time approximations of nonlinear cross-diffusion systems, ReaDiLab Conference Mathematical Modelling and Analysis in the Life Sciences, Carry-le-Rouet, France, 12 Jun. 2013.
  32. Spatial patterns in a population model structured by cell size, quiescence and sensing radius, Everything disperses to Miami, the role of movement and dispersal in spatial ecology, epidemiology and environmental science, The University of Miami, Coral Gables, Florida, USA, 14 Dec. 2012.
  33. Instantaneous limit of a reaction-diffusion system with a fast precipitation and dissolution reaction, Singularities arising in Nonlinear Problems 2012, Kansai Seminar House, 26 Nov. 2012.
  34. A free boundary problem with triple-junctions and a linear numerical method for capturing the interfaces, ALGORITMY 2012 Conference on Scientific Computing, Vysoke Tatry, Podbanske, 10 Sep. 2012.
  35. Approximation to nonlinear diffusion problems by semilinear reaction-diffusion systems, Workshop of JSPS-CNR joint reserch project, Kobe University, Japan, 3 Aug. 2012.
  36. On a relationship between reaction-diffusion interaction and nonlinear diffusion, A Workshop for a Recent Development in Fluid Dynamics, Pohang University of Science and Technology, Pohang, Korea, 19 Jul. 2012.
  37. Triple-junctions in a strong interaction limit of a three-component system, The 9th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Hyatt Regency Grand Cypress, Orlando, Florida, USA, 3 Jul. 2012.
  38. Fast reaction limit and nonlinear diffusion, Modeling and Analysis in the Life Sciences : A ReaDiLab Conference in Tokyo, Tokyo University, 30 Nov. 2011.
  39. Singular limit of a three-component reaction-diffusion system, Workshop on Nonlinear Partial Differential Equations –China-Japan Joint Project for Young Mathematician, East China Normal University, Shanghai, China, 3 Nov. 2011.
  40. Numerical solution of nonlinear cross-diffusion systems by a linear scheme, The 4th MSJ-SI, Mathematical Society of Japan, Seasonal Institute, Nonlinear Dynamics in Partial Differential Equations, Kyushu University, 15 Sep. 2011.
  41. A free boundary problem in the limit of a fast reaction system, Mathematical and numerical analysis for interface motion arising in nonlinear phenomena, Kyoto University, 14 July 2011.
  42. Numerical simulations of nonlinear cross-diffusion systems using a linear scheme, International Symposium on Computational Science 2011, Kanazawa University, Kanazawa, Japan, 15 Feb. 2011.
  43. Reaction-diffusion system approximation to nonlinear diffusion problems and its applications, Seminaires de Mathematiques du vivant, Universite Bordeaux 2, France, 4 Nov. 2010.
  44. A linear scheme to approximate nonlinear cross-diffusion systems, Reaction-Diffusion Systems: Experiment, Modeling and Analysis, Universite Paris-Sud 11, France, 22 Oct. 2010.
  45. A numerical method for nonlinear cross-diffusion systems, Czech-Japanese Seminar in Applied Mathematics, Faculty of Civil Engineering, branch Telč, Czech Technical University in Prague, Telč, Czech Republic, 2 Sep. 2010.
