ON POLY-COSECANT NUMBERS

MASANOBU KANEKO, MANEKA PALLEWATTA, AND HIROFUMI TSUMURA

ABSTRACT. We introduce and study a “level two” generalization of the poly-Bernoulli
numbers, which may also be regarded as a generalization of the cosecant numbers. We
prove a recurrence relation, two exact formulas, and a duality relation for negative upper-
index numbers.

1. INTRODUCTION

Poly-Bernoulli numbers were first introduced in [6] and later a slightly modified version
was studied in [2]. They are, denoted Bék) and C’,gk) respectively, defined by using generating

series, as follows. For an integer k € 7Z, let {B,(lk)} and {CT(Lk)} be the sequences of rational
numbers given respectively by

le ]._6 k’ t
B > 1.1
= Z (1.1)
and
Lig(1—e™) = t"
Tar 2O (12)

where Lig(2) is the polylogarithm function (or rational function when k£ < 0) defined by

Lig(z) = ) ;—W; (]z| < 1). (1.3)
m=1

In the sequel, we regard this or any other series only as a formal power series.

Since Lij(z) = —log(1l — z), the generating functions on the left-hand sides of (1.1) and
(1.2) when k =1 become

te!
et —1 and et —1

respectively, and hence By, D and Ch M are usual Bernoulli numbers, the only difference being
B( =1/2 and C(l) —1/2 and otherwise B =cV.

Varlous properties of poly-Bernoulli numbers, including combinatorial applications, are
known. Among them we mention the explicit formulas

B — (1) Zn: (—1)1'{?} oW — (1) zn: (_1)%!{?111}

" —  (@+DF 7" ~ (i+ 1)k
for k € Z, n € Z>¢ using the Stirling numbers of the second kind, and the dualities
B{H = B, (1.4)
c{r=1 — ot h (1.5)
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for k,n € Z>o (see [6, Theorems 1 and 2] and [7, §2]). For combinatorial applications,
see [3].

In this paper, we study the following “level 2”7 analog of poly-Bernoulli numbers, de-
noted Dﬁlk), which we also call the poly-cosecant numbers. For each k € Z, define Dék)
by

Ap(tanh(t/2)) = 1"
SRS A)) DW 1.
sinht nz;) " onl (16)
where Ag(z) is the series
S2nt1
Ap(z) = (L.7)

o\~
k
= (2n+1)

and tanh(z) and sinh(z) are the usual hyperbolic tangent and sine functions respectively.

Since Ag(z), tanh(z) and sinh(z) are all odd functions, we immediately see that Dg;)ﬂ =0

for all n € Z>o. Note that Aj(z) = 2tanh™'(z), and thus

> tn t it ,
Zpgﬁﬁ (i = v/—1).
n=0

| ~ sinht sin(it)

Hence, up to sign, DY is the cosecant number D, (see Norlund [10, p. 458]).

We should mention that our D,(lk) is (if slightly modified) a special case of a generalization
of the poly-Bernoulli number introduced by Y. Sasaki in [11, Definition 5].

2. RECURRENCE AND EXPLICIT FORMULAS FOR POLY-COSECANT NUMBERS

In this section, we obtain a recurrence and explicit formulas for poly-cosecant numbers.

We first give a recurrence. Note that D(()O) =1 and D%O) = 0 for all n > 1 because
Ap(tanh(t/2)) = sinh(¢). Starting from this, the following formula gives a way to compute

an recursively for any integer k.

Proposition 2.1. For any integer k and n > 0, it holds
5]

— +1 k
DY = Z < . >D£L)2m'
= 2m 41

Proof. We differentiate the defining relation

t?’l
; k
Ay (tanh(¢/2)) = sinh tnE ODT(1 )a

to obtain
Aj_1(tanh(t/2)) O =t
=coshty DR hey DB _—
From this we have
iD(kmﬁ _ i e ipwﬁ N i et ip(k) .
— " onl _m:0 (2m)! =~ " nl A= (2m+ 1) £~ " (n—1)!
Sk " n oo L2 " i
= D D
;}mz::() n=2m 1 — 2m)! ;mzo n=2m (9m + 1)(n — 2m — 1)!

n k) t"
D bl
(2m + 1) n2m )|

n=1m=0
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oo 3]

=35 (g 1) Py
2m+1) n2myl
n=0m=0
By equating the coefficients of t"/n! on both sides, we obtain the desired result. O

When k£ > 0, we may want to write this as

L3]

1
(n+ 1)D7(Lk) — DT(Lk—l) _ (21:71++ 1) Dfﬁm (n>0).

