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ABSTRACT. We take another look at the so-called quasi-derivation relations in
the theory of multiple zeta values, by giving a certain formula for the quasi-
derivation operator. In doing so, we are not only able to prove the quasi-
derivation relations in a simpler manner but also give an analog of the quasi-
derivation relations for finite multiple zeta values.

1. INTRODUCTION

The quasi-derivation relations in the theory of multiple zeta values is a general-
ization, proposed by the first-named author and established by T. Tanaka, of a set
of linear relations known as derivation relations, which we are first going to recall.

We use Hoffman’s algebraic setup ([5]) with a slightly different convention. Let
$ := Q({(z,y) be the noncommutative polynomial algebra in two indeterminates x
and y. This was introduced in order to encode multiple zeta values in the way the

monomial ya*1~lyzk2=1...yzk =1 corresponds to the multiple zeta value
1
C(klak27"',kr) = Z 1 ks ko
0<ni<-<n, "1 "t T

when k, > 1, which is a real number as the limiting value of a convergent se-
ries. If we denote by Z the Q-linear map from y$Hx to R assigning each monomial
yrkr—tyxhz=1 . yapke=1 to ((ky,..., k), the derivation relations state that

Z(an(w)) =0

for all » > 1 and w € y$Ha. Here the operator 9, is a Q-linear derivation on
determined uniquely by 9, (z) = y(x + y)" 'z and 9,(y) = —y(x +y)" tx. Set
z =z +vy, so that 9,,(z) = 0. We use this repeatedly in the sequel.

In order to introduce the quasi-derivation relations, we first define a Q-linear
map 60 := 0(9): § — § with a parameter ¢ € Q (we often drop ¢ from the notation)
by setting

O(u) =uz=u(x+y) for u=2z,y
and requiring
O(ww') = f(w)w" +wh(w') + cH (w)dy (w')
for w,w’ € 9, where H is the Q-linear map from $ to itself defined by H(w) =
deg(w) - w for any monomial w € $ (deg(w) is the degree of w). This is well defined

because H is a derivation on £). Now we define the quasi-derivation map &(f). Write
ad(f) the adjoint operator by 6, i.e., ad(0)(9) := [0, 9] = 09 — 99.
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Definition 1.1. For each positive integer n and any rational number ¢, we define
a Q-linear map 87(10) :H —=>Hby
1
O\ == ————ad(0)" ' (dn).
n (TL — 1)|a ( ) ( 1)
Then the quasi-derivation relations of Tanaka [13] is stated as
Z(0) (w)) =0

foralln > 1, c € Q, and w € y$Hx. Our aim in this paper is to take another look
at this relation, or rather at the operator aﬁf).

Remark 1.2. 1) We have changed the definition of § = #(°) by shifting the original
([8, 13]) by the derivation w — [z,w]/2 = (2w — wz)/2. However, we can check

that this does not change 8,(16)(11)). Note also that the convention of the order of the
product in § there is opposite from ours.
2) As noted in [6], the special case ¢ = 0 gives the original derivation 0,: 9, =

o). This together with works of Connes-Moscovicci [1, 2] motivated us to define
o) (w) in [8].

3) From 6(z") = rz"*1 (r > 1) and 9,(z) = 0, we see that o) (wz) = &(LC)(w)z
and 8,(16)(2'10) = 20%) (w). We need to use this at several points later.

2. MAIN THEOREM

We present a formula for o (w) when w is in $Hz. To describe the formula, we
define a product ¢ on §) introduced in Hirose-Murahara-Onozuka [3] by

(1) wy 0wy = ¢(p(w1) * Pp(wa)) (w1, ws € H),
where ¢ is an involutive automorphism of §) determined by
¢pz)=z=xz+y and oé(y) = —vy,
and = is the harmonic product on $) (see [5, 4] for the precise definition of x). This
is an associative and commutative binary operation with 1ow = wo 1 = w for any
w € 9. In [3], the definition of ¢ is given in an inductive manner like the definition
of * in [4]. Later we only use the shuffle-type equality
(2) xwy © ywy = x(wy © yws) + y(zwy © we),
which holds for any wi,ws € .
We define a specific element ¢, = q%c) in $) for each n > 1 as follows.
Definition 2.1. Let 6 = () be the map from § to itself given by
O(w) == 0(w) + cH(w)y (w € H).
For each positive integer n, we define
1
(n—1)!
We thus have q; = y and ¢,, = é(qn_l)/(n —1) forn > 2.
Note that ¢, = qgf) is in y$), as can be seen inductively by the definition. We
shall give an explicit formula for ¢, in the next section. Here is our main theorem.

"n—l(

qn = y)'
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Theorem 2.2. For alln > 1 and c € Q, we have
A\ (wz) = (wogn)z  (w € H).

