
ON POLY-COSECANT NUMBERS

MASANOBU KANEKO, MANEKA PALLEWATTA, AND HIROFUMI TSUMURA

Abstract. We introduce and study a “level two” generalization of the poly-Bernoulli
numbers, which may also be regarded as a generalization of the cosecant numbers. We
prove a recurrence relation, two exact formulas, and a duality relation for negative upper-
index numbers.

1. Introduction

Poly-Bernoulli numbers were first introduced in [6] and later a slightly modified version

was studied in [2]. They are, denoted B
(k)
n and C

(k)
n respectively, defined by using generating

series, as follows. For an integer k ∈ Z, let {B(k)
n } and {C(k)

n } be the sequences of rational
numbers given respectively by

Lik(1− e−t)

1− e−t
=

∞∑
n=0

B(k)
n

tn

n!
(1.1)

and

Lik(1− e−t)

et − 1
=

∞∑
n=0

C(k)
n

tn

n!
, (1.2)

where Lik(z) is the polylogarithm function (or rational function when k ≤ 0) defined by

Lik(z) =

∞∑
m=1

zm

mk
(|z| < 1). (1.3)

In the sequel, we regard this or any other series only as a formal power series.
Since Li1(z) = − log(1− z), the generating functions on the left-hand sides of (1.1) and

(1.2) when k = 1 become
tet

et − 1
and

t

et − 1

respectively, and hence B
(1)
n and C

(1)
n are usual Bernoulli numbers, the only difference being

B
(1)
1 = 1/2 and C

(1)
1 = −1/2 and otherwise B

(1)
n = C

(1)
n .

Various properties of poly-Bernoulli numbers, including combinatorial applications, are
known. Among them we mention the explicit formulas

B(k)
n = (−1)n

n∑
i=0

(−1)ii!

{
n
i

}
(i+ 1)k

, C(k)
n = (−1)n

n∑
i=0

(−1)ii!

{
n+ 1
i+ 1

}
(i+ 1)k

for k ∈ Z, n ∈ Z≥0 using the Stirling numbers of the second kind, and the dualities

B(−k)
n = B

(−n)
k , (1.4)

C(−k−1)
n = C

(−n−1)
k (1.5)
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for k, n ∈ Z≥0 (see [6, Theorems 1 and 2] and [7, § 2]). For combinatorial applications,
see [3].

In this paper, we study the following “level 2” analog of poly-Bernoulli numbers, de-

noted D
(k)
n , which we also call the poly-cosecant numbers. For each k ∈ Z, define D(k)

n

by

Ak(tanh(t/2))

sinh t
=

∞∑
n=0

D(k)
n

tn

n!
, (1.6)

where Ak(z) is the series

Ak(z) = 2

∞∑
n=0

z2n+1

(2n+ 1)k
(1.7)

and tanh(z) and sinh(z) are the usual hyperbolic tangent and sine functions respectively.

Since Ak(z), tanh(z) and sinh(z) are all odd functions, we immediately see that D
(k)
2n+1 = 0

for all n ∈ Z≥0. Note that A1(z) = 2 tanh−1(z), and thus

∞∑
n=0

D(1)
n

tn

n!
=

t

sinh t
=

it

sin(it)
(i =

√
−1).

Hence, up to sign, D
(1)
n is the cosecant number Dn (see Nörlund [10, p. 458]).

We should mention that our D
(k)
n is (if slightly modified) a special case of a generalization

of the poly-Bernoulli number introduced by Y. Sasaki in [11, Definition 5].

2. Recurrence and explicit formulas for poly-cosecant numbers

In this section, we obtain a recurrence and explicit formulas for poly-cosecant numbers.

We first give a recurrence. Note that D
(0)
0 = 1 and D

(0)
n = 0 for all n ≥ 1 because

A0(tanh(t/2)) = sinh(t). Starting from this, the following formula gives a way to compute

D
(k)
n recursively for any integer k.

Proposition 2.1. For any integer k and n ≥ 0, it holds

D(k−1)
n =

⌊n
2
⌋∑

m=0

(
n+ 1

2m+ 1

)
D

(k)
n−2m.