NIE

m=1

Note that D) =1 for all k € Z.

We proceed to give two explicit formulas for D%k). Recall that [:J and {:L} are Stirling
(1)

numbers of the first and the second kinds, respectively, and B,, = By’ is the Bernoulli
number. See [1, Chapter 2] for the precise definition and formulas we use in the proof.
In [11], Sasaki gave a different formula, but one needs to define yet another sequences to
describe the formula.

Theorem 2.2. For any k € Z and n > 0, we have
1)
l

] 2m+1n—2m
IV g D Do n\ [2m+ 1| [n—q| Bpygr1
0 p=1 ¢=0

0|3

and

2)
(k) _ p+1 n+1
Dy, 2m+1 (99 L 1)k+1 Z <2m> {p—l—l ’

U p=2m

Proof. To prove 1), we need the following lemma. We may prove this in the same manner
as in [1, Proposition 2.6 (4)] and we omit the proof here.

Lemma 2.3. Forn > 1 we have,

() - Eer) (2

m=1
We write
iD(k)ﬁ _ Ag(tanh(t/2))
— " nl sinht
o0 2m—+1
_ 5 Z (tanh(t/2)) ! ' 1
= (2m+1) sinh ¢
> 1 el(et —1)2m
=4 . 2.1
n;) SRR (2.1)
Since

1 B (_l)n d n 1
(z+ 1)t nl <d:c) z+1 (2:2)
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we see by setting x = e! and using Lemma 2.3 that

G?IT?ﬁ:HﬂE: []<Z>péil' (23)

From
t =t
=N"B =
t_ Z a1
et —1 o q!
and
1 2
et+1 et—1 e2At—1’
we have
1 = ta—1
- _ 99 M
etH_Zu 29)B, T
q=0

By taking the p-th derivative of both sides, we get

o — o0
<d>p <1> — E (1— Qq)&l — E (1— 2p+q+1)Mﬁ
t —p—1) |
dt el +1 Pl qg (g—p—1)! Sl p+q+1q!

and we substitute this in (2.3) to obtain

nt

e 1< n
w+wH:mZ“WL

B t?
_ 1)P n _ gpta+ly Pptatl U
n'qz;]pz_: [p} )p-i—q-i-lq!

o
Z 2p+q+l Bpiqt1 ﬁ
p+q+1¢

| I

From this, we have
et 67(2m+1)t

(et + 1)2m+2 - (e—t + 1)2m+2

oo 2m—+1
S5 e[ gy rse 6
2m+ 2m +1)! P p+qg+1q!

q=0 p=1
Together with the well-known generating series ([1, Proposition 2.6 (7)], note that {2;} =
0if s < 2m)

o0
tS
_ |
(el —1)*™ = (2m) Z;{zm} ot
s=

we obtain
et(et o 1)2m
(et + 1)2m+2

co oo 2m+1

2m + 1 s Bpig+1 t1Fs
1)PFa(1 — gprat! p+q
zzz 7 o e

co n 2m+l1
SO ST (apra gty (M) [P 1] [ a), Bpean
2m+1 q p 2m J p+q+1nl

n=0q¢=0 p=1
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Substituting this into (2.1), we have

tn
> D
= n!
00 oo n 2m+l n om + 1 n—gq B m
:42 ZZ Z 1)P+a(1 2p+q+1)< ) [ ] { - } ptetl b
(9m + 1)k+1 |
m:O 2m+1 n=0q¢=0 p=1 q p 2m p+q+1n'
L5] 2m+1n—2
- 453 2 i nzm optatl _ 2m+ 1| [n—q| Bpigs1 1"

(We have used the facts that By,441 = 0if p+¢ > 1 is even and n2;1q =0ifn—q < 2m.)

By equating the coefficients of ¢"/n! on both sides, we obtain the desired result.

