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Abstract
In the present work, we give algebraic independence results for the values of the classical theta-

constantsϑ2(τ), ϑ3(τ), andϑ4(τ). For example, the two valuesϑα(mτ) andϑβ(nτ) are algebraically
independent overQ for anyτ in the upper half-plane wheneπiτ is an algebraic number, wherem,n ≥ 1
are integers andα, β ∈ {2, 3, 4} with (m,α) ̸= (n, β). This algebraic independence result provides new
examples of transcendental numbers through some identities found by S. Ramanujan. We additionally
give some explicit identities among the three theta-constants in particular cases.
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1 Introduction and statement of the results

The Jacobi theta function is defined for two complex variablesz andτ by

ϑ(z | τ) =
∞∑

ν=−∞
eπiν

2τ+2πiνz ,

which converges for all complex numbersz, andτ in the upper half-planeH := {τ ∈ C | ℑ(τ) > 0}. Then
the following three holomorphic functions defined inH,

ϑ2(τ) := eπiτ/4 · ϑ
(
τ/2 | τ

)
= 2

∞∑
ν=0

eπi(ν+1/2)2τ , ϑ3(τ) := ϑ
(
0 | τ

)
= 1 + 2

∞∑
ν=1

eπiν
2τ ,

ϑ4(τ) := ϑ
(
1/2 | τ

)
= 1 + 2

∞∑
ν=1

(−1)νeπiν
2τ ,
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are known as theta-constants or Thetanullwerte, and the functionϑ3(τ) is called the Jacobi theta-constant or
Thetanullwert of the Jacobi theta functionϑ(z | τ). As is well known, the theta-constants are never zero inH
and have modular properties (cf. [13, Chapter 10]). In 1996, Yu. V. Nesterenko [8] found a new approach to
the arithmetic nature of values of modular forms, proving the algebraic independence results for the values
of the Ramanujan functions

P (z) = 1− 24

∞∑
n=1

σ1(n)z
n, Q(z) = 1 + 240

∞∑
n=1

σ3(n)z
n, R(z) = 1− 504

∞∑
n=1

σ5(n)z
n,

whereσk(n) =
∑

d|n d
k;

Theorem A ([8, Theorem 1]).For eachq ∈ C with 0 < |q| < 1, at least three of the numbersq, P (q),
Q(q),R(q) are algebraically independent overQ.

Theorem A has a number of remarkable consequences on algebraic independence (cf. [8, 9, 11]); for exam-
ple, the two numbersπ andeπ are algebraically independent overQ. D. Bertrand [3] translated Theorem A
in terms of the theta-constants as follows. LetD := 1

πi
d
dτ be a differential operator.

Theorem B ([3, Theorem 4]).Letα, β, γ ∈ {2, 3, 4} with α ̸= β. Then for anyτ ∈ H, at least three of the
numberseπiτ , ϑα(τ), ϑβ(τ),Dϑγ(τ) are algebraically independent overQ.

Note that we can derive from Theorem B that the sum
∑∞

n=1 q
n2

is transcendental for any algebraic number
q with 0 < |q| < 1 (cf. [4]). It is a natural question to ask whether Theorem B continues to hold ifτ is
replaced bynτ for a positive integern. In this direction, the first author [5] has investigated the algebraic
independence of the two valuesϑ3(τ) andϑ3(nτ) for special integersn ≥ 2, namely, in the case whenn
is a power of two, and forn = 3, 5, 6, 7, 9, 10, 11, 12. As an application of the casen = 5, he obtained the
transcendence of each of the infinite sums

∞∑
n=1

(−1)n
( n
5

) nqn

1− qn
and

∞∑
n=1

n≡1 (mod 2)

( n
5

) nqn

1 + qn
,

where(n5 ) denotes the Legendre symbol andq is an algebraic number with0 < |q| < 1, by using the
identities among the two functionsϑ3(τ) andϑ3(5τ) due to Ramanujan (cf. [1, p. 249, (ii) and (iii) in
Entry 8]). Recently, these results were generalized as follows;