Assuming the theorem, it is straightforward to deduce the quasi-derivation rela-
tions from Kawashima’s relations (strictly speaking, its “linear part”). Recall the
linear part of Kawashima’s relations [11] asserts that

Z(¢p(wy * wz)z) =0
for any wy,ws € y$. Using this and the definition (1) of ¢, we see that
20 (ywz)) = Z((yw o an)z) = Z(¢(d(yw) * $(4n))x) = 0

because both ¢(yw) and ¢(g,) are in y$H. This is the quasi-derivation relations.
Another immediate corollary to the theorem is the commutativity of the opera-

tors 87(16), that is, 87(1611) and 87(122) commute with each other for any ni,ns > 1 and
c1,c¢2 € Q. This was proved in [13] but the argument was quite involved. Here we
may show
040,05 )(w) = 0
first for w € Hz as
0152, 0N (wa) = (0005 = P91 (wa)

mny ) Ung
= ((’LU()an) anl)x - ((woqnl) anz)x
=0

because the product ¢ is associative and commutative, and then for the general

case by induction on the degree of w by noting 87({:)(102) =9 (w)z as remarked
before.

Proof of Theorem 2.2. We need some lemmas. Recall z =z 4 y.
Lemma 2.3. For wy,ws € §, we have
Zwy © we = Wy O 2ws = z(wq © wa).

Proof. This follows from ¢(z) = z, ¢(x) = z and zwy *wy = wy * Tws = x(W1 *x Ws).
See also [3]. O

Lemma 2.4. For w € 9, we have 01 (w) = woy — wy.

Proof. We proceed by induction on deg(w). The case deg(w) = 0 is obvious because
01(1) = 0. Suppose deg(w) > 1. By linearity, it is enough to prove the equation
when w is of the form 2w’ and zw’. If w = zw’, we have, by using the induction
hypothesis and Lemma 2.3,

O (w) = 01(zw) = 201 (W) = z(w oy —w'y) = 2z’ oy — 20’y = woy — wy.
When w = zw’, we similarly compute (using equation (2))
01 (w) = 01 (zw') = yrw' + 201 (w') = yrw' + z(w' oy — w'y)
=ylaw o 1)+ z(w' oy) —aw'y = zw oy — 2wy
=woy — wy. (]
Lemma 2.5. For u € Qz + Qy, we have
O(uw) = u(é(w) + 2w + c(w o y)).
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Proof. We only need to show the equation for u = z and y. By the definition of 6,
we have

O(uw) = O(uw) + cH (uw)y
uzw + uf(w) + cudy (w) + cuwy + cuH (w)y
u(é(w) + 2w + (01 (w) + wy)).

From Lemma 2.4, we complete the proof. (I

We need one more preparatory result, which may be of interest in its own right.

Proposition 2.6. The Q-linear map 6 is a derivation on $ with respect to the
product o, i.e., the equation

(3) é(wl <>U}2) zé(w1)0w2+w1<>é(w2)

holds for any wy,ws € 9.

Proof. We prove this by induction on deg(w;) + deg(ws). The case deg(wy) +
deg(wsz) = 0 holds trivially:

f(101)=0(1)=0="0(1)o1+106(1).

When deg(w1) + deg(w2) > 1, we first prove when w; is of the form w; = zwj. By
the definition of # and Lemmas 2.3 and 2.5, we have

0(zw] o w2) = 0(2(w] o wa)) = 2(O(w] 0 wa) + 2(w] 0 wa) + c(w) o ws 0 y)).
On the other hand, we have
0(zw}) 0wy + 2w o O(w,)
= 2(O(w}) + 2w} + c(w] 0 y)) o wa + z(w] o O(ws))
= 2(O(w}) o wa + w} 0 O(wa) + 2(w] 0 wa) + c(w) o wa 0 y)).
Hence by the induction hypothesis we obtain
(2w o wy) = 0(zw}) o wa + 2w o Owy).

Since the binary operator ¢ is commutative and bilinear, it suffices then to prove
equation (3) only in the case where w; = 2w and we = yw}. By using equation (2)
and Lemma 2.5, we have

O (zw) o ywh)

= 0 (x(w} o ywh) + y(zwy o wh))

= z(0(w] o ywh) + 2(wh o ywh) + c(w) o ywh o y))
+ y(é(xwi owh) + z(zw] o wh) + c(zw] 0wy o y))

and

sz

(zw]) o ywh + zw) o O(ywh)
(( w)) + 2wy + c(w) o y)) o ywh) + y(0(aw)) o wh)
+ 2 (w) o O(yw))) + y(zw) o (B(wh) + 2w + c(wh 0 y)))

(é( 1) o ywh + wh o O(yw}) + 2(wh o ywh) + c(w] o ywh oy))

y( zw!) o wh + 2w} o O(wh) + z(zw! o wh) + c(zw! o wh oy)).
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From these, we see by the induction hypothesis that
O(zw’ o ywh) = O(zw!) o ywh + zw', o O(ywh)
holds. ]
Now we prove Theorem 2.2 by induction on n. When n = 1, we have
6%6) (wzx) = 01 (wz) = Oy (w)r + wyr = (01 (w) +wy)z = (woy)r = (woq)x
by Lemma 2.4. When n > 2, we have
O (wr) = ——ad()(0),) (wr)

_ (08,(21(10:5) - 87(210(10:6)) .

