Algebraic independence results for the values of THE THETA-CONSTANTS AND SOME IDENTITIES

Carsten Elsner, Masanobu Kaneko, Yohei Tachiya ${ }^{\ddagger}$

Abstract

In the present work, we give algebraic independence results for the values of the classical thetaconstants $\vartheta_{2}(\tau), \vartheta_{3}(\tau)$, and $\vartheta_{4}(\tau)$. For example, the two values $\vartheta_{\alpha}(m \tau)$ and $\vartheta_{\beta}(n \tau)$ are algebraically independent over \mathbb{Q} for any τ in the upper half-plane when $e^{\pi i \tau}$ is an algebraic number, where $m, n \geq 1$ are integers and $\alpha, \beta \in\{2,3,4\}$ with $(m, \alpha) \neq(n, \beta)$. This algebraic independence result provides new examples of transcendental numbers through some identities found by S. Ramanujan. We additionally give some explicit identities among the three theta-constants in particular cases.

Keywords: Algebraic independence, Theta-constants, Modular form.
AMS Subject Classification: 11J85, 11F27.

1 Introduction and statement of the results

The Jacobi theta function is defined for two complex variables z and τ by

$$
\vartheta(z \mid \tau)=\sum_{\nu=-\infty}^{\infty} e^{\pi i \nu^{2} \tau+2 \pi i \nu z}
$$

which converges for all complex numbers z, and τ in the upper half-plane $\mathbb{H}:=\{\tau \in \mathbb{C} \mid \Im(\tau)>0\}$. Then the following three holomorphic functions defined in \mathbb{H},

$$
\begin{gathered}
\vartheta_{2}(\tau):=e^{\pi i \tau / 4} \cdot \vartheta(\tau / 2 \mid \tau)=2 \sum_{\nu=0}^{\infty} e^{\pi i(\nu+1 / 2)^{2} \tau}, \quad \vartheta_{3}(\tau):=\vartheta(0 \mid \tau)=1+2 \sum_{\nu=1}^{\infty} e^{\pi i \nu^{2} \tau} \\
\vartheta_{4}(\tau):=\vartheta(1 / 2 \mid \tau)=1+2 \sum_{\nu=1}^{\infty}(-1)^{\nu} e^{\pi i \nu^{2} \tau}
\end{gathered}
$$

[^0]are known as theta-constants or Thetanullwerte, and the function $\vartheta_{3}(\tau)$ is called the Jacobi theta-constant or Thetanullwert of the Jacobi theta function $\vartheta(z \mid \tau)$. As is well known, the theta-constants are never zero in \mathbb{H} and have modular properties (cf. [13, Chapter 10]). In 1996, Yu. V. Nesterenko [8] found a new approach to the arithmetic nature of values of modular forms, proving the algebraic independence results for the values of the Ramanujan functions
$$
P(z)=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) z^{n}, \quad Q(z)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) z^{n}, \quad R(z)=1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) z^{n}
$$
where $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$;
Theorem A ([8, Theorem 1]). For each $q \in \mathbb{C}$ with $0<|q|<1$, at least three of the numbers $q, P(q)$, $Q(q), R(q)$ are algebraically independent over \mathbb{Q}.

Theorem A has a number of remarkable consequences on algebraic independence (cf. [8, 9, 11]); for example, the two numbers π and e^{π} are algebraically independent over \mathbb{Q}. D. Bertrand [3] translated Theorem A in terms of the theta-constants as follows. Let $D:=\frac{1}{\pi i} \frac{d}{d \tau}$ be a differential operator.

Theorem B ([3, Theorem 4]). Let $\alpha, \beta, \gamma \in\{2,3,4\}$ with $\alpha \neq \beta$. Then for any $\tau \in \mathbb{H}$, at least three of the numbers $e^{\pi i \tau}, \vartheta_{\alpha}(\tau), \vartheta_{\beta}(\tau), D \vartheta_{\gamma}(\tau)$ are algebraically independent over \mathbb{Q}.

Note that we can derive from Theorem B that the sum $\sum_{n=1}^{\infty} q^{n^{2}}$ is transcendental for any algebraic number q with $0<|q|<1$ (cf. [4]). It is a natural question to ask whether Theorem B continues to hold if τ is replaced by $n \tau$ for a positive integer n. In this direction, the first author [5] has investigated the algebraic independence of the two values $\vartheta_{3}(\tau)$ and $\vartheta_{3}(n \tau)$ for special integers $n \geq 2$, namely, in the case when n is a power of two, and for $n=3,5,6,7,9,10,11,12$. As an application of the case $n=5$, he obtained the transcendence of each of the infinite sums

$$
\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{n}{5}\right) \frac{n q^{n}}{1-q^{n}} \quad \text { and } \quad \sum_{\substack{n=1 \\ n \equiv 1 \\(\bmod 2)}}^{\infty}\left(\frac{n}{5}\right) \frac{n q^{n}}{1+q^{n}}
$$

where $\left(\frac{n}{5}\right)$ denotes the Legendre symbol and q is an algebraic number with $0<|q|<1$, by using the identities among the two functions $\vartheta_{3}(\tau)$ and $\vartheta_{3}(5 \tau)$ due to Ramanujan (cf. [1, p. 249, (ii) and (iii) in Entry 8]). Recently, these results were generalized as follows;

Theorem C ([6, Theorem 1.2], [7, Theorem 1]). Let m and n be distinct integers with $1 \leq m<n$ and $\gamma \in\{2,3,4\}$. Then for any $\tau \in \mathbb{H}$ at least three of the numbers $e^{\pi i \tau}, \vartheta_{3}(\tau), \vartheta_{3}(n \tau), D \vartheta_{\gamma}(\tau)$ are algebraically independent over \mathbb{Q}. Furthermore, at least two of the numbers $e^{\pi i \tau}, \vartheta_{3}(m \tau), \vartheta_{3}(n \tau)$ are algebraically independent over \mathbb{Q}.

