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Abstract

In the present work, we give algebraic independence results for the values of the classical theta-
constantsls (1), 93(7), andd4 (7). For example, the two valuek, (m7) anddg(n7) are algebraically
independent ove® for any in the upper half-plane whesrt™ is an algebraic number, where, n > 1
are integers and, 5 € {2, 3,4} with (m, ) # (n, 8). This algebraic independence result provides new
examples of transcendental numbers through some identities found by S. Ramanujan. We additionally
give some explicit identities among the three theta-constants in particular cases.
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1 Introduction and statement of the results

The Jacobi theta function is defined for two complex variablaadr by

%
19(2 ‘ 7_) — Z 671'1‘1/27'+27ri1/z7

V=—0oQ

which converges for all complex numbersandr in the upper half-plan&l := {7 € C|3(7) > 0}. Then
the following three holomorphic functions definedHi

Do (T) 1= e™iT/4. I(r/2|7) = 22:67”'(1/“/2)%7 D3(7) :=9(0]7) =1+ 22 eV
v=0 v=1

0a(r) = 0(1/2|7) = 142> (~1)"e™7,
v=1
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are known as theta-constants or Thetanullwerte, and the fungiion is called the Jacobi theta-constant or
Thetanullwert of the Jacobi theta functigfz | 7). As is well known, the theta-constants are never zefi in

and have modular properties (cf. [13, Chapter 10]). In 1996, Yu. V. Nesterenko [8] found a new approach to
the arithmetic nature of values of modular forms, proving the algebraic independence results for the values
of the Ramanujan functions

P(z)=1- 24201(71)2”, Q(z) =1+ 240 Zag(n)z”, R(z)=1- 5042 o5(n)z",
n=1 n=1

n=1
whereoy,(n) = >, d";

Theorem A ([8, Theorem 1]).For eachq € C with 0 < |¢| < 1, at least three of the numbegs P(q),
Q(q), R(q) are algebraically independent ovéy.

Theorem A has a number of remarkable consequences on algebraic independence (cf. [8, 9, 11]); for exam-
ple, the two numbers ande™ are algebraically independent ov@r D. Bertrand [3] translated Theorem A
in terms of the theta-constants as follows. [et= L. -L be a differential operator.

7 dT

Theorem B ([3, Theorem 4])Leta, B,v € {2,3,4} with a # 5. Then for anyr € H, at least three of the
numberse™7, ¥,(7), 95(7), DI, (1) are algebraically independent ov&r.

Note that we can derive from Theorem B that the SuljY q”2 is transcendental for any algebraic number
g with 0 < |¢q| < 1 (cf. [4]). Itis a natural question to ask whether Theorem B continues to haldsif
replaced bynr for a positive integer. In this direction, the first author [5] has investigated the algebraic
independence of the two valuég() andds(n7) for special integers. > 2, namely, in the case when

is a power of two, and fon = 3,5,6,7,9,10,11, 12. As an application of the case= 5, he obtained the
transcendence of each of the infinite sums

> ny\ nqg" > ny\ ng"
-1"(%) and > (5)
= 5/1—q" ot 9/ 1+qg"
n=1 (mod 2)

where (%) denotes the Legendre symbol apds an algebraic number with < |¢| < 1, by using the
identities among the two functiong;(7) and¥s(57) due to Ramanujan (cf. [1, p. 249, (ii) and (iii) in
Entry 8]). Recently, these results were generalized as follows;

Theorem C ([6, Theorem 1.2], [7, Theorem 1])Let m andn be distinct integers with < m < n
and~y € {2,3,4}. Then for anyr € H at least three of the numbees’™, J3(7), J3(n7), DI, () are
algebraically independent ove. Furthermore, at least two of the number&™, ¥3(mr7), ¥3(n7) are
algebraically independent ovép.