  46. A relation between reaction-diffusion interaction and nonlinear diffusion, The 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Dresden University of Technology, Dresden, Germany, 26 May 2010.
  47. A numerical method for cross-diffusion systems, Reaction-Diffusion Systems: A ReaDiLab Seminar Day, Universite de Paris-Sud 11, France, 19 Mar. 2010.
  48. A solution of nonlinear diffusion problems by semilinear reaction-diffusion systems, Spatio-Temporal Patterns from Mathematics to Biomedical Applications, Archamps, France, 16 Mar. 2010.
  49. A relation between reaction-diffusion interaction and cross-diffusion, EQUADIFF12, Masaryk University, Brno, Czech Republic, 21 Jul. 2009.
  50. Nonlinear diffusion problems can be approximated by semilinear reaction-diffusion systems, PDE Approximations in Fast Reaction-Slow Diffusion Scenarios, Lorentz center, Leiden, The Netherlands, 12 Nov. 2008. Poster and 15min talk.
  51. Solutions to nonlinear diffusion problems by semilinear reaction-diffusion systems, Czech-Japanese Seminar in Applied Mathematics 2008, Gokamura community center, Miyazaki, Japan, 1 September 2008.
  52. A solution of parabolic free boundary problems by semilinear reaction-diffusion systems, Free Boundary Problems Theory and Applications, KTH, Stockholm, Sweden, 12 Jun 2008.
  53. Reaction-diffusion system approximation to free boundary problems and its application to numerical computations, International Conference on Free Boundary Problems in Chiba 2007, Chiba University, Chiba, Japan, 29 November 2007. Poster.
  54. Reaction-diffusion system approximation to degenerate parabolic equations and its application to numerical computations, Equadiff07, Vienna University of Technology, Vienna, Austria, 8 August 2007.
  55. Reaction-diffusion system approximation to moving boundary problems and its application to numerical computations, INSF2007: International Conference on Recent Developments of Numerical Schemes for Flow Problems, Kyushu University, Fukuoka, Japan, 27 June 2007.
  56. A reaction-diffusion system for nonlinear diffusion problems, Applied Mathematics Seminar in Hiroshima 2006, Hiroshima University, Hiroshima, Japan, November 2006.
  57. A reaction-diffusion system approximation to nonlinear diffusion problems, The 31st Sapporo Symposium on Partial Differential Equations, Hokkaido University, Hokkaido, Japan, 2 August 2006.
  58. On reaction-diffusion system approximations to the classical Stefan problem, The Second Czech-Japanese Seminar in Applied Mathematics, Kuju Training Center for the Joint Use of National Universities in Kyushu, Oita, Japan, 16 September 2005.
  59. On a linear approximation scheme to the classical Stefan problem, International Conference on Differential Equations Czecho-Slovak series, Comenius University, Bratislava, Slovakia, 29 July 2005.