Proof. We differentiate the defining relation

Ak(tanh(t/2)) = sinh t

∞∑
n=0

D(k)
n

tn

n!

to obtain

Ak−1(tanh(t/2))

sinh t
= cosh t

∞∑
n=0

D(k)
n

tn

n!
+ sinh t

∞∑
n=1

D(k)
n

tn−1

(n− 1)!
.

From this we have
∞∑
n=0

D(k−1)
n

tn

n!
=

∞∑
m=0

t2m

(2m)!

∞∑
n=0

D(k)
n

tn

n!
+

∞∑
m=0

t2m+1

(2m+ 1)!

∞∑
n=1

D(k)
n

tn−1

(n− 1)!

=
∞∑
n=0

⌊n
2
⌋∑

m=0

D
(k)
n−2m

tn

(2m)!(n− 2m)!
+

∞∑
n=1

⌊n
2
⌋∑

m=0

D
(k)
n−2m

tn

(2m+ 1)!(n− 2m− 1)!

=
∞∑
n=0

⌊n
2
⌋∑

m=0

(
n

2m

)
D

(k)
n−2m

tn

n!
+

∞∑
n=1

⌊n
2
⌋∑

m=0

(
n

2m+ 1

)
D

(k)
n−2m

tn

n!
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=
∞∑
n=0

⌊n
2
⌋∑

m=0

(
n+ 1

2m+ 1

)
D

(k)
n−2m

tn

n!
.

By equating the coefficients of tn/n! on both sides, we obtain the desired result. □

When k > 0, we may want to write this as

(n+ 1)D(k)
n = D(k−1)

n −
⌊n
2
⌋∑

m=1

(
n+ 1

2m+ 1

)
D

(k)
n−2m (n > 0).

Note that D
(k)
0 = 1 for all k ∈ Z.

We proceed to give two explicit formulas for D
(k)
n . Recall that

[
n
m

]
and

{
n
m

}
are Stirling

numbers of the first and the second kinds, respectively, and Bn = B
(1)
n is the Bernoulli

number. See [1, Chapter 2] for the precise definition and formulas we use in the proof.
In [11], Sasaki gave a different formula, but one needs to define yet another sequences to
describe the formula.

Theorem 2.2. For any k ∈ Z and n ≥ 0, we have
1)

D(k)
n = 4

⌊n
2
⌋∑

m=0

1

(2m+ 1)k+1

2m+1∑
p=1

n−2m∑
q=0

(2p+q+1 − 1)

(
n

q

)[
2m+ 1
p

]{
n− q
2m

}
Bp+q+1

p+ q + 1
,

and
2)

D(k)
n =

⌊n
2
⌋∑

m=0

1

(2m+ 1)k+1

n∑
p=2m

(−1)p(p+ 1)!

2p

(
p

2m

){
n+ 1
p+ 1

}
.

Proof. To prove 1), we need the following lemma. We may prove this in the same manner
as in [1, Proposition 2.6 (4)] and we omit the proof here.

Lemma 2.3. For n ≥ 1 we have,

xn
(
d

dx

)n

=
n∑

m=1

(−1)n−m

[
n
m

](
x
d

dx

)m

.

We write

∞∑
n=0

D(k)
n

tn

n!
=

Ak(tanh(t/2))

sinh t

= 2
∞∑

m=0

(tanh(t/2))2m+1

(2m+ 1)k
1

sinh t

= 4

∞∑
m=0

1

(2m+ 1)k
et(et − 1)2m

(et + 1)2m+2
. (2.1)

Since

1

(x+ 1)n+1
=

(−1)n

n!

(
d

dx

)n 1

x+ 1
, (2.2)
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we see by setting x = et and using Lemma 2.3 that

ent

(et + 1)n+1
=

1

n!

n∑
p=1

(−1)p
[
n
p

](
d

dt

)p 1

et + 1
. (2.3)

From

t

et − 1
=

∞∑
q=0

Bq
tq

q!

and
1

et + 1
=

1

et − 1
− 2

e2t − 1
,

we have

1

et + 1
=

∞∑
q=0

(1− 2q)Bq
tq−1

q!
.