The latter assertion in Theorem C implies that the two values of the theta-constant $\vartheta_{3}(\tau)$ at different points $\tau=m \tau_{0}, n \tau_{0}$ are algebraically independent over \mathbb{Q} if the number $e^{\pi i \tau_{0}}$ is algebraic. The proof of Theorem \mathbf{C} heavily depends on the constructive identities among the theta-constants, which are produced from the polynomials $P_{m}(X, Y)$ obtained by Yu. V. Nesterenko [10] (see Theorem D in Section 3). The first purpose of this paper is to extend a result of Theorem C to a more general form;

Theorem 1.1. Let $m, n, \ell \geq 1$ be integers and $\alpha, \beta, \gamma \in\{2,3,4\}$ with $(m, \alpha) \neq(n, \beta)$. Then for any $\tau \in \mathbb{H}$, at least three of the numbers $e^{\pi i \tau}, \vartheta_{\alpha}(m \tau), \vartheta_{\beta}(n \tau), D \vartheta_{\gamma}(\ell \tau)$ are algebraically independent over \mathbb{Q}. In particular, the two numbers $\vartheta_{\alpha}(m \tau)$ and $\vartheta_{\beta}(n \tau)$ are algebraically independent over \mathbb{Q} for any $\tau \in \mathbb{H}$ when $e^{\pi i \tau}$ is an algebraic number.

Note that Theorem 1.1 also generalizes Theorem B. The key of our improvement is the equality on the transcendence degrees

$$
\begin{equation*}
\text { trans. } \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(\vartheta_{\alpha}(m \tau), \vartheta_{\beta}(n \tau)\right)=\text { trans. } \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(\vartheta_{2}(\tau), \vartheta_{3}(\tau)\right) \tag{1.1}
\end{equation*}
$$

for any $\tau \in \mathbb{H}$, provided that $(m, \alpha) \neq(n, \beta)$. The equality (1.1) will be confirmed through the theory of modular forms without the use of the specific identities among the theta-constants. This approach is completely different from those used in the previous papers [5], [6], and [7]. We give the proof of Theorem 1.1 in Section 2.

Example 1.1. Let $m, n \geq 1$ be distinct integers and q be an algebraic number with $0<|q|<1$. Then, any two numbers among the six numbers

$$
\sum_{\nu=1}^{\infty} q^{m \nu(\nu-1)}, \quad \sum_{\nu=1}^{\infty} q^{n \nu(\nu-1)}, \quad \sum_{\nu=1}^{\infty} q^{m \nu^{2}}, \quad \sum_{\nu=1}^{\infty} q^{n \nu^{2}}, \quad \sum_{\nu=1}^{\infty}(-1)^{\nu} q^{m \nu^{2}}, \quad \sum_{\nu=1}^{\infty}(-1)^{\nu} q^{n \nu^{2}}
$$

are algebraically independent over \mathbb{Q}, and any three numbers are not.
As an application of Theorem 1.1, we have the following corollary. Let $\left(\frac{n}{p}\right)$ denote the Legendre symbol.
Corollary 1.1. Let q be an algebraic number with $0<|q|<1$. Then the infinite sums

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{n}{3}\right) \frac{q^{n}}{1-q^{n}}, \quad \sum_{n=1}^{\infty}(-1)^{n}\left(\frac{n}{3}\right) \frac{q^{n}}{1-q^{n}}, \quad \sum_{n=1}^{\infty}\left(\frac{n}{3}\right) \frac{q^{n}}{1-q^{2 n}} \tag{1.2}
\end{equation*}
$$

are transcendental. The same holds for the infinite sums

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{n}{5}\right) \frac{n q^{n}}{1-q^{2 n}} \quad \text { and } \quad \sum_{n=1}^{\infty}\left(\frac{n}{5}\right) \frac{n q^{n}}{1+q^{n}} \tag{1.3}
\end{equation*}
$$

Remark 1.1. It is well-known that the value of the elliptic modular j-function given by the formula

$$
j(\tau)=256 \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}}
$$

is an algebraic number for any imaginary quadratic number $\tau \in \mathbb{H}$, where $\lambda:=\lambda(\tau)=\vartheta_{2}^{4}(\tau) / \vartheta_{3}^{4}(\tau)$. Combining this fact and the equality (1.1), we find that the two numbers $\vartheta_{\alpha}(m \tau)$ and $\vartheta_{\beta}(n \tau)$ are algebraically dependent over \mathbb{Q} if $\tau \in \mathbb{H}$ is an imaginary quadratic number. Indeed, the values of the theta-constants at $\tau=i, 2 i \in \mathbb{H}$ are given by

$$
\begin{gathered}
\vartheta_{2}(i), \vartheta_{4}(i)=\frac{\pi^{1 / 4}}{2^{1 / 4} \Gamma(3 / 4)}, \quad \vartheta_{3}(i)=\frac{\pi^{1 / 4}}{\Gamma(3 / 4)}, \\
\vartheta_{2}(2 i)=\frac{\sqrt{2-\sqrt{2}}}{2^{3 / 4}} \vartheta_{2}(i), \quad \vartheta_{3}(2 i)=\frac{\sqrt{2+\sqrt{2}}}{2} \vartheta_{3}(i), \quad \vartheta_{4}(2 i)=2^{1 / 8} \vartheta_{4}(i)
\end{gathered}
$$

(cf. [2, p. 325, Entry 1], see also [14]), where $\Gamma(z)$ is the gamma-function.