To prove 2), we employ the following formula ([4, Proposition 9]) for the numbers T}, ,,
(“higher order tangent numbers”) defined by

tanm t

Z Tnm ol (2.4)

namely

n

T = ZT;;m Z(—Q)"_pp!(p_ 1) {”} (2.5)

m—1 p
p=m

From the definition we have

iDﬁk)Z _ Axltanh(t/2)) _ d - anh(t/2))
n=0

sinh ¢ - dt

d <= (tanh(t/2))2m+!
zgdtngo( (Qm( j{ 1))>k — (2.6)

By using tanh¢ = —itan(it) and equations (2.4) and (2.5), we can write

m -\ - in tn
(tanh(t/2))™ = (—i)™m! Z Tmm275

2)"Ppl p—1 n| i"t"
m—1 pl 2nnl
n=m p=m

I “"(p‘fJ o)

n=m p=m

We therefore have

Sy RIED SIS LN LAy B ] S
| k+1 -1 —1)!
n=0 s m=0 (2m+1 n=2m+1 p=2m-+1 2 2m p (n 1)‘
oo [ee] n
1 1)! t"
-y L% Z(,l)pm p\ [n+1]t"
(2m + 1)k+1 2p 2m) \p+1)n
m=0 n=2m p=2m
—im 1 Z P+ p\ fnt1) &7
B (2m + 1)k+1 2P 2m) \p+ 1/ n!
n=0m=0 p=2m

By equating the coefficients of t"/n!, we complete the proof of the theorem. O
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3. DuaLiTy
We now prove the duality property of Dgg) similar to (1.4) and (1.5).
Theorem 3.1. For n,k € Z>g, it holds

—ok— —on—
pi 2Rt — p{oanh), (3.1)

We give two proofs using a generating function. The first proof gives a closed, symmetric
formula for the generating function, whereas the second is more indirect and a little involved.
We however think the second way may be of independent interest and decided to include it
here.

Consider the following generating function of Dénzk b,

2k

ZZ 2k 1) zn (gk)

n=0 k=0

We establish the closed formula of F(z,y) as follows. The theorem follows immediately
from the symmetry of the formula.

Proposition 3.2. Set
er Ty

(14 e" 4 e¥ —evty)2’

G(z,y) =
Then we have
Fz,y) = G(z,y) + G(z,—y) + G(—z,y) + G(=z, —y).
In other words, F(x,y) is the sub-series of 4G(x,y) which is even both in x and y.

Proof. We first compute the generating function of all D(fk)

Sy T Z, (3.2)

n=0 k=0

Proposition 3.3. We have

flz,y) =
Proof. By definition

e(e¥ —1) e "(e¥ —1)
1+6x+ey_ex+y 1_|_e—x_|_ey_e—x+y'

(3.3)

o

flany) = Z A_p(tanh(z/2)) v*

sinh z k!

= ZZ (2n +1) tanh(x/Q))any .

smh:c — =
We note that

s d\* t d\*/ 1 1
2 Cn+ 1)kttt =2(t— ) —— = (t— R
D> _(2n+1) dt) 1-p at) \1—t 1+t)°

n=0
and by using the standard formula (cf., e.g., [1, Proposition 2.6 (4)])

() == {nhe ()"

we see the right-hand side is equal to

> {ap (@) ()

m=1
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- tr (="
=2 (o (e o)
Hence, by settlng t = tanh(z/2) and noting t/(1—t) = (e* —1)/2, —t/(1+t) = (e *—1)/2,
(smhx)(l —t)=e*(e” — 1), (sinhx)(1+1t) =€ — 1, we have

Slnhxzz{ } (1_t;m+1 - (1<+_3:+1>§j (t = tanh(z/2))
b e O R
S (7)) S (Y

m=1
e (e —1)(e® —1) 1 (e —1)(e ™™ —1)
Ter—1 2—(ev—1)(e*—1) e*—1 2—(eV—1)(e=® —1)
B er(e¥ —1) e eV —1)
Cltettev—etty  1te T4l —e Tty

f(z,y)

From (3.3) we see that f(:L' y) is even in x, and so we have

2k+1

f(z, y) ok-1) 22"y
ZZD?” (2n)! 2k + 1)

n=0 k=0

Our generating function F'(x,y) is the derivative of this with respect to y, and Proposi-
tion 3.2 follows from a straightforward calculation. Theorem 3.1 is thus proved.

O
Remark 3.4. We recall that

Tty

(—k—1)
ZZC n' k:' N (ex—i-ey — erty)2

n=0 k=0

(see [7, Section 2]), which is remarkably similar to G(z,y). The general coefficients of
4G (z,y) not necessarily even either in x or y may worth studying. The first several terms
are given as

2 2 3 3
_ Yy y z 2 Y y Yy
4 3 2 2 3 4

x =y "y zy Yy
+E+8§F+13§§+8F§+E+
For the second proof of Theorem 3.1, we need several lemmas.