By taking the p-th derivative of both sides, we get(
d

dt

)p( 1

et + 1

)
=

∞∑
q=p+1

(1− 2q)
Bq

q

tq−p−1

(q − p− 1)!
=

∞∑
q=p+1

(1− 2p+q+1)
Bp+q+1

p+ q + 1

tq

q!

and we substitute this in (2.3) to obtain

ent

(et + 1)n+1
=

1

n!

n∑
p=1

(−1)p
[
n
p

] ∞∑
q=0

(1− 2p+q+1)
Bp+q+1

p+ q + 1

tq

q!

=
1

n!

∞∑
q=0

n∑
p=1

(−1)p
[
n
p

]
(1− 2p+q+1)

Bp+q+1

p+ q + 1

tq

q!
.

From this, we have

et

(et + 1)2m+2
=

e−(2m+1)t

(e−t + 1)2m+2

=
1

(2m+ 1)!

∞∑
q=0

2m+1∑
p=1

(−1)p+q

[
2m+ 1
p

]
(1− 2p+q+1)

Bp+q+1

p+ q + 1

tq

q!
.

Together with the well-known generating series ([1, Proposition 2.6 (7)], note that

{
s
2m

}
=

0 if s < 2m)

(et − 1)2m = (2m)!
∞∑
s=0

{
s
2m

}
ts

s!
,

we obtain

et(et − 1)2m

(et + 1)2m+2

=
1

2m+ 1

∞∑
q=0

∞∑
s=0

2m+1∑
p=1

(−1)p+q(1− 2p+q+1)

[
2m+ 1
p

]{
s
2m

}
Bp+q+1

p+ q + 1

tq+s

q!s!

=
1

2m+ 1

∞∑
n=0

n∑
q=0

2m+1∑
p=1

(−1)p+q(1− 2p+q+1)

(
n

q

)[
2m+ 1
p

]{
n− q
2m

}
Bp+q+1

p+ q + 1

tn

n!
.
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Substituting this into (2.1), we have

∞∑
n=0

D(k)
n

tn

n!

= 4

∞∑
m=0

1

(2m+ 1)k+1

∞∑
n=0

n∑
q=0

2m+1∑
p=1

(−1)p+q(1− 2p+q+1)

(
n

q

)[
2m+ 1
p

]{
n− q
2m

}
Bp+q+1

p+ q + 1

tn

n!

= 4

∞∑
n=0

⌊n
2
⌋∑

m=0

1

(2m+ 1)k+1

2m+1∑
p=1

n−2m∑
q=0

(2p+q+1 − 1)

(
n

q

)[
2m+ 1
p

]{
n− q
2m

}
Bp+q+1

p+ q + 1

tn

n!
.

(We have used the facts that Bp+q+1 = 0 if p+q ≥ 1 is even and

{
n− q
2m

}
= 0 if n−q < 2m.)

By equating the coefficients of tn/n! on both sides, we obtain the desired result.
To prove 2), we employ the following formula ([4, Proposition 9]) for the numbers Tn,m

(“higher order tangent numbers”) defined by

tanm t

m!
=

∞∑
n=m

Tn,m
tn

n!
, (2.4)

namely

Tn,m =
in−m

m!

n∑
p=m

(−2)n−pp!

(
p− 1

m− 1

){
n
p

}
. (2.5)

From the definition we have
∞∑
n=0

D(k)
n

tn

n!
=

Ak(tanh(t/2))

sinh t
=

d

dt
Ak+1(tanh(t/2))

= 2
d

dt

∞∑
m=0

(tanh(t/2))2m+1

(2m+ 1)k+1
. (2.6)

By using tanh t = −i tan(it) and equations (2.4) and (2.5), we can write

(tanh(t/2))m = (−i)mm!
∞∑

n=m

Tn,m
in

2n
tn

n!

= (−i)m(−1)
n−m

2

∞∑
n=m

n∑
p=m

(−2)n−pp!

(
p− 1

m− 1

){
n
p

}
in

2n
tn

n!