The latter assertion in Theorem C implies that the two values of the theta-cotistangt different points

T = m1y, n7o are algebraically independent ov@if the number™ is algebraic. The proof of Theorem C
heavily depends on the constructive identities among the theta-constants, which are produced from the
polynomialsP,, (X, Y') obtained by Yu. V. Nesterenko [10] (see Theorem D in Section 3). The first purpose

of this paper is to extend a result of Theorem C to a more general form;

Theorem 1.1. Letm,n,¢ > 1 be integers andv, 3,v € {2,3,4} with (m,«) # (n,3). Then for any
T € H, at least three of the numbe¢s'™™, 9, (m7), I5(nt), DI, (¢1) are algebraically independent over
Q. In particular, the two numbers,, (m7) anddz(n7) are algebraically independent ov@rfor anyr € H
whene™ is an algebraic number.
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Note that Theorem 1.1 also generalizes Theorem B. The key of our improvement is the equality on the
transcendence degrees

trans. degg Q (9o (m7), ¥5(n7)) = trans. degg Q(d2(7), 93(7)) (1.1)

for anyr € H, provided that{m, «) # (n,3). The equality (1.1) will be confirmed through the theory of
modular forms without the use of the specific identities among the theta-constants. This approach is com-
pletely different from those used in the previous papers [5], [6], and [7]. We give the proof of Theorem 1.1
in Section 2.

Example 1.1. Letm,n > 1 be distinct integers and be an algebraic number with < |¢| < 1. Then, any
two humbers among the six numbers

0o 3] 9] R o0 ) 9] ) 0o )
Z qu(V—l), z:qm/(u—l)7 qul/ , any , Z(_1>quy ’ Z(_l)yqny
v=1 v=1 v=1 v=1 v=1 v=1

are algebraically independent ov&, and any three numbers are not.
As an application of Theorem 1.1, we have the following corollary. (I;:;etdenote the Legendre symbol.

Corollary 1.1. Letq be an algebraic number with < |¢| < 1. Then the infinite sums

n

i (5) 1 inqn’ i(—l)” (5) 5 fnqn, g:l (5) 5 _qq% (1.2)

are transcendental. The same holds for the infinite sums

S(E) i X5 €3

Remark 1.1. It is well-known that the value of the elliptic modulgsfunction given by the formula

. (A2 —X+1)3
= 2 _—

j(T) 56 AQ(A— 1)2

is an algebraic number for any imaginary quadratic numberH, where) := () = 93(7)/93(7). Com-

bining this fact and the equality (1.1), we find that the two numbgrsn7) anddz(n7) are algebraically

dependent oveQ if 7 € H is an imaginary quadratic number. Indeed, the values of the theta-constants at

T =1,2¢ € H are given by

» . 7.‘.1/4 - 7T1/4
Va(i),94(1) = m, I3(i) = M,
9(24) = 22;/51920'), ga(20) = 25200, aagei) 25040

(cf. [2, p. 325, Entry 1], see also [14]), wheréz) is the gamma-function.
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The second purpose of this paper is to give algebraic dependence relatiofgsfovéne two rational func-
tions of the theta-constants (nr)/93(7) andd4(7)/93(7), wheren > 2 is an integer ang € {2,3,4}.
For an integer. > 2, we define the functiow(n) by

Y(n)=n ] (1 + ;) : (1.4)

where the product on the right-hand side is taken over all odd prime numbétis p | n.
Theorem 1.2. Letn > 2 be an integer. For each € {2, 3,4}, there exists a polynomia}; ,(X,Y") with

rational coefficients such that
i(nT)  94(7)
Qjn | -2 , =0 1.5
/ (ﬁém JA(r) (5

holds for anyr € H, whereQ); ,(X,Y") has the form

W(n)
Qjn(X,Y) = XYM 4+ 3" R, (V) XV (1.6)
v=1
with
deg Rjn(Y) <v, v=12,...,¢%n). (1.7)

Theorem 1.2 generalizes a result of Yu. V. Nesterenko [10] (see Theorem D in Section 3). In Section 4,
we derive from Theorem 1.2 a useful method to compute the explicit algebraic dependence relations among
the theta-constants. For example, we compute polynomials for the three theta-congtants;(27), and

¥;(37) for eachj € {2, 3,4} and list the first few polynomialg; ,, at the end of this paper.