Lemma 3.5.

F(z,y) =2 Z 8850 (tanh®"*1(2/2)) cosh((2n + 1)y).
=0

Proof. By (1.6), we have

(tanh(z/2 2k
Fla,y) _QZ = slmh )( = (gk)!

= Z Z (2n + 1)1 tanh2”+1(x/2)

smh k: s (2k)!

k
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= Sinl?(:c) i@n + 1) tanh?" ™1 (z/2) cosh((2n + 1)y)
n=0

1 o)

_ (2n + 1) tanh?"(z/2)
sinh(z/2) cosh(z/2) T;)

sinh(z/2)
cosh(z/2)

cosh((2n + 1)y)

=2 Z;J 883: (tanh®" ! (2/2)) cosh((2n + 1)y).

Thus we have the assertion. O

We write
o 2m

oo 2m T
F(a,y) = Zogmm(gm)! E Zohm@)@m)!.

Then if we could prove g, (z) = hy,(x) for any m > 0, we are done.
First, we look at g, (z). Using Lemma 3.5, we have

() = (jy)m Flz,y)

d oo
= 2% 7;)(Qn + 1)?™ tanh?" 1 (2/2).

y=0
Here we note that
00 d 2m 00 d 2m ¢
2n 4+ 1)2m2ntt = (t— 2t — ([t — . 3.4
2 (n+1) i) 2 at) 1-¢2 (34)
n=0 n=0
Setting ¢ = tanh(z/2) and noting
1 1 t tanh(x/2
dt = = 3 dx, 5 = an (:1;/ ) = —sinhz,
2 cosh”(z/2) 1—1 1 —tanh?(z/2) 2

we have 4 4 J
t% = tanh(z/2) - 2 COSh2<I/2)% = sinhz =
Therefore we obtain

X

d d 2m
gm(z) = . (sinha: d> sinh z. (3.5)

We can explicitly write down the right-hand side by using the following lemma.
For m € Z>, we define sequences {agm)}ogigm C Q inductively by

a(()o) =1,
m 1 m— m— m— (36)
o™ = . {i(2i —1)a™ Y = 20+ )%™ 4 (i + 1)(2i + 3)alT, 1)} (m>1),
where we formally interpret agm) =0fori<0ori>m.
Lemma 3.6. For m € Zx>,
. d\>" . TN (m) .
<Slnhx d:c) sinhz = ZZ; a;, ~sinh((2¢ + 1)x). (3.7)

Proof. We give the proof by induction on m. For m = 0, the identity trivially holds. We
assume

. d \*mY plas (m—1) . .
(smhx dm) sinhz = ZO a; sinh((2¢ + 1)z).
Using -

cosh(kz) sinh(z) = % (sinh((k + 1)z) — sinh((k — 1)) ,
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we have

. d am=l . 1 i, . (m-1) , . . . .
(smhx dx) sinhz = 3 ZZ; (2i 4+ 1)a, (sinh((2¢ + 2)x) — sinh(2iz)),

d 2m
(sinh T > sinh z
dzx

m—1 ;
B . (m—1) )¢ +1
_ % (sinh((2¢ + 1)x) — sinh((2i — 1)x)) }

and

(sinh((2¢ + 3)z) — sinh((2i 4 1)x))

=5 > i2i- 1)al™ Y sinh((2i + 1))

(m—l)

(2i + 1)%a sinh((2i + 1))

(i + 1)(2 + 3)a’" " sinh((2i + 1)x).

Hence, using (3.6), we complete the proof by induction. O

Using this lemma, we obtain

m

gm(x) = 2(22 +1) z(-m) cosh((2i + 1)x). (3.8)

Secondly, we compute h,,(y). Again by using Lemma 3.5, we have

(&) |

h

0

or

[e’e) 2m+1
=23 (

22

tanh2n+1(az/2)) cosh((2n + 1)y)

)
)
tanh?*+! (z/2) =

%\&

2m+1
tanh®" 1 (z/2)

-cosh((2n + 1)y) (3.9)

%\&

=0

because
2t 2n+2
GPTEsY +O(x ) (z—0).

We write down the right-hand side of (3.9) by using the following lemma.