The second purpose of this paper is to give algebraic dependence relations over \mathbb{Q} for the two rational functions of the theta-constants $\vartheta_{j}(n \tau) / \vartheta_{3}(\tau)$ and $\vartheta_{4}(\tau) / \vartheta_{3}(\tau)$, where $n \geq 2$ is an integer and $j \in\{2,3,4\}$. For an integer $n \geq 2$, we define the function $\psi(n)$ by

$$
\begin{equation*}
\psi(n):=n \prod_{\substack{p \mid n \\ p: \text { odd }}}\left(1+\frac{1}{p}\right) \tag{1.4}
\end{equation*}
$$

where the product on the right-hand side is taken over all odd prime numbers p with $p \mid n$.
Theorem 1.2. Let $n \geq 2$ be an integer. For each $j \in\{2,3,4\}$, there exists a polynomial $Q_{j, n}(X, Y)$ with rational coefficients such that

$$
\begin{equation*}
Q_{j, n}\left(\frac{\vartheta_{j}^{4}(n \tau)}{\vartheta_{3}^{4}(\tau)}, \frac{\vartheta_{4}^{4}(\tau)}{\vartheta_{3}^{4}(\tau)}\right)=0 \tag{1.5}
\end{equation*}
$$

holds for any $\tau \in \mathbb{H}$, where $Q_{j, n}(X, Y)$ has the form

$$
\begin{equation*}
Q_{j, n}(X, Y)=X^{\psi(n)}+\sum_{\nu=1}^{\psi(n)} R_{j, n, \nu}(Y) X^{\psi(n)-\nu} \tag{1.6}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{deg} R_{j, n, \nu}(Y) \leq \nu, \quad \nu=1,2, \ldots, \psi(n) \tag{1.7}
\end{equation*}
$$

Theorem 1.2 generalizes a result of Yu. V. Nesterenko [10] (see Theorem D in Section 3). In Section 4, we derive from Theorem 1.2 a useful method to compute the explicit algebraic dependence relations among the theta-constants. For example, we compute polynomials for the three theta-constants $\vartheta_{j}(\tau), \vartheta_{j}(2 \tau)$, and $\vartheta_{j}(3 \tau)$ for each $j \in\{2,3,4\}$ and list the first few polynomials $Q_{j, n}$ at the end of this paper.

2 Proofs of Theorem 1.1 and Corollary 1.1

Proof of Theorem 1.1. We first observe the equality (1.1). Let $m, n, \ell \geq 1$ be integers and $\alpha, \beta, \gamma \in\{2,3,4\}$ with $(m, \alpha) \neq(n, \beta)$. Then the three theta-constants $\vartheta_{\alpha}^{4}(m \tau), \vartheta_{\beta}^{4}(n \tau)$, and $\vartheta_{\gamma}^{4}(\ell \tau)$ are modular forms of weight 2 at least for the principal congruence subgroup of level $N:=2 \ell m n$

$$
\Gamma(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\bmod N)\right.\right\}
$$

so that the two ratios

$$
x:=x(\tau):=\frac{\vartheta_{\gamma}^{4}(\ell \tau)}{\vartheta_{\alpha}^{4}(m \tau)} \quad \text { and } \quad y:=y(\tau):=\frac{\vartheta_{\beta}^{4}(n \tau)}{\vartheta_{\alpha}^{4}(m \tau)}
$$

are modular functions at least for $\Gamma(N)$. Let \mathfrak{F}_{N} denote the field of all the modular functions for $\Gamma(N)$ whose Fourier expansions with respect to $e^{2 \pi i \tau / N}$ have coefficients in $\mathbb{Q}\left(e^{2 \pi i / N}\right)$. Then the field \mathfrak{F}_{N} is algebraic over the field $\mathbb{Q}(j(\tau))$ of weight zero modular functions for $S L_{2}(\mathbb{Z})$, where $j(\tau)$ is the elliptic modular j-function (cf. [12, Chapter 6, $\S 6.2]$). Hence, noting that $x, y \in \mathfrak{F}_{N}$, we find that the field $\mathbb{Q}(j(\tau), x, y)$ has transcendental degree one over \mathbb{Q}, and so the function x is algebraic over the field $\mathbb{Q}(y)$, since y is a non-constant function by the assumption $(m, \alpha) \neq(n, \beta)$. Thus, there exists a polynomial in two variables

$$
g(X, Y):=b_{0}(Y) X^{h}+b_{1}(Y) X^{h-1}+\cdots+b_{h}(Y), \quad b_{0}(Y) \not \equiv 0
$$

with $b_{0}(Y), \ldots, b_{h}(Y) \in \mathbb{Q}[Y]$, such that the function $g(\tau):=\left.g(X, Y)\right|_{X=x, Y=y}$ is identically zero, where we may assume that the polynomials $b_{0}(Y), \ldots, b_{h}(Y)$ have no common factors in $\mathbb{Q}[Y]$.
Let $\tau_{0} \in \mathbb{H}$ be a fixed complex number and put $y_{0}:=y\left(\tau_{0}\right) \in \mathbb{C}$. Suppose to the contrary that $b_{\mu}\left(y_{0}\right)=0$ for all $\mu=0,1, \ldots, h$. Then y_{0} is an algebraic number, since $b_{0}(Y)$ is a nonzero polynomial. Hence, all polynomials $b_{\mu}(Y)$ are divided by the minimal polynomial of y_{0} over \mathbb{Q}, which is impossible. Thus, there exists a μ such that $b_{\mu}\left(y_{0}\right) \neq 0$, so that the polynomial $g\left(X, y_{0}\right)$ over $\mathbb{Q}\left(y_{0}\right)$ does not vanish. This implies that the number $x\left(\tau_{0}\right)$ is algebraic over $\mathbb{Q}\left(y_{0}\right)$, namely, the number $\vartheta_{\gamma}\left(\ell \tau_{0}\right)$ is algebraic over the field $\mathbb{Q}\left(\vartheta_{\alpha}\left(m \tau_{0}\right), \vartheta_{\beta}\left(n \tau_{0}\right)\right)$. The above integers $m, n, \ell \geq 1$ and the subscripts $\alpha, \beta, \gamma \in\{2,3,4\}$ are chosen arbitrary, and therefore we obtain the equality

$$
\text { trans. } \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(\vartheta_{\alpha}(m \tau), \vartheta_{\beta}(n \tau)\right)=\text { trans. } \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(\vartheta_{2}(\tau), \vartheta_{3}(\tau)\right)
$$

for any $\tau \in \mathbb{H}$, which is (1.1) as desired. Theorem 1.1 follows from the equality (1.1), since

$$
\begin{aligned}
\operatorname{trans.} \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(e^{\pi i \tau}, \vartheta_{\alpha}(m \tau), \vartheta_{\beta}(n \tau), D \vartheta_{\gamma}(\ell \tau)\right) & =\operatorname{trans} \cdot \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(e^{\pi i \ell \tau}, \vartheta_{2}(\tau), \vartheta_{3}(\tau), D \vartheta_{\gamma}(\ell \tau)\right) \\
& =\operatorname{trans.\operatorname {deg}_{\mathbb {Q}}\mathbb {Q}(e^{\pi i\ell \tau },\vartheta _{2}(\ell \tau),\vartheta _{3}(\ell \tau),D\vartheta _{\gamma }(\ell \tau))\geq 3}
\end{aligned}
$$

hold for any $\tau \in \mathbb{H}$, where we used Theorem B at the last inequality. The proof of Theorem 1.1 is completed.