Theorem C ([6, Theorem 1.2], [7, Theorem 1]).Let m and n be distinct integers with1 ≤ m < n
and γ ∈ {2, 3, 4}. Then for anyτ ∈ H at least three of the numberseπiτ , ϑ3(τ), ϑ3(nτ), Dϑγ(τ) are
algebraically independent overQ. Furthermore, at least two of the numberseπiτ , ϑ3(mτ), ϑ3(nτ) are
algebraically independent overQ.

The latter assertion in Theorem C implies that the two values of the theta-constantϑ3(τ) at different points
τ = mτ0, nτ0 are algebraically independent overQ if the numbereπiτ0 is algebraic. The proof of Theorem C
heavily depends on the constructive identities among the theta-constants, which are produced from the
polynomialsPm(X,Y ) obtained by Yu. V. Nesterenko [10] (see Theorem D in Section 3). The first purpose
of this paper is to extend a result of Theorem C to a more general form;

Theorem 1.1. Let m,n, ℓ ≥ 1 be integers andα, β, γ ∈ {2, 3, 4} with (m,α) ̸= (n, β). Then for any
τ ∈ H, at least three of the numberseπiτ , ϑα(mτ), ϑβ(nτ), Dϑγ(ℓτ) are algebraically independent over
Q. In particular, the two numbersϑα(mτ) andϑβ(nτ) are algebraically independent overQ for anyτ ∈ H
wheneπiτ is an algebraic number.
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Note that Theorem 1.1 also generalizes Theorem B. The key of our improvement is the equality on the
transcendence degrees

trans. degQQ
(
ϑα(mτ), ϑβ(nτ)

)
= trans.degQQ

(
ϑ2(τ), ϑ3(τ)

)
(1.1)

for anyτ ∈ H, provided that(m,α) ̸= (n, β). The equality (1.1) will be confirmed through the theory of
modular forms without the use of the specific identities among the theta-constants. This approach is com-
pletely different from those used in the previous papers [5], [6], and [7]. We give the proof of Theorem 1.1
in Section 2.

Example 1.1. Letm,n ≥ 1 be distinct integers andq be an algebraic number with0 < |q| < 1. Then, any
two numbers among the six numbers

∞∑
ν=1

qmν(ν−1),

∞∑
ν=1

qnν(ν−1),

∞∑
ν=1

qmν
2
,

∞∑
ν=1

qnν
2
,

∞∑
ν=1

(−1)νqmν
2
,

∞∑
ν=1

(−1)νqnν
2

are algebraically independent overQ, and any three numbers are not.

As an application of Theorem 1.1, we have the following corollary. Let(np ) denote the Legendre symbol.

Corollary 1.1. Let q be an algebraic number with0 < |q| < 1. Then the infinite sums

∞∑
n=1

(n
3

) qn

1− qn
,

∞∑
n=1

(−1)n
(n
3

) qn

1− qn
,

∞∑
n=1

(n
3

) qn

1− q2n
(1.2)

are transcendental. The same holds for the infinite sums

∞∑
n=1

(n
5

) nqn

1− q2n
and

∞∑
n=1

(n
5

) nqn

1 + qn
. (1.3)

Remark 1.1. It is well-known that the value of the elliptic modularj-function given by the formula

j(τ) = 256
(λ2 − λ+ 1)3

λ2(λ− 1)2

is an algebraic number for any imaginary quadratic numberτ ∈ H, whereλ := λ(τ) = ϑ42(τ)/ϑ
4
3(τ). Com-

bining this fact and the equality (1.1), we find that the two numbersϑα(mτ) andϑβ(nτ) are algebraically
dependent overQ if τ ∈ H is an imaginary quadratic number. Indeed, the values of the theta-constants at
τ = i, 2i ∈ H are given by