2 Proofs of Theorem 1.1 and Corollary 1.1

Proof of Theorem 1.1We first observe the equality (1.1). Let n, ¢ > 1 be integers and, 5,y € {2, 3,4}
with (m, @) # (n, 8). Then the three theta-constamt§(mr), ¥3(n7), andd; (¢r) are modular forms of
weight2 at least for the principal congruence subgroup of Iével= 2/mn

= {(2 4 esuam (2 )= (3 1) )

so that the two ratios

93 (et
x:=x(1) = ﬁg(('rnT)) and y:=y(7):

B ﬁ%(nr)

94 (mT)

are modular functions at least fof V). LetF y denote the field of all the modular functions 1ofV') whose
Fourier expansions with respectd®™/N have coefficients iQ(e?™/N). Then the fieldgy is algebraic
over the fieldQ(j(7)) of weight zero modular functions fd L2(Z), wherej(r) is the elliptic modular
j-function (cf. [12, Chapter 6§6.2]). Hence, noting that,y € §x, we find that the field)(j(7), z,y)
has transcendental degree one d@eand so the functior is algebraic over the fiel@(y), sincey is a
non-constant function by the assumptioen, o) # (n, 8). Thus, there exists a polynomial in two variables

9(X,Y) = by X" + by (V)X -+ b (Y), k(YY) 20,
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with bo(Y), ..., bp(Y) € Q[Y], such that the function(7) := g(X,Y")|x=z,y—, is identically zero, where

we may assume that the polynomi&lgY’), ..., b, (Y") have no common factors i@[Y].
Let 7o € H be a fixed complex number and pyt:= y(70) € C. Suppose to the contrary thaf(yo) = 0
forall x = 0,1,...,h. Theny is an algebraic number, sinég(Y') is a nonzero polynomial. Hence,

all polynomialsb,(Y") are divided by the minimal polynomial af over Q, which is impossible. Thus,
there exists a such that,(yy) # 0, so that the polynomigj (X, o) over Q(yo) does not vanish. This
implies that the numbet () is algebraic oveQ(y,), namely, the numbaet., (¢7) is algebraic over the field
Q(¥a(mm),¥5(n10)). The above integers:, n, ¢ > 1 and the subscripts, 3,y € {2,3,4} are chosen
arbitrary, and therefore we obtain the equality

trans. degg Q (Vo (m7),95(n7)) = trans. degg Q (V2(7), ¥3(7))
foranyr € H, which is (1.1) as desired. Theorem 1.1 follows from the equality (1.1), since
trans. deggy Q (€™, 0o (mT),95(nT), DY,(£)) = trans. degy Q (emh, Pa(1), I3(7), Dﬁy(ﬁ))
— trans. degg Q (J”T, Do (£7), V5(07), D&AET)) >3

hold for anyr € H, where we used Theorem B at the last inequality. The proof of Theorem 1.1 is completed.
O

Proof of Corollary 1.1 Let gg be an algebraic number with< |gg| < 1 and we choose, € H such that
qo = ¥, By Theorem 1.1 the numbetss (7o) andd»(37,) are algebraically independent ov@y so that
the numbems (37) /92 () is transcendental. On the other hand, the identity

19% (37) >~ /n q" .
—4 <7> ’ — 271'17—’
Va(T) Z 3/ 1—¢qg? 1:=c

n=1

holds for anyr € H (cf. [2, p. 374, Entry 34]). Hence, substitutimg= 7y, we obtain the transcendence of
the infinite series on the right-hand side. Similarly, we can obtain the transcendence for other sums in (1.2)
from the identities

TL

193 > )
=1-2 ( ) , q:=—e""7,
nir) ~ PG g

and

93(7) U3(37)  omir
et s (hey (3) 1 0) am e

which are given in [2, p. 375]. For the infinite sums in (1.3), see the identities [1, p. 249, (i) and (iv) in
Entry 8]).