Proof of Corollary 1.1. Let q_{0} be an algebraic number with $0<\left|q_{0}\right|<1$ and we choose $\tau_{0} \in \mathbb{H}$ such that $q_{0}=e^{2 \pi i \tau_{0}}$. By Theorem 1.1 the numbers $\vartheta_{2}\left(\tau_{0}\right)$ and $\vartheta_{2}\left(3 \tau_{0}\right)$ are algebraically independent over \mathbb{Q}, so that the number $\vartheta_{2}^{3}\left(3 \tau_{0}\right) / \vartheta_{2}\left(\tau_{0}\right)$ is transcendental. On the other hand, the identity

$$
\frac{\vartheta_{2}^{3}(3 \tau)}{\vartheta_{2}(\tau)}=4 \sum_{n=1}^{\infty}\left(\frac{n}{3}\right) \frac{q^{n}}{1-q^{2 n}}, \quad q:=e^{2 \pi i \tau}
$$

holds for any $\tau \in \mathbb{H}$ (cf. [2, p. 374, Entry 34]). Hence, substituting $\tau=\tau_{0}$, we obtain the transcendence of the infinite series on the right-hand side. Similarly, we can obtain the transcendence for other sums in (1.2) from the identities

$$
\frac{\vartheta_{3}^{3}(3 \tau)}{\vartheta_{3}(\tau)}=1-2 \sum_{n=1}^{\infty}(-1)^{n}\left(\frac{n}{3}\right) \frac{q^{n}}{1-q^{n}}, \quad q:=-e^{\pi i \tau}
$$

and

$$
\frac{\vartheta_{3}^{3}(\tau)}{\vartheta_{3}(3 \tau)}+3 \frac{\vartheta_{3}^{3}(3 \tau)}{\vartheta_{3}(\tau)}=4\left(1+6 \sum_{n=1}^{\infty}\left(\frac{n}{3}\right) \frac{q^{n}}{1-q^{n}}\right), \quad q:=e^{2 \pi i \tau}
$$

which are given in [2, p. 375]. For the infinite sums in (1.3), see the identities [1, p. 249, (i) and (iv) in Entry 8]).

3 Proof of Theorem 1.2

In this section we prove Theorem 1.2. Let $\vartheta_{j}:=\vartheta_{j}(\tau)(j=2,3,4)$ for brevity. It is well-known that the identities

$$
\begin{equation*}
\vartheta_{3}^{4}=\vartheta_{2}^{4}+\vartheta_{4}^{4} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \vartheta_{2}^{2}(2 \tau)=\vartheta_{3}^{2}-\vartheta_{4}^{2}, \quad 2 \vartheta_{3}^{2}(2 \tau)=\vartheta_{3}^{2}+\vartheta_{4}^{2}, \quad \vartheta_{4}^{2}(2 \tau)=\vartheta_{3} \vartheta_{4} \tag{3.2}
\end{equation*}
$$

hold for any $\tau \in \mathbb{H}$. We first show Theorem 1.2 in either case of $n=2$ or an odd integer $n \geq 3$. Define the three polynomials as follows;

$$
\begin{align*}
Q_{2,2}(X, Y), & Q_{3,2}(X, Y) \tag{3.3}\\
& :=X^{2}-\frac{1}{2}(Y+1) X+\frac{1}{16}(Y-1)^{2} \\
Q_{4,2}(X, Y) & :=X^{2}-Y
\end{align*}
$$

Lemma 3.1. For each $j \in\{2,3,4\}$ the polynomial $Q_{j, 2}(X, Y)$ satisfies

$$
\begin{equation*}
Q_{j, 2}\left(\frac{\vartheta_{j}^{4}(2 \tau)}{\vartheta_{3}^{4}}, \frac{\vartheta_{4}^{4}}{\vartheta_{3}^{4}}\right)=0 \quad(\tau \in \mathbb{H}) . \tag{3.4}
\end{equation*}
$$

Proof. By the first equality in (3.2) we have

$$
\frac{\vartheta_{2}^{8}(2 \tau)}{\vartheta_{3}^{8}}-\frac{1}{2}\left(\frac{\vartheta_{4}^{4}}{\vartheta_{3}^{4}}+1\right) \frac{\vartheta_{2}^{4}(2 \tau)}{\vartheta_{3}^{4}}+\frac{1}{16}\left(\frac{\vartheta_{4}^{4}}{\vartheta_{3}^{4}}-1\right)^{2}=0
$$

so that the polynomial

$$
Q_{2,2}(X, Y)=X^{2}-\frac{1}{2}(Y+1) X+\frac{1}{16}(Y-1)^{2}
$$

vanishes at $X=\vartheta_{2}^{4}(2 \tau) / \vartheta_{3}^{4}$ and $Y=\vartheta_{4}^{4} / \vartheta_{3}^{4}$ for any $\tau \in \mathbb{H}$. Similarly we find that the polynomials $Q_{3,2}$ and $Q_{4,2}$ satisfy (3.4) from the second and the third equalities in (3.2), respectively.

It is clear that the above polynomials $Q_{j, 2}$ satisfy (1.6) and (1.7) in Theorem 1.2. Next we consider the case where $n=m \geq 3$ is an odd integer. We use the following result obtained by Yu. V. Nesterenko [10].