ϑ2(i), ϑ4(i) =
π1/4

21/4Γ(3/4)
, ϑ3(i) =

π1/4

Γ(3/4)
,

ϑ2(2i) =

√
2−

√
2

23/4
ϑ2(i), ϑ3(2i) =

√
2 +

√
2

2
ϑ3(i), ϑ4(2i) = 21/8ϑ4(i)

(cf. [2, p. 325, Entry 1], see also [14]), whereΓ(z) is the gamma-function.
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The second purpose of this paper is to give algebraic dependence relations overQ for the two rational func-
tions of the theta-constantsϑj(nτ)/ϑ3(τ) andϑ4(τ)/ϑ3(τ), wheren ≥ 2 is an integer andj ∈ {2, 3, 4}.
For an integern ≥ 2, we define the functionψ(n) by

ψ(n) := n
∏
p|n
p:odd

(
1 +

1

p

)
, (1.4)

where the product on the right-hand side is taken over all odd prime numbersp with p | n.

Theorem 1.2. Letn ≥ 2 be an integer. For eachj ∈ {2, 3, 4}, there exists a polynomialQj,n(X,Y ) with
rational coefficients such that

Qj,n

(
ϑ4j (nτ)

ϑ43(τ)
,
ϑ44(τ)

ϑ43(τ)

)
= 0 (1.5)

holds for anyτ ∈ H, whereQj,n(X,Y ) has the form

Qj,n(X,Y ) = Xψ(n) +

ψ(n)∑
ν=1

Rj,n,ν(Y )Xψ(n)−ν (1.6)

with
degRj,n,ν(Y ) ≤ ν, ν = 1, 2, . . . , ψ(n). (1.7)

Theorem 1.2 generalizes a result of Yu. V. Nesterenko [10] (see Theorem D in Section 3). In Section 4,
we derive from Theorem 1.2 a useful method to compute the explicit algebraic dependence relations among
the theta-constants. For example, we compute polynomials for the three theta-constantsϑj(τ), ϑj(2τ), and
ϑj(3τ) for eachj ∈ {2, 3, 4} and list the first few polynomialsQj,n at the end of this paper.

2 Proofs of Theorem 1.1 and Corollary 1.1

Proof of Theorem 1.1. We first observe the equality (1.1). Letm,n, ℓ ≥ 1 be integers andα, β, γ ∈ {2, 3, 4}
with (m,α) ̸= (n, β). Then the three theta-constantsϑ4α(mτ), ϑ

4
β(nτ), andϑ4γ(ℓτ) are modular forms of

weight2 at least for the principal congruence subgroup of levelN := 2ℓmn

Γ(N) :=

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ ( a b
c d

)
≡
(

1 0
0 1

)
(mod N)

}
,

so that the two ratios

x := x(τ) :=
ϑ4γ(ℓτ)

ϑ4α(mτ)
and y := y(τ) :=

ϑ4β(nτ)

ϑ4α(mτ)

are modular functions at least forΓ(N). LetFN denote the field of all the modular functions forΓ(N) whose
Fourier expansions with respect toe2πiτ/N have coefficients inQ(e2πi/N ). Then the fieldFN is algebraic
over the fieldQ(j(τ)) of weight zero modular functions forSL2(Z), wherej(τ) is the elliptic modular
j-function (cf. [12, Chapter 6,§6.2]). Hence, noting thatx, y ∈ FN , we find that the fieldQ(j(τ), x, y)
has transcendental degree one overQ, and so the functionx is algebraic over the fieldQ(y), sincey is a
non-constant function by the assumption(m,α) ̸= (n, β). Thus, there exists a polynomial in two variables