3 Proof of Theorem 1.2

In this section we prove Theorem 1.2. Lt := 9J,(7) (j = 2, 3,4) for brevity. It is well-known that the
identities
93 =95 + U} (3.1)
and
203(27) = 0% — 0%, 203(21) =934+ 0%, 03(27) = V34 (3.2)
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hold for anyr € H. We first show Theorem 1.2 in either caseiof 2 or an odd integen > 3. Define the
three polynomials as follows;

21

Qaa(X,Y), Qa(X,Y)i= X2 = L(Y 4 DX + (¥ — 1), (3.3)

Qu2(X,Y):= X? Y.

Lemma 3.1. For eachj € {2, 3,4} the polynomial); »(X,Y") satisfies

v3H(2T1) 94
Qj,2< jﬁé , 19%) =0 (reH). (3.4)

Proof. By the first equality in (3.2) we have

8 4 4 4 2
B2\ 91 T 16 \ 0l

so that the polynomial
1 1
Q22(X,Y) = X* - i(Y +1)X + TG(Y -1)?

vanishes at{ = 93(27)/93 andY = 91/941 for anyr € H. Similarly we find that the polynomial@; -
andQ)4 > satisfy (3.4) from the second and the third equalities in (3.2), respectively. O

Itis clear that the above polynomialy; » satisfy (1.6) and (1.7) in Theorem 1.2. Next we consider the case
wheren = m > 3 is an odd integer. We use the following result obtained by Yu. V. Nesterenko [10].

Theorem D ([10, Theorem 1, Corollaries 3, 4]For any odd integern > 3 there exists an integer polyno-
mial

w(m)
Pn(X,Y) =X £ 3" R, (V) XV (3.5)
v=1

withdegy R, (Y) <v (v =1,2,...,¢(m)), such that the identities

194(m7) 194(7) B 194(m7') 194(7') B
Fin (m = ‘1619%(7)) =0 P (m =y 161%(7)) =0 (3:6)
" P, (wﬂﬁi(mﬂ —1619%(7)>_0 (3.7)
" 03(r) 03(7)

hold for anyr € H, wherey(m) is defined by (1.4).

Let P,(X,Y) be an integer polynomial in Theorem D. For example, the first two polynomiabnd P;
are given in [10] by

Py(X,Y)=X*—12X3 +30X% — (Y2 - 16Y +28)X + 9, (3.8)

Ps(X,Y) = X5 - 30X° +135X* — (20Y2 — 320Y + 260) X3 — (120Y? — 1920Y — 255) X 2
— (Y4 —32Y3 4+ 308Y? — 832Y + 126)X + 25,
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respectively. Define

X Y
= 20(m) (1 _ yy(m) 2 _
Qom(X,Y) :=m (1-Y) Pm<m1_y, 161_Y>, (3.9)
Qsm(X,Y) :=m 2™ . Py (m® X, 16(1 - Y)), (3.10)
Qum(X,Y) :=m ~2myv(m . p (m;( —161;Y>. (3.11)

Lemma 3.2. For eachj € {2, 3,4} the above), ,,(X,Y) is a polynomial with rational coefficients, which

satisfies
94 (mT) 95
Qj,m ( Jﬁ% y 197% =0 (7' = H),

and is of the form
Y(m)
Qj,m(Xa Y) = x¥im) 4 Z Rj7m7l,(Y)X¢(m)—u’
v=1
where
degRj’m,y(Y) < v, V= 17277w(m>

Ii(mr) V]
Q47m<4 T 4>=0 (1 € H)
CER

follows from (3.7) together with (3.1). Furthermore by (3.5) and (3.11) we get the form

Proof. The identity

P(m)
Qum(X,Y) = XU % | Rym (V) X7
v=1

where Ly
Rym,(Y):=m YY" R, (—16;> . v=1,2,...,9(m),

are polynomials i with
deg Rym o (Y) < v, v=12,...,9%(m),

sinceR,(X) are given by integer polynomials whose degrees are lessth@herefore Lemma 3.2 is true
for j = 4. We can obtain the similar results for the polynomigls,, and@s ,,, from the equalities (3.6). [

Finally we complete the proof of Theorem 1.2.