= (−1)m
∞∑

n=m

n∑
p=m

(−1)p
p!

2p

(
p− 1

m− 1

){
n
p

}
tn

n!
.

We therefore have
∞∑
n=0

D(k)
n

tn

n!
=

∞∑
m=0

1

(2m+ 1)k+1

∞∑
n=2m+1

n∑
p=2m+1

(−1)p+1 p!

2p−1

(
p− 1

2m

){
n
p

}
tn−1

(n− 1)!

=

∞∑
m=0

1

(2m+ 1)k+1

∞∑
n=2m

n∑
p=2m

(−1)p
(p+ 1)!

2p

(
p

2m

){
n+ 1
p+ 1

}
tn

n!

=

∞∑
n=0

⌊n
2
⌋∑

m=0

1

(2m+ 1)k+1

n∑
p=2m

(−1)p(p+ 1)!

2p

(
p

2m

){
n+ 1
p+ 1

}
tn

n!
.

By equating the coefficients of tn/n!, we complete the proof of the theorem. □
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3. Duality

We now prove the duality property of D
(k)
n similar to (1.4) and (1.5).

Theorem 3.1. For n, k ∈ Z≥0, it holds

D
(−2k−1)
2n = D

(−2n−1)
2k . (3.1)

We give two proofs using a generating function. The first proof gives a closed, symmetric
formula for the generating function, whereas the second is more indirect and a little involved.
We however think the second way may be of independent interest and decided to include it
here.

Consider the following generating function of D
(−2k−1)
2n :

F (x, y) =

∞∑
n=0

∞∑
k=0

D
(−2k−1)
2n

x2n

(2n)!

y2k

(2k)!
.

We establish the closed formula of F (x, y) as follows. The theorem follows immediately
from the symmetry of the formula.

Proposition 3.2. Set

G(x, y) =
ex+y

(1 + ex + ey − ex+y)2
.

Then we have

F (x, y) = G(x, y) +G(x,−y) +G(−x, y) +G(−x,−y).
In other words, F (x, y) is the sub-series of 4G(x, y) which is even both in x and y.

Proof. We first compute the generating function of all D
(−k)
n ,

f(x, y) =

∞∑
n=0

∞∑
k=0

D(−k)
n

xn

n!

yk

k!
. (3.2)

Proposition 3.3. We have

f(x, y) =
ex(ey − 1)

1 + ex + ey − ex+y
+

e−x(ey − 1)

1 + e−x + ey − e−x+y
. (3.3)

Proof. By definition

f(x, y) =

∞∑
k=0

A−k(tanh(x/2))

sinhx

yk

k!

=
2

sinhx

∞∑
k=0

∞∑
n=0

(2n+ 1)k(tanh(x/2))2n+1 y
k

k!
.

We note that

2
∞∑
n=0

(2n+ 1)kt2n+1 = 2

(
t
d

dt

)k t

1− t2
=

(
t
d

dt

)k ( 1

1− t
− 1

1 + t

)
,

and by using the standard formula (cf., e.g., [1, Proposition 2.6 (4)])(
t
d

dt

)k

=
k∑

m=1

{
k
m

}
tm

(
d

dt

)m

,

we see the right-hand side is equal to

k∑
m=1

{
k
m

}
tm

(
d

dt

)m(
1

1− t
− 1

1 + t

)
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=

k∑
m=1

{
k
m

}
m!

(
tm

(1− t)m+1
− (−t)m

(1 + t)m+1

)
.

Hence, by setting t = tanh(x/2) and noting t/(1− t) = (ex−1)/2, −t/(1+ t) = (e−x−1)/2,
(sinhx)(1− t) = e−x(ex − 1), (sinhx)(1 + t) = ex − 1, we have

f(x, y) =
1

sinhx

∞∑
k=0

k∑
m=1

{
k
m

}
m!

(
tm

(1− t)m+1
− (−t)m

(1 + t)m+1

)
yk

k!
(t = tanh(x/2))

=
∞∑
k=0

k∑
m=1

{
k
m

}
m!

{
ex

ex − 1

(
ex − 1

2

)m

− 1

ex − 1

(
e−x − 1

2

)m}
yk

k!