g(X,Y ) := b0(Y )Xh + b1(Y )Xh−1 + · · ·+ bh(Y ), b0(Y ) ̸≡ 0,
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with b0(Y ), . . . , bh(Y ) ∈ Q[Y ], such that the functiong(τ) := g(X,Y )|X=x,Y=y is identically zero, where
we may assume that the polynomialsb0(Y ), . . . , bh(Y ) have no common factors inQ[Y ].
Let τ0 ∈ H be a fixed complex number and puty0 := y(τ0) ∈ C. Suppose to the contrary thatbµ(y0) = 0
for all µ = 0, 1, . . . , h. Theny0 is an algebraic number, sinceb0(Y ) is a nonzero polynomial. Hence,
all polynomialsbµ(Y ) are divided by the minimal polynomial ofy0 overQ, which is impossible. Thus,
there exists aµ such thatbµ(y0) ̸= 0, so that the polynomialg(X, y0) overQ(y0) does not vanish. This
implies that the numberx(τ0) is algebraic overQ(y0), namely, the numberϑγ(ℓτ0) is algebraic over the field
Q(ϑα(mτ0), ϑβ(nτ0)). The above integersm,n, ℓ ≥ 1 and the subscriptsα, β, γ ∈ {2, 3, 4} are chosen
arbitrary, and therefore we obtain the equality

trans. degQQ (ϑα(mτ), ϑβ(nτ)) = trans. degQQ (ϑ2(τ), ϑ3(τ))

for anyτ ∈ H, which is (1.1) as desired. Theorem 1.1 follows from the equality (1.1), since

trans.degQQ
(
eπiτ , ϑα(mτ), ϑβ(nτ), Dϑγ(ℓτ)

)
= trans. degQQ

(
eπiℓτ , ϑ2(τ), ϑ3(τ), Dϑγ(ℓτ)

)
= trans. degQQ

(
eπiℓτ , ϑ2(ℓτ), ϑ3(ℓτ), Dϑγ(ℓτ)

)
≥ 3

hold for anyτ ∈ H, where we used Theorem B at the last inequality. The proof of Theorem 1.1 is completed.

Proof of Corollary 1.1. Let q0 be an algebraic number with0 < |q0| < 1 and we chooseτ0 ∈ H such that
q0 = e2πiτ0 . By Theorem 1.1 the numbersϑ2(τ0) andϑ2(3τ0) are algebraically independent overQ, so that
the numberϑ32(3τ0)/ϑ2(τ0) is transcendental. On the other hand, the identity

ϑ32(3τ)

ϑ2(τ)
= 4

∞∑
n=1

(n
3

) qn

1− q2n
, q := e2πiτ ,

holds for anyτ ∈ H (cf. [2, p. 374, Entry 34]). Hence, substitutingτ = τ0, we obtain the transcendence of
the infinite series on the right-hand side. Similarly, we can obtain the transcendence for other sums in (1.2)
from the identities

ϑ33(3τ)

ϑ3(τ)
= 1− 2

∞∑
n=1

(−1)n
(n
3

) qn

1− qn
, q := −eπiτ ,

and
ϑ33(τ)

ϑ3(3τ)
+ 3

ϑ33(3τ)

ϑ3(τ)
= 4

(
1 + 6

∞∑
n=1

(n
3

) qn

1− qn

)
, q := e2πiτ ,

which are given in [2, p. 375]. For the infinite sums in (1.3), see the identities [1, p. 249, (i) and (iv) in
Entry 8]).

3 Proof of Theorem 1.2

In this section we prove Theorem 1.2. Letϑj := ϑj(τ) (j = 2, 3, 4) for brevity. It is well-known that the
identities

ϑ43 = ϑ42 + ϑ44 (3.1)

and
2ϑ22(2τ) = ϑ23 − ϑ24, 2ϑ23(2τ) = ϑ23 + ϑ24, ϑ24(2τ) = ϑ3ϑ4 (3.2)
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hold for anyτ ∈ H. We first show Theorem 1.2 in either case ofn = 2 or an odd integern ≥ 3. Define the
three polynomials as follows;

Q2,2(X,Y ), Q3,2(X,Y ) := X2 − 1

2
(Y + 1)X +

1

16
(Y − 1)2, (3.3)

Q4,2(X,Y ) := X2 − Y.