Lemma 3.7. For n,l € Z>o, there ezist sequences {bg-n’l)}ogjg C Q such that

I !
(;) tanh? 1 (2/2) = 37 bl tanh 20t (1 /2), (3.10)
x =
where b;.n’l) =04 2n+1—-1+425 <0. In particular,
g\ 2mtl
<> tanh2"t(z/2)| =AY, (3.11)
dx 2=0
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Proof. For each n, we can immediately obtain the form (3.10) by induction on [, using the
relation

2 1
di tanh®"(z/2) = nt (tanh2"(:z:/2) - tanh2n+2(aj/2)) .
x
U
Combining this lemma and (3.9), we obtain
=2 Z b " 2m+1 cosh((2n + 1)y). (3.12)

Now we are going to show 2b(n 2m+1) = (20 + 1)a§m), which implies g (z) = hm(x).
)
1

For m,n € Z>¢ with n < m, set b% ™ = 2b5,?’_27T+1). Then, by (3.11), we have b( =
Furthermore the following lemma holds.

Lemma 3.8. For m € Z>1, we have the recursion

~ 2 1 ( ~m— T m— m
B = S b = n+ DR 4 4 DBV} <m), (313)

n 2 n—

where we interpret bgk) =0 fori<0ori>k.
Proof. Tt follows from (3.10) that

d 2m—+1 2m—+1 )
<d:L‘> tanh?" ™! (z/2) = Z b;n’2m+1) tanh?"—2m 25 (1/2). (3.14)
=0

Differentiating twice and using (3.10), we see that the left-hand side is equal to

($>2m (2n2+ L tanh2n (2 /2) — tanh2n+2($/2))

= n2+ (d> {ntanh2"1(x/2) — (2n + 1) tanh® 1 (2/2) 4+ (n 4 1) tanh2”+3(w/2)}
x
41 .
— {n ST bl ganpn-2mi2 (4 /9)
=0
2m—1 A
—@2n+1) S Bl anh o 2mE 22 () 9)
=0
2m—1 .
+(n+1) Z b§n+1’2m_1) tanh?n—2m At (x/Q)}
=0

If we let x — 0, this goes to

2 1 n—1,2m— n,2m— n m—
”; {nbﬁniﬁ D @n 4+ o0 4 (o et 2 ”}

n

_ Q”I 1 {ni;(ml“ —@n+ DY 4+ (n+ 1)55[11”}.

On the other-hand, the right-hand side of equation (3.14) tends to b(n 2m+1) = B /2 as
x — 0. Thus we obtain (3.13). O

Proof of Theorem 3.1. For {agm)} defined by (3.6), set Ziz(m) = (20 + l)agm). Then (3.6) can

be written as 660) =1 and

az( )= Z;— {zaf_l Y - (2i+1)%q; ( 1)+(1+1) §+1 1)}
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7(m)

(m) _ 7(m)

which has exactly the same form as (3.13) for by, ’, namely a, ' = b, ’. Comparing (3.8)
and (3.12), we obtain g,,(z) = hp(x). Thus we complete our second proof of Theorem
3.1. ]

4. MULTI-INDEX CASE

We may define the multi-poly-cosecant numbers Dékl’””kr) by

Ak, .. ketanh(t/2) = (5 g t"
) 9 3 _ D( 1yeenskr) ¥
sinh ¢ 7;) " n!’

where the function
Moy

z
A(k]_,...,kr;Z):2T Z ﬁ

.. T
0<my <---<my my My
m;=i mod 2

for k1,...,kr € Z is 2" times Ath(k1, ..., k,; z) which was introduced in [9, §5]. (Our Ag(2)
is A(k; z).) We can regard DY1k) a5 a level 2-version of the multi-poly-Bernoulli numbers

B,(Lkl""’kr) and Cﬁ’“""””) defined in [5].
In [9], we introduced the function

1 o 1A(k1,..., kr;tanh(t/2))
ki,... kys) = — 51 AR R dt  (Rs > 0),
ik, ki) = s /0 sinh(t) (s > 0)
which can be analytically continued to C as an entire function. In the same manner as in
the “level 1”7 case (&- and n-functions reviewed in the same paper), we see that the numbers

D,(Lkl""’kr) appear as special values of ¢(k1, ..., kr;s) at non-positive integer arguments:
Wk, ... kp;—n) = (=1)"DFLkr) (= 0,1,2,..).
Also, we can obtain a similar recurrence relation for multi-poly-cosecant numbers as
5]

P P . | n+1 (k1o k)
D'Sll ! ):Z<2m+1)Dn12m
m=0

for any r > 1,k; € Z and n > 0.
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