Theorem D ([10, Theorem 1, Corollaries 3, 4]). For any odd integer $m \geq 3$ there exists an integer polynomial

$$
\begin{equation*}
P_{m}(X, Y)=X^{\psi(m)}+\sum_{\nu=1}^{\psi(m)} R_{\nu}(Y) X^{\psi(m)-\nu} \tag{3.5}
\end{equation*}
$$

with $\operatorname{deg}_{Y} R_{\nu}(Y)<\nu(\nu=1,2, \ldots, \psi(m))$, such that the identities

$$
\begin{equation*}
P_{m}\left(m^{2} \frac{\vartheta_{2}^{4}(m \tau)}{\vartheta_{2}^{4}(\tau)},-16 \frac{\vartheta_{4}^{4}(\tau)}{\vartheta_{2}^{4}(\tau)}\right)=0, \quad P_{m}\left(m^{2} \frac{\vartheta_{3}^{4}(m \tau)}{\vartheta_{3}^{4}(\tau)}, 16 \frac{\vartheta_{2}^{4}(\tau)}{\vartheta_{3}^{4}(\tau)}\right)=0 \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{m}\left(m^{2} \frac{\vartheta_{4}^{4}(m \tau)}{\vartheta_{4}^{4}(\tau)},-16 \frac{\vartheta_{2}^{4}(\tau)}{\vartheta_{4}^{4}(\tau)}\right)=0 \tag{3.7}
\end{equation*}
$$

hold for any $\tau \in \mathbb{H}$, where $\psi(m)$ is defined by (1.4).
Let $P_{m}(X, Y)$ be an integer polynomial in Theorem D. For example, the first two polynomials P_{3} and P_{5} are given in [10] by

$$
\begin{align*}
P_{3}(X, Y)= & X^{4}-12 X^{3}+30 X^{2}-\left(Y^{2}-16 Y+28\right) X+9 \tag{3.8}\\
P_{5}(X, Y)= & X^{6}-30 X^{5}+135 X^{4}-\left(20 Y^{2}-320 Y+260\right) X^{3}-\left(120 Y^{2}-1920 Y-255\right) X^{2} \\
& -\left(Y^{4}-32 Y^{3}+308 Y^{2}-832 Y+126\right) X+25
\end{align*}
$$

respectively. Define

$$
\begin{align*}
& Q_{2, m}(X, Y):=m^{-2 \psi(m)}(1-Y)^{\psi(m)} \cdot P_{m}\left(m^{2} \frac{X}{1-Y},-16 \frac{Y}{1-Y}\right), \tag{3.9}\\
& Q_{3, m}(X, Y):=m^{-2 \psi(m)} \cdot P_{m}\left(m^{2} X, 16(1-Y)\right), \tag{3.10}\\
& Q_{4, m}(X, Y):=m^{-2 \psi(m)} Y^{\psi(m)} \cdot P_{m}\left(m^{2} \frac{X}{Y},-16 \frac{1-Y}{Y}\right) . \tag{3.11}
\end{align*}
$$

Lemma 3.2. For each $j \in\{2,3,4\}$ the above $Q_{j, m}(X, Y)$ is a polynomial with rational coefficients, which satisfies

$$
Q_{j, m}\left(\frac{\vartheta_{j}^{4}(m \tau)}{\vartheta_{3}^{4}}, \frac{\vartheta_{4}^{4}}{\vartheta_{3}^{4}}\right)=0 \quad(\tau \in \mathbb{H}),
$$

and is of the form

$$
Q_{j, m}(X, Y)=X^{\psi(m)}+\sum_{\nu=1}^{\psi(m)} R_{j, m, \nu}(Y) X^{\psi(m)-\nu}
$$

where

$$
\operatorname{deg} R_{j, m, \nu}(Y) \leq \nu, \quad \nu=1,2, \ldots, \psi(m) .
$$

Proof. The identity

$$
Q_{4, m}\left(\frac{\vartheta_{4}^{4}(m \tau)}{\vartheta_{3}^{4}}, \frac{\vartheta_{4}^{4}}{\vartheta_{3}^{4}}\right)=0 \quad(\tau \in \mathbb{H})
$$

follows from (3.7) together with (3.1). Furthermore by (3.5) and (3.11) we get the form

$$
Q_{4, m}(X, Y)=X^{\psi(m)}+\sum_{\nu=1}^{\psi(m)} R_{4, m, \nu}(Y) X^{\psi(m)-\nu},
$$

where

$$
R_{4, m, \nu}(Y):=m^{-2 \nu} Y^{\nu} \cdot R_{\nu}\left(-16 \frac{1-Y}{Y}\right), \quad \nu=1,2, \ldots, \psi(m),
$$

are polynomials in Y with

$$
\operatorname{deg} R_{4, m, \nu}(Y) \leq \nu, \quad \nu=1,2, \ldots, \psi(m)
$$

since $R_{\nu}(X)$ are given by integer polynomials whose degrees are less than ν. Therefore Lemma 3.2 is true for $j=4$. We can obtain the similar results for the polynomials $Q_{2, m}$ and $Q_{3, m}$ from the equalities (3.6).

Finally we complete the proof of Theorem 1.2.
Proof of Theorem 1.2. Fix a subscript $j \in\{2,3,4\}$. The proof is by induction on n. We have just shown in Lemmas 3.1 and 3.2 that the assertion is true for $n=2$ and an odd integer $n=m \geq 3$. Suppose that Theorem 1.2 is true for some fixed integer $n \geq 2$; namely there exists a polynomial

$$
\begin{equation*}
Q_{j, n}(X, Y)=X^{\psi(n)}+\sum_{\nu=1}^{\psi(n)} R_{j, n, \nu}(Y) X^{\psi(n)-\nu} \tag{3.12}
\end{equation*}
$$

satisfying the properties (1.5), (1.6), and (1.7). In what follows, we show the existence of the polynomial $Q_{j, 2 n}(X, Y)$, which satisfies the properties (1.5), (1.6), and (1.7) with n replaced by $2 n$. The identity (1.5) remains true when τ is replaced by 2τ, and the equalities