Lemma 3.1. For eachj ∈ {2, 3, 4} the polynomialQj,2(X,Y ) satisfies

Qj,2

(
ϑ4j (2τ)

ϑ43
,
ϑ44
ϑ43

)
= 0 (τ ∈ H). (3.4)

Proof. By the first equality in (3.2) we have

ϑ82(2τ)

ϑ83
− 1

2

(
ϑ44
ϑ43

+ 1

)
ϑ42(2τ)

ϑ43
+

1

16

(
ϑ44
ϑ43

− 1

)2

= 0,

so that the polynomial

Q2,2(X,Y ) = X2 − 1

2
(Y + 1)X +

1

16
(Y − 1)2

vanishes atX = ϑ42(2τ)/ϑ
4
3 andY = ϑ44/ϑ

4
3 for anyτ ∈ H. Similarly we find that the polynomialsQ3,2

andQ4,2 satisfy (3.4) from the second and the third equalities in (3.2), respectively.

It is clear that the above polynomialsQj,2 satisfy (1.6) and (1.7) in Theorem 1.2. Next we consider the case
wheren = m ≥ 3 is an odd integer. We use the following result obtained by Yu. V. Nesterenko [10].

Theorem D ([10, Theorem 1, Corollaries 3, 4]).For any odd integerm ≥ 3 there exists an integer polyno-
mial

Pm(X,Y ) = Xψ(m) +

ψ(m)∑
ν=1

Rν(Y )Xψ(m)−ν (3.5)

with degY Rν(Y ) < ν (ν = 1, 2, . . . , ψ(m)), such that the identities

Pm

(
m2ϑ

4
2(mτ)

ϑ42(τ)
, −16

ϑ44(τ)

ϑ42(τ)

)
= 0, Pm

(
m2ϑ

4
3(mτ)

ϑ43(τ)
, 16

ϑ42(τ)

ϑ43(τ)

)
= 0, (3.6)

and

Pm

(
m2ϑ

4
4(mτ)

ϑ44(τ)
, −16

ϑ42(τ)

ϑ44(τ)

)
= 0 (3.7)

hold for anyτ ∈ H, whereψ(m) is defined by (1.4).

Let Pm(X,Y ) be an integer polynomial in Theorem D. For example, the first two polynomialsP3 andP5

are given in [10] by

P3(X,Y ) = X4 − 12X3 + 30X2 − (Y 2 − 16Y + 28)X + 9, (3.8)

P5(X,Y ) = X6 − 30X5 + 135X4 − (20Y 2 − 320Y + 260)X3 − (120Y 2 − 1920Y − 255)X2

− (Y 4 − 32Y 3 + 308Y 2 − 832Y + 126)X + 25,
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respectively. Define

Q2,m(X,Y ) := m−2ψ(m)(1− Y )ψ(m) · Pm
(
m2 X

1− Y
,−16

Y

1− Y

)
, (3.9)

Q3,m(X,Y ) := m−2ψ(m) · Pm(m2X, 16(1− Y )), (3.10)

Q4,m(X,Y ) := m−2ψ(m)Y ψ(m) · Pm
(
m2X

Y
, −16

1− Y

Y

)
. (3.11)

Lemma 3.2. For eachj ∈ {2, 3, 4} the aboveQj,m(X,Y ) is a polynomial with rational coefficients, which
satisfies

Qj,m

(
ϑ4j (mτ)

ϑ43
,
ϑ44
ϑ43

)
= 0 (τ ∈ H),

and is of the form

Qj,m(X,Y ) = Xψ(m) +

ψ(m)∑
ν=1

Rj,m,ν(Y )Xψ(m)−ν ,

where
degRj,m,ν(Y ) ≤ ν, ν = 1, 2, . . . , ψ(m).