Presentations in Japanese (WEw)

  1. }CgUnC`,
  2. `WgULXL[
  3. gUn}p, Nonlinear Evolutionary PDEs and their Equilibrium States II -In honor of the retirement of Professor Yoshio Yamada-, cw, 2018 N 9 15 .
  4. Efp, 15 w_p wWJ –, sw, 2018 N 9 14 .
  5. Mathematical modeling of cell-cell adhesion and its applications, {p w 2018 NxN, w, 2018 N 9 4 . |X^[.
  6. }Fp, kb, sw, 2018 N 6 13 .
  7. Ef, gD, w, 2018 N 3 13 .
  8. EeaEp^[`FIAv[` , gUn Z Interdisciplinary Research in Reaction-Diffusion systems, LO}o, 2018 N 2 22 .
  9. }, Z~i[, w, 2018 N 1 26 .
  10. Numerical analysis for nonlinear diffusion problems, RIMS l wO _E@Ep —, sw, 2017 N 11 8 .
  11. }, RIMS `gU , sw, 2017 N 10 27 .
  12. `gUl@, {w 2017 NxN, sw, 2017 N 3 27 .
  13. `gUIl@, Wul_E Hv, LO}o, 2017 N 3 22 .
  14. `gUl, `xiソl, xRw, 2017 N 2 14 .
  15. }gUn, I, sw, 2016 N 12 18 .
  16. `gUl@, 2016 NxpwW, Jw, 2016 N 12 15 .
  17. EFCfOCCp, kb, w, 2016 N 11 18 .
  18. EEIfO, Qw Z~i[, Qw, 2016 N 6 4 .
  19. EEI, ^Z~i[, w LpX, 2016 N 5 23 .
  20. EEEI: fO, Turing @\Ap^[_ Ci~NX, Lw, 2015 N 12 19 .
  21. EFCfOC, 2015 NxpwW, Jw, 2015 N 12 18 .
  22. EEEI, Wup^[_Ci~NX\ Tv, kCw, 2015 N 6 26 .
  23. EEEI, HMMC Z~i[, kCw, 2015 N 1 30 .
  24. }b, xRZ~i[ 2014, xRw, 2014 N 10 11 .
  25. EflFgU, LTXeiuw Z~i[, LZ~i[, Lw, 2014 N 5 16 .
  26. Efl, kb, Bw, 2014 N 5 15 .
  27. EfFgU, {w 2013 NxN, wK@ w, 2014 N 3 17 .
  28. EEIf, wOZ~i[Fw VfwI\z, t@Xwr, 2014 N 2 18 .
  29. Efl@, kp 2014, w TeCgvU, 2014 N 2 14 .
  30. Ef, wlZ~i[, w, 2014 N 1 28 .
  31. Ef: gU vs. , 2013 NxpwW, J w, 2013 N 12 19 .
  32. gUnUXL[, {w 2013 NxHG , Qw, 2013 N 9 27 .
  33. Ef, 23 {w, w, 2013 N 9 13 .
  34. E, L@wI_m III, Qw, 2013 N 8 3 .
  35. EWcp^[, {w 2013 NxN, s w, 2013 N 3 22 .
  36. EWc`p^[, `lV~[ V 2013, kCw, 2013 N 3 9 .
  37. ECECx~CmolEWc_Ci~NX, 2012 NxpwW, Jw, 2012 N 12 22 .
  38. EWc_Ci~NXl@, xRZ~i[ 2012, xRw, 2012 N 10 6 .
  39. `gUn`l@, {w 2012 NxN, w, 2012 N 3 29 .
  40. `gU`L, [NVbvuL@ wI_m IIv, Bw, 2012 N 3 15 .
  41. `gU`, RIMS u`gUv, sw, 2012 N 2 15 .
  42. n, XZ, EFf`, Kunitachi One-Day Symposium on Mathematical Sciences, w, 2012 N 2 4 .
  43. `gUnpIl@, 2011 Nxpw W, Jw, 2011 N 12 15 .
  44. TIXet@@, LOV|WEu Ep^[_Ci~NXlv, Lw, 2011 N 12 7 .
  45. 3 gUn}RERE l@, MZSeminar, {w, 2011 N 11 25 .
  46. `gUn`@: L@, xRZ~i[ 2011, xRw, 2011 N 10 8 .
  47. gUnF_p, {w 2011 NxHG (u ), MBw, 2011 N 9 30 .
  48. `gU^`XL[, [NVbvuL@ wI_m Iv, xRw, 2011 N 8 5 .
  49. `gU`@, BwlZ~i[, Bw, 2011 N 6 21 .
  50. gUn}, Z~i[, Qw, 2011 N 5 20 .
  51. `gUgUnlp, swOZ~i[, LpXvUs, 2011 N 4 29 .
  52. gUn, }, Z~i[, wZ~i[nE X, 2011 N 4 22 .
  53. gUnF_p, {w 2011 NxN (u), c w, 2011 N 3 22 . (~, 2011 NxHGu)
  54. gUn_p, k M yZ~i[, xRw, 2011 N 2 18 .
  55. `gUn`@, xRZ~i[ 2010, xRw, 2010 N 10 2 .
  56. 3 gUn}RE, {w 2010 NxHG, w, 2010 N 9 25 .
  57. 3 gUn}, RDS Z~i[, w, 2010 N 7 5 .