$$
\frac{\vartheta_{j}^{4}(2 n \tau)}{\vartheta_{3}^{4}(2 \tau)}=4 \frac{\vartheta_{j}^{4}(2 n \tau)}{\vartheta_{3}^{4}}\left(1+\frac{\vartheta_{4}^{2}}{\vartheta_{3}^{2}}\right)^{-2}, \quad \frac{\vartheta_{4}^{4}(2 \tau)}{\vartheta_{3}^{4}(2 \tau)}=4 \frac{\vartheta_{4}^{2}}{\vartheta_{3}^{2}}\left(1+\frac{\vartheta_{4}^{2}}{\vartheta_{3}^{2}}\right)^{-2}
$$

follow from (3.2). Hence by (3.12)

$$
\begin{aligned}
A_{j, n}(X, Y) & :=4^{-\psi(n)}(1+Y)^{2 \psi(n)} \cdot Q_{j, n}\left(\frac{4 X}{(1+Y)^{2}}, \frac{4 Y}{(1+Y)^{2}}\right) \\
& =X^{\psi(n)}+\sum_{\nu=1}^{\psi(n)} 4^{-\nu}(1+Y)^{2 \nu} \cdot R_{j, n, \nu}\left(4 Y(1+Y)^{-2}\right) X^{\psi(n)-\nu} \\
& =: \sum_{\nu=0}^{\psi(n)} S_{j, n, \nu}(Y) X^{\psi(n)-\nu}
\end{aligned}
$$

vanishes at $X=\vartheta_{j}^{4}(2 n \tau) / \vartheta_{3}^{4}$ and $Y=\vartheta_{4}^{2} / \vartheta_{3}^{2}$ for any $\tau \in \mathbb{H}$, where we denote $S_{j, n, 0}(Y):=1$ and

$$
S_{j, n, \nu}(Y):=4^{-\nu}(1+Y)^{2 \nu} \cdot R_{j, n, \nu}\left(4 Y(1+Y)^{-2}\right), \quad \nu=1,2, \ldots, \psi(n)
$$

By the induction hypothesis (1.7), the above $S_{n, \nu}(Y)$ are polynomials with

$$
\begin{equation*}
\operatorname{deg} S_{j, n, \nu}(Y) \leq 2 \nu, \quad \nu=0,1,2, \ldots, \psi(n) \tag{3.13}
\end{equation*}
$$

Define

$$
\begin{aligned}
B_{j, n}(X, Y) & :=A_{j, n}(X, Y) A_{j, n}(X,-Y) \\
& =X^{2 \psi(n)}+\sum_{\nu=1}^{2 \psi(n)} T_{j, n, \nu}(Y) X^{2 \psi(n)-\nu}
\end{aligned}
$$

where $T_{j, n, \nu}(Y)$ are polynomials in Y given by

$$
\begin{equation*}
T_{j, n, \nu}(Y):=\sum_{\substack{0 \leq \nu_{1}, \nu_{2} \leq \psi(n) \\ \nu_{1}+\nu_{2}=\nu}} S_{j, n, \nu_{1}}(Y) S_{j, n, \nu_{2}}(-Y) . \tag{3.14}
\end{equation*}
$$

Clearly the polynomials $T_{j, n, \nu}(Y)$ are even with respect to the variable Y; namely there exist polynomials $R_{j, 2 n, \nu}(Y)$ with rational coefficients such that

$$
\begin{equation*}
R_{j, 2 n, \nu}\left(Y^{2}\right):=T_{j, n, \nu}(Y), \quad \nu=1,2, \ldots, 2 \psi(n) \tag{3.15}
\end{equation*}
$$

Now we check that the polynomial

$$
\begin{align*}
Q_{j, 2 n}(X, Y) & :=X^{2 \psi(n)}+\sum_{\nu=1}^{2 \psi(n)} R_{j, 2 n, \nu}(Y) X^{2 \psi(n)-\nu} \\
& =X^{\psi(2 n)}+\sum_{\nu=1}^{\psi(2 n)} R_{j, 2 n, \nu}(Y) X^{\psi(2 n)-\nu} \tag{3.16}
\end{align*}
$$

fulfills the properties (1.5), (1.6), and (1.7) for n replaced by $2 n$. The property (1.5) follows from the relation

$$
Q_{j, 2 n}\left(X, Y^{2}\right)=B_{j, n}(X, Y)=A_{j, n}(X, Y) A_{j, n}(X,-Y)
$$

and the fact that the polynomial $A_{j, n}(X, Y)$ vanishes at $X=\vartheta_{j}^{4}(2 n \tau) / \vartheta_{3}^{4}$ and $Y=\vartheta_{4}^{2} / \vartheta_{3}^{2}$ for any $\tau \in \mathbb{H}$. The form (1.6) is given by (3.16). Moreover, for $\nu=1,2, \ldots, \psi(2 n)$ we have by (3.13), (3.14), and (3.15)

$$
\begin{aligned}
2 \operatorname{deg} R_{j, 2 n, \nu}(Y) & =\operatorname{deg} T_{j, n, \nu}(Y) \\
& \leq \max _{\substack{0 \leq \nu_{1}, \nu_{2} \leq \psi(n) \\
\nu_{1}+\nu_{2}=\nu}}\left(\operatorname{deg} S_{j, n, \nu_{1}}(Y)+\operatorname{deg} S_{j, n, \nu_{2}}(-Y)\right) \\
& \leq \max _{\substack{0 \leq \nu_{1}, \nu_{2} \leq \psi(n) \\
\nu_{1}+\nu_{2}=\nu}}\left(2 \nu_{1}+2 \nu_{2}\right) \\
& =2 \nu
\end{aligned}
$$

so that

$$
\operatorname{deg} R_{j, 2 n, \nu}(Y) \leq \nu, \quad \nu=1,2, \ldots, \psi(2 n)
$$

which is (1.7). The proof of Theorem 1.2 is completed.
Remark 3.1. We have $Q_{2,2^{\ell}}=Q_{3,2^{\ell}}$ for any integer $\ell \geq 1$, since these polynomials are inductively constructed from the same initial polynomial (3.3). Moreover, by definitions (3.9), (3.10), and (3.11), we have