Proof. The identity

Q4,m

(
ϑ44(mτ)

ϑ43
,
ϑ44
ϑ43

)
= 0 (τ ∈ H)

follows from (3.7) together with (3.1). Furthermore by (3.5) and (3.11) we get the form

Q4,m(X,Y ) = Xψ(m) +

ψ(m)∑
ν=1

R4,m,ν(Y )Xψ(m)−ν ,

where

R4,m,ν(Y ) := m−2νY ν ·Rν
(
−16

1− Y

Y

)
, ν = 1, 2, . . . , ψ(m),

are polynomials inY with

degR4,m,ν(Y ) ≤ ν, ν = 1, 2, . . . , ψ(m),

sinceRν(X) are given by integer polynomials whose degrees are less thanν. Therefore Lemma 3.2 is true
for j = 4. We can obtain the similar results for the polynomialsQ2,m andQ3,m from the equalities (3.6).

Finally we complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Fix a subscriptj ∈ {2, 3, 4}. The proof is by induction onn. We have just shown
in Lemmas 3.1 and 3.2 that the assertion is true forn = 2 and an odd integern = m ≥ 3. Suppose that
Theorem 1.2 is true for some fixed integern ≥ 2; namely there exists a polynomial

Qj,n(X,Y ) = Xψ(n) +

ψ(n)∑
ν=1

Rj,n,ν(Y )Xψ(n)−ν (3.12)
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satisfying the properties (1.5), (1.6), and (1.7). In what follows, we show the existence of the polynomial
Qj,2n(X,Y ), which satisfies the properties (1.5), (1.6), and (1.7) withn replaced by2n. The identity (1.5)
remains true whenτ is replaced by2τ , and the equalities

ϑ4j (2nτ)

ϑ43(2τ)
= 4

ϑ4j (2nτ)

ϑ43

(
1 +

ϑ24
ϑ23

)−2

,
ϑ44(2τ)

ϑ43(2τ)
= 4

ϑ24
ϑ23

(
1 +

ϑ24
ϑ23

)−2

follow from (3.2). Hence by (3.12)

Aj,n(X,Y ) := 4−ψ(n)(1 + Y )2ψ(n) ·Qj,n
(

4X

(1 + Y )2
,

4Y

(1 + Y )2

)

= Xψ(n) +

ψ(n)∑
ν=1

4−ν(1 + Y )2ν ·Rj,n,ν
(
4Y (1 + Y )−2

)
Xψ(n)−ν

=:

ψ(n)∑
ν=0

Sj,n,ν(Y )Xψ(n)−ν

vanishes atX = ϑ4j (2nτ)/ϑ
4
3 andY = ϑ24/ϑ

2
3 for anyτ ∈ H, where we denoteSj,n,0(Y ) := 1 and

Sj,n,ν(Y ) := 4−ν(1 + Y )2ν ·Rj,n,ν
(
4Y (1 + Y )−2

)
, ν = 1, 2, . . . , ψ(n).

By the induction hypothesis (1.7), the aboveSn,ν(Y ) are polynomials with

degSj,n,ν(Y ) ≤ 2ν, ν = 0, 1, 2, . . . , ψ(n). (3.13)

Define

Bj,n(X,Y ) := Aj,n(X,Y )Aj,n(X,−Y )

= X2ψ(n) +

2ψ(n)∑
ν=1

Tj,n,ν(Y )X2ψ(n)−ν ,

whereTj,n,ν(Y ) are polynomials inY given by

Tj,n,ν(Y ) :=
∑

0≤ν1,ν2≤ψ(n)
ν1+ν2=ν

Sj,n,ν1(Y )Sj,n,ν2(−Y ). (3.14)

Clearly the polynomialsTj,n,ν(Y ) are even with respect to the variableY ; namely there exist polynomials
Rj,2n,ν(Y ) with rational coefficients such that