n—1

By the induction hypothesis, we have
00\ | (wz) = 0((w o gn_1)z)
=0(wogn_1)r+ (WO qu_1)rz + cH(w o qn_1)yx
= é(w O Qn-1)x + (WO qp_1)x2
and
ar(f_)lﬁ(wac) = 87(18—)1 (O(w)x + wrz + cH(w)yx)
= (O(w)ogn_1)r+ (Wogn_1)rz + c(H(W)Yy © gn_1)T
= (B(w) o gn_1)x + (WO Gn_1)x2.
We therefore obtain by Proposition 2.6

c 1 - ~ 1 ~
L) (wx) = m(o(w o n1) — (O(w) o gn_1))x = — (wo0(gn-1))z
= (woqn)z,
which completes the proof. [

3. EXPLICIT FORMULA FOR ¢,

We now describe the element ¢, = qﬁf) in an explicit manner. For any index

l=(l1,...,1l5) € N°, we define a(l) = a(ly,...,ls) € Q (or € Z[c] if we view c as a
variable) inductively by a(1) := 1 and
al) ==Y (li—1— (i +-+1Li1)c)a(l?),

i=1

where
1 _ {(11,...,zi_l,liﬂ,...,zs) it =1,
(L, ooy licy b = L, o0y ls) il > 1.
Proposition 3.1. Forn > 1, we have
@ "= > alyuld)
where the sum runs over all indices I = (l1,...,ls) € N° of any length s and of

weight [1] == l1+ - +ls = n, andw(l) = ¢p(yaxr 1 yzls™) = (=1)syzhi=1...gzls—L,
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Proof. Let g}, denote the right-hand side of (4). We prove (4) by induction on n.
When n = 1, we easily see ¢; = y.

Suppose n > 2. We want to show that ¢/, = 0(¢/,_,)/(n —1). Since 8(z™) =
mz™*1 and 8 (z) = 0, we have

0(y=""1) = y2* + (k= Dy2* = ky2",
and so
O(yz" =1 yzh

T

= E yzFl kil kjyzkf syl kel
=1

+e Z y Pl H (g Ry By (2R ) eyt
1<i<j<r

I
= E kj yzk171 e yzkjflflyzkjyzijrl*l P yzkr*l

¢ Yy () gz — )R Ty T
1<i<j<r

T
= E k‘] yzkl_l e yzkj—l_lyzkjyzkj+1_1 . ysz—l

r
_ CZ(kl NI kj_l)yzkl—l . -yzkj‘l_ly(z _ y)zkj—lyzkj+1—l . 'kaT_l.

Since cH (yzF1=1 .- yzbr =)y = c(ky +- - -+ k. )yz"r 71 y2Fr—1y we finally obtain
for k = (k1,..., k)
O(w(k))

_ (_1)1“5( Zkl—l . yzkr—l)

Z kj —c(hky+ -4 kj— 1))yz Thoyphi Ly Ry ki Ty kel

T+1CZ ]{)1 + - ) k-1, .yzkj_l Yy yzkj+1_1 .. ,yzkr—l.

If we write ]

é(q;—l) = *m

a'(Dw(),
[l|=n

we see from this that the coefficient a’(1) of w(l) = (—1)%yzlr~1 ... yzls~1 is given
exactly by a(l) as defined recursively. O

4. QUASI—DERIVATION RELATIONS FOR FINITE MULTIPLE ZETA VALUES

In this section, we briefly discuss how the quasi-derivation relations look like for
“finite” multiple zeta values. There are two versions, denoted (4(k1,...,k,) and
(s(ki,. .., k), of “finite” analogues of multiple zeta values. The former lives in the
Q-algebra A := [[ F,/ P, F, and the latter the quotient Q-algebra of classical
multiple zeta values modulo the ideal generated by ((2). It is conjectured that
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the two versions satisfy completely the same relations, and there is a conjectural
isomorphism between two Q-algebras generated by those two versions. For more
on finite multiple zeta values, see for instance [9].

Denote by Zzr the Q-linear map from y$) to either algebra assigning the monomial
yrki=l.oyxkr =1 to Ca(ky, ..., k) or (s(ki,..., k). Then the derivation relations
for finite multiple zeta values established by the second-named author [12] is the
relation

(5) Zr(0p(w)z™) =0

that holds for all w € y$Hzx.
As a consequence of our Theorem 2.2, we have the following.

Theorem 4.1 (Quasi-derivation relations for finite multiple zeta values). For all
n>1 and c € Q, we have

Zr(00 w)a™) = Zr(wa ™) Zr(¢l)  (w € y$a).

Proof. This is almost immediate from Theorem 2.2 if one notes Zr o ¢ = Zr and
Zr is a *-homomorphism (for these, see [7, 9, 10]). O

Remark 4.2. When ¢ = 0, we can easily compute that qgo) = yz" !, Since

Zr(yz"1) = Zp(d(y=""1)) = —Zr(ya™ 1) = —Cr(n) = 0 for F = A or S,
we see that Theorem 4.1 generalizes the derivation relations (5).
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