$$
\begin{aligned}
Q_{2, m}(X, Y) & =(1-Y)^{\psi(m)} \cdot Q_{3, m}\left(\frac{X}{1-Y}, \frac{1}{1-Y}\right) \\
Q_{4, m}(X, Y) & =Y^{\psi(m)} \cdot Q_{3, m}\left(\frac{X}{Y}, \frac{1}{Y}\right)
\end{aligned}
$$

for any odd integer $m \geq 3$.
Remark 3.2. Let $n \geq 2$ be an even integer. Then for each $j \in\{2,3,4\}$ we have

$$
\begin{equation*}
Q_{j, n}\left(\frac{\vartheta_{j}^{4}(n \tau)}{\vartheta_{4}^{4}}, \frac{\vartheta_{3}^{4}}{\vartheta_{4}^{4}}\right)=0 \quad(\tau \in \mathbb{H}) \tag{3.17}
\end{equation*}
$$

which follows immediately from the transformation $\tau \mapsto \tau+1$ in (1.5) and the equalities

$$
\begin{gathered}
\vartheta_{j}^{4}(\tau+2)=\vartheta_{j}^{4}(\tau) \quad(j=2,3,4) \\
\vartheta_{3}^{4}(\tau+1)=\vartheta_{4}^{4}(\tau), \quad \vartheta_{4}^{4}(\tau+1)=\vartheta_{3}^{4}(\tau)
\end{gathered}
$$

4 Identities for the theta-constants

4.1 An application of Theorem 1.2

By the argument in the proof of Theorem 1.1, any three theta-constants $\vartheta_{i}(\ell \tau), \vartheta_{j}(m \tau)$, and $\vartheta_{k}(n \tau)$ are algebraically dependent over \mathbb{Q}, but it is not easy to find the explicit algebraic dependence relations for given three theta-constants. In this section, as an application of Theorem 1.2, we give the explicit algebraic
dependence relations among the three theta-constants $\vartheta_{j}(\tau), \vartheta_{j}(2 \tau)$, and $\vartheta_{j}(3 \tau)$ for each fixed $j \in\{2,3,4\}$. Let $\tau \in \mathbb{H}$. Then by (3.6) and (3.17) the two polynomials

$$
\begin{aligned}
& f(W):=W^{2} \cdot Q_{2,2}\left(\frac{\vartheta_{2}^{4}(2 \tau)}{\vartheta_{2}^{4}} \cdot \frac{1}{W}, 1+\frac{1}{W}\right) \\
& g(W):=P_{3}\left(9 \frac{\vartheta_{2}^{4}(3 \tau)}{\vartheta_{2}^{4}},-16 W\right)
\end{aligned}
$$

have a common root at $W=\vartheta_{4}^{4} / \vartheta_{2}^{4}$, and hence the resultant of $f(W)$ and $g(W)$ is equal to zero. Thus, we find that the polynomial

$$
R_{2}(X, Y, Z):=X^{5} Z-X^{4} Y^{2}-4 X^{3} Y^{2} Z-270 X^{2} Y^{2} Z^{2}+256 X Y^{4} Z+972 X Y^{2} Z^{3}-729 Y^{2} Z^{4}
$$

vanishes identically at $X=\vartheta_{2}^{4}(\tau), Y=\vartheta_{2}^{4}(2 \tau)$, and $Z=\vartheta_{2}^{4}(3 \tau)$, where we used the forms (3.3) and (3.8). Similarly by considering the resultants

$$
\operatorname{Res}_{W}\left(W^{2} \cdot Q_{3,2}\left(\frac{\vartheta_{3}^{4}(2 \tau)}{\vartheta_{3}^{4}} \cdot \frac{1}{W}, \frac{1}{W}\right), P_{3}\left(9 \frac{\vartheta_{3}^{4}(3 \tau)}{\vartheta_{3}^{4}}, 16(1-W)\right)\right)
$$

and

$$
\operatorname{Res}_{W}\left(Q_{4,2}\left(\frac{\vartheta_{4}^{4}(2 \tau)}{\vartheta_{4}^{4}}, 1+W\right), P_{3}\left(9 \frac{\vartheta_{4}^{4}(3 \tau)}{\vartheta_{4}^{4}},-16 W\right)\right)
$$

respectively, we can obtain integer polynomials

$$
\begin{aligned}
R_{3}(X, Y, Z):= & X^{8}-56 X^{7} Z-10240 X^{6} Y Z+1324 X^{6} Z^{2}-8192 X^{5} Y^{2} Z-761856 X^{5} Y Z^{2} \\
& -17064 X^{5} Z^{3}+9666560 X^{4} Y^{2} Z^{2}-2764800 X^{4} Y Z^{3}+128790 X^{4} Z^{4} \\
& -25165824 X^{3} Y^{3} Z^{2}-2211840 X^{3} Y^{2} Z^{3}+9953280 X^{3} Y Z^{4}-565704 X^{3} Z^{5} \\
& +16777216 X^{2} Y^{4} Z^{2}+7962624 X^{2} Y^{2} Z^{4}-7464960 X^{2} Y Z^{5} \\
& +1338444 X^{2} Z^{6}-5971968 X Y^{2} Z^{5}-1417176 X Z^{7}+531441 Z^{8} \\
R_{4}(X, Y, Z):= & X^{5}-28 X^{4} Z+270 X^{3} Z^{2}+256 X^{2} Y^{2} Z-972 X^{2} Z^{3}+729 X Z^{4}-256 Y^{4} Z
\end{aligned}
$$

where $R_{j}(X, Y, Z)$ vanishes identically at $X=\vartheta_{j}^{4}(\tau), Y=\vartheta_{j}^{4}(2 \tau)$, and $Z=\vartheta_{j}^{4}(3 \tau)$ for each $j=3,4$.