Proof of Theorem 1.2Fix a subscripy € {2,3,4}. The proof is by induction on. We have just shown
in Lemmas 3.1 and 3.2 that the assertion is truenfes 2 and an odd integet = m > 3. Suppose that
Theorem 1.2 is true for some fixed integer 2; namely there exists a polynomial

¥(n)
Qin(X,Y) ") 4 Z Rjn, (Y)X¥(MWV (3.12)
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satisfying the properties (1.5), (1.6), and (1.7). In what follows, we show the existence of the polynomial
Qj.2n(X,Y), which satisfies the properties (1.5), (1.6), and (1.7) witieplaced by2n. The identity (1.5)
remains true when is replaced by, and the equalities

9;@2n7) _ 9j(2n7) (1 193>2 vier) 93 < - 192>

24 =44
2 o(2r) 02 92

gi2r) 03
follow from (3.2). Hence by (3.12)

A (XY) = O Y0 g

b(n)
= X0 £ 34 Y) - Ry <4Y (1+ Y)_Q) X

v=1

4X 4Y
(1+Y)2 (1+Y)2>

¥(n)

=) S (V)XY
v=0

vanishes ai = (2n7) /93 andY = ¥3/93 for anyr € H, where we denots}, o(Y) := 1 and
Simn(Y) =471+ Y)* - ;. (4Y (1+ Y)_Q) . v=1,2,....%(n).
By the induction hypothesis (1.7), the abavg, (Y') are polynomials with
deg Sjn,(Y) < 2v, v=0,1,2,...,9(n). (3.13)
Define

Bin(X,Y):=A; (X, Y)A; (X, -Y)

2(n)
_ XQw(n) + Z r]vjmy(y)XQl[J(n)fu’
v=1
whereT} , ,(Y") are polynomials irt” given by
Tinp(Y):= Y Sjmin(¥)Sjman(=Y). (3.14)
0<w,v2<9(n)

v1+rvo=vr

Clearly the polynomialg’ ,, ., (Y') are even with respect to the variabife namely there exist polynomials
R; on.,(Y") with rational coefficients such that

Rjony(Y?) = Tjn(Y), v=1,2,...,2¢%(n). (3.15)
Now we check that the polynomial
2¢(n)
Q] Qn(X Y sz + Z R; ,2nu X27,Z)(n)—y

w<2n>
YO 4N R0 (V) XV (3.16)
r=1
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fulfills the properties (1.5), (1.6), and (1.7) fereplaced by2n. The property (1.5) follows from the relation
Qjon (X, Y?) = Bjn(X,Y) = 4, (X,Y) 4j, (X,-Y)

and the fact that the polynomial; ,(X,Y’) vanishes a = 9}(2n7)/93 andY = v3 /93 for anyr € H.
The form (1.6) is given by (3.16). Moreover, for=1,2,...,1(2n) we have by (3.13), (3.14), and (3.15)

2deg Rj 2, (Y) = deg Tjn o (Y)
_0§V1r53§¢(n)( ©g Sjnn (V) + deg Sjn, (=)
v1+ro=vr
< max  (2v1 +2wy)
0<vy, w2 < (n)
v1+re=vr

= 2v,

so that
deg Rjon.,(Y) < v, v=12,...,92n),

which is (1.7). The proof of Theorem 1.2 is completed. O

Remark 3.1. We haveQ, 5 = Q3¢ for any integer/ > 1, since these polynomials are inductively
constructed from the same initial polynomial (3.3). Moreover, by definitions (3.9), (3.10), and (3.11), we
have

QQ,m(X, Y) = (1 — Y)w(m) ' Q3,m <1i(Y-7 1_1}/> )

X 1
— yvm) -
Qum(X,Y)=Y Q3.m (Y’ Y>
for any odd integern > 3.

Remark 3.2. Letn > 2 be an even integer. Then for eatk {2, 3,4} we have

4 T
Qjn (ﬁj(n ) 1931) —0 (reH), (3.17)

o 7 od
which follows immediately from the transformation— 7~ + 1 in (1.5) and the equalities
4 _ 04 _
19](7—_{_2)_19](7—) (]_2a3a4>7

I3(T + 1) = 95(7), I1(T + 1) = 9i(7).