=

∞∑
m=1

(ey − 1)m
{

ex

ex − 1

(
ex − 1

2

)m

− 1

ex − 1

(
e−x − 1

2

)m}
=

ex

ex − 1
· (ey − 1)(ex − 1)

2− (ey − 1)(ex − 1)
− 1

ex − 1
· (ey − 1)(e−x − 1)

2− (ey − 1)(e−x − 1)

=
ex(ey − 1)

1 + ex + ey − ex+y
+

e−x(ey − 1)

1 + e−x + ey − e−x+y
.

□
From (3.3) we see that f(x, y) is even in x, and so we have

f(x, y)− f(x,−y)
2

=
∞∑
n=0

∞∑
k=0

D
(−2k−1)
2n

x2n

(2n)!

y2k+1

(2k + 1)!
.

Our generating function F (x, y) is the derivative of this with respect to y, and Proposi-
tion 3.2 follows from a straightforward calculation. Theorem 3.1 is thus proved.

□
Remark 3.4. We recall that

∞∑
n=0

∞∑
k=0

C(−k−1)
n

xn

n!

yk

k!
=

ex+y

(ex + ey − ex+y)2

(see [7, Section 2]), which is remarkably similar to G(x, y). The general coefficients of
4G(x, y) not necessarily even either in x or y may worth studying. The first several terms
are given as

4G(x, y) = 1 +
x

1!
+
y

1!
+
x2

2!
+ 2

x

1!

y

1!
+
y2

2!
+
x3

3!
+ 4

x2

2!

y

1!
+ 4

x

1!

y2

2!
+
y3

3!

+
x4

4!
+ 8

x3

3!

y

1!
+ 13

x2

2!

y2

2!
+ 8

x

1!

y3

3!
+
y4

4!
+ · · · .

For the second proof of Theorem 3.1, we need several lemmas.

Lemma 3.5.

F (x, y) = 2
∞∑
n=0

∂

∂x

(
tanh2n+1(x/2)

)
cosh((2n+ 1)y).

Proof. By (1.6), we have

F (x, y) = 2
∞∑
k=0

A−2k−1(tanh(x/2))

sinh(x)

y2k

(2k)!

=
2

sinh(x)

∞∑
k=0

∞∑
n=0

(2n+ 1)2k+1 tanh2n+1(x/2)
y2k

(2k)!
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=
2

sinh(x)

∞∑
n=0

(2n+ 1) tanh2n+1(x/2) cosh((2n+ 1)y)

=
1

sinh(x/2) cosh(x/2)

∞∑
n=0

(2n+ 1) tanh2n(x/2)
sinh(x/2)

cosh(x/2)
cosh((2n+ 1)y)

= 2

∞∑
n=0

∂

∂x

(
tanh2n+1(x/2)

)
cosh((2n+ 1)y).

Thus we have the assertion. □
We write

F (x, y) =

∞∑
m=0

gm(x)
y2m

(2m)!
=

∞∑
m=0

hm(y)
x2m

(2m)!
.

Then if we could prove gm(x) = hm(x) for any m ≥ 0, we are done.
First, we look at gm(x). Using Lemma 3.5, we have

gm(x) =

(
∂

∂y

)2m

F (x, y)

∣∣∣∣
y=0

= 2
d

dx

∞∑
n=0

(2n+ 1)2m tanh2n+1(x/2).

Here we note that
∞∑
n=0

(2n+ 1)2mt2n+1 =

(
t
d

dt

)2m ∞∑
n=0

t2n+1 =

(
t
d

dt

)2m t

1− t2
. (3.4)

Setting t = tanh(x/2) and noting

dt =
1

2

1

cosh2(x/2)
dx,

t

1− t2
=

tanh(x/2)

1− tanh2(x/2)
=

1

2
sinhx,

we have

t
d

dt
= tanh(x/2) · 2 cosh2(x/2) d

dx
= sinhx

d

dx
.

Therefore we obtain

gm(x) =
d

dx

(
sinhx

d

dx

)2m

sinhx. (3.5)

We can explicitly write down the right-hand side by using the following lemma.