  58. `gUgUn, pZ~i[, w, 2010 N 6 24 .
  59. `gUnl@`gUn_p`, lZ~ i[, w, 2010 N 6 23 .
  60. `gUnl@, WulV~[V_ Hv, BwVvU, 2010 N 2 17 .
  61. `gU`gUW, Z~i[, _w, 2009 N 12 11 .
  62. - gUp`gU, RIMS Wu 6 w_ pv, JwZ~i[nEXuv, 2009 N 11 13 .
  63. 3 Lotka-Volterra gUn, xRZ~i[ 2009, xRw, 2009 N 10 3 .
  64. n, XZ, , Rp, xRRz eYR, 2009 N 8 21 .
  65. - gUpgUW, Z~i[, {\ jbNVeBiwTeCgLpXj, 2009 N 5 28 .
  66. - gUpgUCgUW, pwZ~i[, kw, 2009 N 5 14 .
  67. gUCgUC - gUW, W in xRugUn 2008v, xRw, 2009 N 1 30 .
  68. `gU - gUW, JwZ~i[, JwcL pX, 2009 N 1 23 .
  69. `gUgUn II, pwW, JwcLpX, 2008 N 12 15 .
  70. ^REl@, Wu 10 E_Ci~N XlV~[Vv, ZgELTYEJbW _CX eB`[g, 2008 N 11 28 .
  71. gU - gUW, xRZ~i[ 2008, xRw, 2008 N 10 4 .
  72. ^REE, Wup^[_Ci~NX v, sw, 2008 N 6 26 .
  73. gUn_lp, {w 2008 NxN, E w, 2008 N 3 26 .
  74. `gUn`^@, Bwl Z~i[, Bw, 2008 N 2 12 .
  75. EgUnp, pwW, w, 2007 N 10 13 .
  76. ^gUnp, xRZ~i[ 2007, xRw, 2007 N 9 29 .
  77. ^gUnlvZp, l ~jV|WE, Bw, 2007 N 5 29 .
  78. `gUgUn, 2006 Nxpw W, Jw, 2006 N 12 .
  79. ^ngUn, 2006 Nx{wHG, sw, 2006 N 9 .
  80. ^gUn, klyZ~i[, xR w, 2006 N 5 .
  81. TI Stefan gUn, {w 2006 NxN, w, 2006 N 3 .
  82. E@lV~[V, xRwkb, xRw, 2005 N 11 .
  83. TI Stefan gUn, BwlZ~i[, Bw, 2005 N 10 .
  84. Mp Stefan (\Fc, BK), { w 2005 HG, Rw, 2005 N 9 .
  85. Approximation schemes for two-phase Stefan problems: application to the singular limit of reaction-diffusion systems (\Fc, B K), WugUnEp^[JjYv, s w, 2004 N 10 .
  86. Xet@lvZ, Workshop on BV functions and free boundary problems, G[fCX, kC, 2004 N 10 .
  87. Xet@@l@ (\Fc , BK), Kuju Workshop on Applied and Numerical Analysis, Bn wdC, 2004 N 5 .
  88. Zq@pEl@ (\Fc, BK), l`[gA 2004, Bw, 2004 N 3 . (|X^[)
  89. Epl@ (\FBK), WuPDEs and Phenomena in Miyazaki 2003v, {w, 2003 N 10 .
  90. Application of an operator splitting method to Stefan problem (\ FBK), WuE_Ci~NXl@J p III v, _CXeB`[g, 2003 N 7 .
  91. pEl@ (\FBK), W uLvf@vZAv, |[g ql, 2003 N 1 .
  92. gUn Stefan l@ (\FBK), 2002 NxpwW, Jw, 2002 N 12 .
  93. gUn Stefan l@ (\FBK), BwlZ~i[, Bw, 2002 N 11 .

Grants

  1. Grant-in-Aid for Scientific Research (C)(No. 17K05368) from Japan Society for the Promotion of Science(JSPS), 2017–2020.
  2. Grant-in-Aid for Scientific Research (C)(No. 26400205) from Japan Society for the Promotion of Science(JSPS), 2014–2016.
  3. Grant-in-Aid for Young Scientists (B)(No. 22740058) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (2010) and from Japan Society for the Promotion of Science (2011–2012), 2010–2012.
  4. wh, {wpU, 2010, wQ.
  5. Grant-in-Aid for Young Scientists (B)(No. 19740046) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, 2007–2009.
  6. Grant-in-Aid for JSPS Fellows (No. 17.5994) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, 2005.

back

Copyright (C) Hideki Murakawa.

design テンプレート