4 |dentities for the theta-constants

4.1 An application of Theorem 1.2

By the argument in the proof of Theorem 1.1, any three theta-consigts), ¥;(m7), andd,(n7) are
algebraically dependent ové&), but it is not easy to find the explicit algebraic dependence relations for
given three theta-constants. In this section, as an application of Theorem 1.2, we give the explicit algebraic
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dependence relations among the three theta-constants ¥, (27), andd;(37) for each fixedj € {2, 3,4}.
LetT € H. Then by (3.6) and (3.17) the two polynomials

1
oW W

FW) = W2 Qo (19%(27) 1 1 > |

4
g(W) := Py (91925937), —16W> ,
2

have a common root & = ¥} /93, and hence the resultant ${17) andg() is equal to zero. Thus, we
find that the polynomial

Ro(X,Y,Z) = X°Z — XY? —4X3Y%Z — 210X2Y? 2% + 256 XY 1 Z + 972XY? 73 — 729Y? 74

vanishes identically ak = J3(7), Y = 93(27), andZ = 93(37), where we used the forms (3.3) and (3.8).
Similarly by considering the resultants

9E(2 1 1 94(3
Resw (W2 ’ Q3,2 < 31(947—) ’ W? W) , P3 (9 31(947-)7 16(1 - W)))
3 3

and

Resy (Q4,2 (W, 1+W>, P (9193(37), 16W>>,

respectively, we can obtain integer polynomials

R3(X,Y,Z) := X® —56X7Z — 10240X°Y Z + 1324X57% — 8192X°Y2Z — 761856 X°Y Z*
— 17064X° 73 + 9666560X Y2 Z? — 2764800X 1Y Z3 4 128790X 4 Z*
— 25165824 X3Y3 2% — 2211840X3Y 223 4 9953280 X3Y Z* — 565704X3 Z°
+ 16777216 X2Y* Z?% + 7962624 X %Y 2 Z* — 7464960X2Y Z°
+1338444X2 7% — 5971968 X Y225 — 1417176 X Z" + 53144128 ,

Ry(X,Y,Z) = X° - 28X*Z + 270X3Z% + 256 X?Y?Z — 972X%Z3 + 729X Z* — 256Y* Z ,

whereR;(X,Y, Z) vanishes identically ak = 9j(7), Y = v}(27), andZ = 9}(37) for eachj = 3, 4.
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4.2 Appendix

1 1
Q22 =Q39=X?— 5(Y +1)X + g(y -1)%

4 10 4 1
Qa3 =X*+ SV = X3+ (V- 1)2X2 + (V=D + DT + DX + 5 (¥ = 4,

1 1 1
Qo4 =Q34=X"— 17+ X3+ ?(31/2 —62Y +3)X? — 7o (¥ + D(Y24+30Y +1)X

1
+ ﬁ(y —1)4
6 6 5 27 2y 4 4 2 3
Qa5 = X"+ g(Y —1)X° + ?(Y —1)2X* + ﬁ(y —1)(13Y* + 230Y +13)X
3
+ ﬁ(y —1)2(17Y?% — 2082Y 4 17) X2
2 1
+ 5 (Y - 1)(63Y* + 6404V + 19834Y % + 6404Y + 63) X + =Y - 1)°,
4 10 4 1
Q33 =X*— §X3 + §X2 — 358V — DY =) X + o,
6 6.5 27, 4 ) ; 3 ) )
Qa5 = X" = = X7+ 5 X% — (2567 — 256 + 13) X7 — == (2048Y™ — 2048Y — 17) X
2 4 3 2 1
— £10(32768Y" — 655367 + 39424Y — 6656 + 63)X + 5,
Qua=X>-Y,
4 10 4 1
Quz = X' — gYX3 + §Y2X2 — 5V (V = 8)(7V = 8)X + $Y4,
1
Qua=X'-YX?— ¥ (Y -1)?,
6 6y 95, 270 4 2 3, B2 2 2
Qus = X" = VX7 4 VX! = V(18Y? = 256Y + 256) X7 + 7Y 2(17Y + 2048Y — 2048) X
2 4 3 2 1 6
— 5107 (63Y™ — 6656Y° + 394242 — 65536Y + 32768) X + 5",
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