4.2 Appendix

$$
\begin{aligned}
Q_{2,2}= & Q_{3,2}=X^{2}-\frac{1}{2}(Y+1) X+\frac{1}{2^{4}}(Y-1)^{2}, \\
Q_{2,3}= & X^{4}+\frac{4}{3}(Y-1) X^{3}+\frac{10}{3^{3}}(Y-1)^{2} X^{2}+\frac{4}{3^{6}}(Y-1)(Y+7)(7 Y+1) X+\frac{1}{3^{6}}(Y-1)^{4}, \\
Q_{2,4}= & Q_{3,4}=X^{4}-\frac{1}{4}(Y+1) X^{3}+\frac{1}{2^{7}}\left(3 Y^{2}-62 Y+3\right) X^{2}-\frac{1}{2^{10}}(Y+1)\left(Y^{2}+30 Y+1\right) X \\
& +\frac{1}{2^{16}}(Y-1)^{4}, \\
Q_{2,5}= & X^{6}+\frac{6}{5}(Y-1) X^{5}+\frac{27}{5^{3}}(Y-1)^{2} X^{4}+\frac{4}{5^{5}}(Y-1)\left(13 Y^{2}+230 Y+13\right) X^{3} \\
& +\frac{3}{5^{7}}(Y-1)^{2}\left(17 Y^{2}-2082 Y+17\right) X^{2} \\
& +\frac{2}{5^{10}}(Y-1)\left(63 Y^{4}+6404 Y^{3}+19834 Y^{2}+6404 Y+63\right) X+\frac{1}{5^{10}}(Y-1)^{6}, \\
Q_{3,3}= & X^{4}-\frac{4}{3} X^{3}+\frac{10}{3^{3}} X^{2}-\frac{4}{3^{6}}(8 Y-1)(8 Y-7) X+\frac{1}{3^{6}}, \\
Q_{3,5}= & X^{6}-\frac{6}{5} X^{5}+\frac{27}{5^{3}} X^{4}-\frac{4}{5^{5}}\left(256 Y^{2}-256 Y+13\right) X^{3}-\frac{3}{5^{7}}\left(2048 Y^{2}-2048 Y-17\right) X^{2} \\
& -\frac{2}{5^{10}}\left(32768 Y^{4}-65536 Y^{3}+39424 Y^{2}-6656 Y+63\right) X+\frac{1}{5^{10}}, \\
Q_{4,2}= & X^{2}-Y, \\
Q_{4,3}= & X^{4}-\frac{4}{3} Y X^{3}+\frac{10}{3^{3}} Y^{2} X^{2}-\frac{4}{3^{6}} Y(Y-8)(7 Y-8) X+\frac{1}{3^{6}} Y^{4}, \\
Q_{4,4}= & X^{4}-Y X^{2}-\frac{1}{2^{4}} Y(Y-1)^{2}, \\
Q_{4,5}= & X^{6}-\frac{6}{5} Y X^{5}+\frac{27}{5^{3}} Y^{2} X^{4}-\frac{4}{5^{5}} Y\left(13 Y^{2}-256 Y+256\right) X^{3}+\frac{3}{5^{7}} Y^{2}\left(17 Y^{2}+2048 Y-2048\right) X^{2} \\
& -\frac{2}{5^{10}} Y\left(63 Y^{4}-6656 Y^{3}+39424 Y^{2}-65536 Y+32768\right) X+\frac{1}{5^{10}} Y^{6} .
\end{aligned}
$$

Acknowledgments. The authors wish to express their sincere gratitude to the referee for his/her careful reading of our manuscript and for valuable comments. This work was supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (C), 18K03201.

References

[1] B. C. Berndt, Ramanujan's Notebook, part III, Springer-Verlag, New York, 1991.
[2] B. C. Berndt, Ramanujan's Notebook, part V, Springer-Verlag, New York, 1998.
[3] D. Bertrand, Theta functions and transcendence, Ramanujan J. 1 (1997), 339-350.
[4] D. Duverney, Ke. Nishioka, Ku. Nishioka, and I. Shiokawa, Transcendence of Jacobi’s theta series, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 202-203.
[5] C. Elsner, Algebraic independence results for values of theta-constants, Funct. Approx. Comment. Math. 52.1 (2015), 7-27.
[6] C. Elsner and Y. Tachiya, Algebraic results for certain values of the Jacobi theta-constant $\vartheta_{3}(\tau)$, Math. Scad. 123 (2018), 249-272.
[7] C. Elsner, F. Luca, and Y. Tachiya, Algebraic results for the values $\vartheta_{3}(m \tau)$ and $\vartheta_{3}(n \tau)$ of the Jacobi theta-constant, Mosc. J. Comb. Number Theory 8 (2019), 71-79.
[8] Yu. V. Nesterenko, Modular functions and transcendence questions, Mat. Sb. 187 (1996), 65-96; English transl. Sb. Math. 187, 1319-1348.
[9] Yu. V. Nesterenko, Algebraic independence for values of Ramanujan functions, pp. 27-46 in Introduction to Algebraic Independence Theory, edited by Yu. V. Nesterenko and P. Philippon, Lecture Notes in Math. 1752, Springer, 2001.
[10] Yu. V. Nesterenko, On some identities for theta-constants, Diophantine analysis and related fields 2006, 151-160, Sem. Math. Sci. 35, Keio Univ., Yokohama, 2006.
[11] Yu. V. Nesterenko, Algebraic independence, Tata Institute of Fundamental Research, Narosa Publishing House, New Delhi, 2009.
[12] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memo-rial Lectures, No. 1, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971.
[13] E. M. Stein and R. Shakarchi, Complex analysis, Princeton Lectures in Analysis, vol. 2, Princeton University Press, Princeton, NJ, 2003.
[14] J. Yi, Theta-function identities and the explicit formulas for theta-function and their applications, J. Math. Anal. Appl. 292 (2004), 381-400.

[^0]: *Fachhochschule für die Wirtschaft, University of Applied Sciences, Freundallee 15, D-30173 Hannover, Germany e-mail: carsten.elsner@fhdw.de
 ${ }^{\dagger}$ Faculty of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan e-mail: mkaneko@math.kyushu-u.ac.jp
 ${ }^{\ddagger}$ Hirosaki University, Graduate School of Science and Technology, Hirosaki 036-8561, Japan e-mail: tachiya@hirosaki-u.ac.jp