Rj,2n,ν(Y
2) := Tj,n,ν(Y ), ν = 1, 2, . . . , 2ψ(n). (3.15)

Now we check that the polynomial

Qj,2n(X,Y ) := X2ψ(n) +

2ψ(n)∑
ν=1

Rj,2n,ν(Y )X2ψ(n)−ν

= Xψ(2n) +

ψ(2n)∑
ν=1

Rj,2n,ν(Y )Xψ(2n)−ν (3.16)
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fulfills the properties (1.5), (1.6), and (1.7) forn replaced by2n. The property (1.5) follows from the relation

Qj,2n
(
X,Y 2

)
= Bj,n(X,Y ) = Aj,n (X,Y )Aj,n (X,−Y )

and the fact that the polynomialAj,n(X,Y ) vanishes atX = ϑ4j (2nτ)/ϑ
4
3 andY = ϑ24/ϑ

2
3 for anyτ ∈ H.

The form (1.6) is given by (3.16). Moreover, forν = 1, 2, . . . , ψ(2n) we have by (3.13), (3.14), and (3.15)

2 degRj,2n,ν(Y ) = deg Tj,n,ν(Y )

≤ max
0≤ν1,ν2≤ψ(n)
ν1+ν2=ν

(degSj,n,ν1(Y ) + degSj,n,ν2(−Y ))

≤ max
0≤ν1,ν2≤ψ(n)
ν1+ν2=ν

(2ν1 + 2ν2)

= 2ν,

so that
degRj,2n,ν(Y ) ≤ ν, ν = 1, 2, . . . , ψ(2n),

which is (1.7). The proof of Theorem 1.2 is completed.

Remark 3.1. We haveQ2,2ℓ = Q3,2ℓ for any integerℓ ≥ 1, since these polynomials are inductively
constructed from the same initial polynomial (3.3). Moreover, by definitions (3.9), (3.10), and (3.11), we
have

Q2,m(X,Y ) = (1− Y )ψ(m) ·Q3,m

(
X

1− Y
,

1

1− Y

)
,

Q4,m(X,Y ) = Y ψ(m) ·Q3,m

(
X

Y
,
1

Y

)
for any odd integerm ≥ 3.

Remark 3.2. Let n ≥ 2 be an even integer. Then for eachj ∈ {2, 3, 4} we have

Qj,n

(
ϑ4j (nτ)

ϑ44
,
ϑ43
ϑ44

)
= 0 (τ ∈ H), (3.17)

which follows immediately from the transformationτ 7→ τ + 1 in (1.5) and the equalities

ϑ4j (τ + 2) = ϑ4j (τ) (j = 2, 3, 4),

ϑ43(τ + 1) = ϑ44(τ), ϑ44(τ + 1) = ϑ43(τ).

4 Identities for the theta-constants

4.1 An application of Theorem 1.2

By the argument in the proof of Theorem 1.1, any three theta-constantsϑi(ℓτ), ϑj(mτ), andϑk(nτ) are
algebraically dependent overQ, but it is not easy to find the explicit algebraic dependence relations for
given three theta-constants. In this section, as an application of Theorem 1.2, we give the explicit algebraic
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dependence relations among the three theta-constantsϑj(τ), ϑj(2τ), andϑj(3τ) for each fixedj ∈ {2, 3, 4}.
Let τ ∈ H. Then by (3.6) and (3.17) the two polynomials

f(W ) :=W 2 ·Q2,2

(
ϑ42(2τ)

ϑ42
· 1

W
, 1 +

1

W

)
,

g(W ) := P3

(
9
ϑ42(3τ)

ϑ42
, −16W

)
,

have a common root atW = ϑ44/ϑ
4
2, and hence the resultant off(W ) andg(W ) is equal to zero. Thus, we

find that the polynomial

R2(X,Y, Z) := X5Z −X4Y 2 − 4X3Y 2Z − 270X2Y 2Z2 + 256XY 4Z + 972XY 2Z3 − 729Y 2Z4

vanishes identically atX = ϑ42(τ), Y = ϑ42(2τ), andZ = ϑ42(3τ), where we used the forms (3.3) and (3.8).
Similarly by considering the resultants

ResW

(
W 2 ·Q3,2

(
ϑ43(2τ)

ϑ43
· 1

W
,

1

W

)
, P3

(
9
ϑ43(3τ)

ϑ43
, 16(1−W )

))

and

ResW

(
Q4,2

(
ϑ44(2τ)

ϑ44
, 1 +W

)
, P3

(
9
ϑ44(3τ)

ϑ44
, −16W

))
,

respectively, we can obtain integer polynomials

R3(X,Y, Z) := X8 − 56X7Z − 10240X6Y Z + 1324X6Z2 − 8192X5Y 2Z − 761856X5Y Z2

− 17064X5Z3 + 9666560X4Y 2Z2 − 2764800X4Y Z3 + 128790X4Z4

− 25165824X3Y 3Z2 − 2211840X3Y 2Z3 + 9953280X3Y Z4 − 565704X3Z5

+ 16777216X2Y 4Z2 + 7962624X2Y 2Z4 − 7464960X2Y Z5

+ 1338444X2Z6 − 5971968XY 2Z5 − 1417176XZ7 + 531441Z8 ,

R4(X,Y, Z) := X5 − 28X4Z + 270X3Z2 + 256X2Y 2Z − 972X2Z3 + 729XZ4 − 256Y 4Z ,

whereRj(X,Y, Z) vanishes identically atX = ϑ4j (τ), Y = ϑ4j (2τ), andZ = ϑ4j (3τ) for eachj = 3, 4.
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4.2 Appendix

Q2,2 = Q3,2 = X2 − 1

2
(Y + 1)X +

1

24
(Y − 1)2,

Q2,3 = X4 +
4

3
(Y − 1)X3 +

10

33
(Y − 1)2X2 +

4

36
(Y − 1)(Y + 7)(7Y + 1)X +

1

36
(Y − 1)4,

Q2,4 = Q3,4 = X4 − 1

4
(Y + 1)X3 +

1

27
(3Y 2 − 62Y + 3)X2 − 1

210
(Y + 1)(Y 2 + 30Y + 1)X

+
1

216
(Y − 1)4,

Q2,5 = X6 +
6

5
(Y − 1)X5 +

27

53
(Y − 1)2X4 +

4

55
(Y − 1)(13Y 2 + 230Y + 13)X3

+
3

57
(Y − 1)2(17Y 2 − 2082Y + 17)X2

+
2

510
(Y − 1)(63Y 4 + 6404Y 3 + 19834Y 2 + 6404Y + 63)X +

1

510
(Y − 1)6,

Q3,3 = X4 − 4

3
X3 +

10

33
X2 − 4

36
(8Y − 1)(8Y − 7)X +

1

36
,

Q3,5 = X6 − 6

5
X5 +

27

53
X4 − 4

55
(256Y 2 − 256Y + 13)X3 − 3

57
(2048Y 2 − 2048Y − 17)X2

− 2

510
(32768Y 4 − 65536Y 3 + 39424Y 2 − 6656Y + 63)X +

1

510
,

Q4,2 = X2 − Y,

Q4,3 = X4 − 4

3
Y X3 +

10

33
Y 2X2 − 4

36
Y (Y − 8)(7Y − 8)X +

1

36
Y 4,

Q4,4 = X4 − Y X2 − 1

24
Y (Y − 1)2,

Q4,5 = X6 − 6

5
Y X5 +

27

53
Y 2X4 − 4

55
Y (13Y 2 − 256Y + 256)X3 +

3

57
Y 2(17Y 2 + 2048Y − 2048)X2

− 2

510
Y (63Y 4 − 6656Y 3 + 39424Y 2 − 65536Y + 32768)X +

1

510
Y 6.
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