For m ∈ Z≥0, we define sequences {a(m)
i }0≤i≤m ⊂ Q inductively by

a
(0)
0 = 1,

a
(m)
i =

1

2

{
i(2i− 1)a

(m−1)
i−1 − (2i+ 1)2a

(m−1)
i + (i+ 1)(2i+ 3)a

(m−1)
i+1

}
(m ≥ 1),

(3.6)

where we formally interpret a
(m)
i = 0 for i < 0 or i > m.

Lemma 3.6. For m ∈ Z≥0,(
sinhx

d

dx

)2m

sinhx =
m∑
i=0

a
(m)
i sinh((2i+ 1)x). (3.7)

Proof. We give the proof by induction on m. For m = 0, the identity trivially holds. We
assume (

sinhx
d

dx

)2(m−1)

sinhx =
m−1∑
i=0

a
(m−1)
i sinh((2i+ 1)x).

Using

cosh(kx) sinh(x) =
1

2
(sinh((k + 1)x)− sinh((k − 1)x)) ,
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we have(
sinhx

d

dx

)2m−1

sinhx =
1

2

m−1∑
i=0

(2i+ 1)a
(m−1)
i (sinh((2i+ 2)x)− sinh(2ix)) ,

and (
sinhx

d

dx

)2m

sinhx

=

m−1∑
i=0

(2i+ 1)a
(m−1)
i

{
i+ 1

2
(sinh((2i+ 3)x)− sinh((2i+ 1)x))

− i

2
(sinh((2i+ 1)x)− sinh((2i− 1)x))

}
=

1

2

m∑
i=1

i(2i− 1)a
(m−1)
i−1 sinh((2i+ 1)x)

− 1

2

m−1∑
i=0

(2i+ 1)2a
(m−1)
i sinh((2i+ 1)x)

+
1

2

m−2∑
i=0

(i+ 1)(2i+ 3)a
(m−1)
i+1 sinh((2i+ 1)x).

Hence, using (3.6), we complete the proof by induction. □

Using this lemma, we obtain

gm(x) =
m∑
i=0

(2i+ 1)a
(m)
i cosh((2i+ 1)x). (3.8)

Secondly, we compute hm(y). Again by using Lemma 3.5, we have

hm(y) =

(
∂

∂x

)2m

F (x, y)

∣∣∣∣
x=0

= 2

∞∑
n=0

(
d

dx

)2m+1 (
tanh2n+1(x/2)

)
cosh((2n+ 1)y)

∣∣∣∣
x=0

= 2
m∑

n=0

(
d

dx

)2m+1

tanh2n+1(x/2)

∣∣∣∣
x=0

· cosh((2n+ 1)y) (3.9)

because

tanh2n+1(x/2) =
x2n+1

22n+1
+O(x2n+2) (x→ 0).

We write down the right-hand side of (3.9) by using the following lemma.

Lemma 3.7. For n, l ∈ Z≥0, there exist sequences {b(n,l)j }0≤j≤l ⊂ Q such that(
d

dx

)l

tanh2n+1(x/2) =
l∑

j=0

b
(n,l)
j tanh2n+1−l+2j(x/2), (3.10)

where b
(n,l)
j = 0 if 2n+ 1− l + 2j < 0. In particular,(

d

dx

)2m+1

tanh2n+1(x/2)

∣∣∣∣
x=0

= b
(n,2m+1)
m−n . (3.11)
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Proof. For each n, we can immediately obtain the form (3.10) by induction on l, using the
relation

d

dx
tanh2n+1(x/2) =

2n+ 1

2

(
tanh2n(x/2)− tanh2n+2(x/2)

)
.

□
Combining this lemma and (3.9), we obtain

hm(y) = 2

m∑
n=0

b
(n,2m+1)
m−n cosh((2n+ 1)y). (3.12)

Now we are going to show 2b
(n,2m+1)
m−n = (2i + 1)a

(m)
i , which implies gm(x) = hm(x).

For m,n ∈ Z≥0 with n ≤ m, set b̃
(m)
n = 2b

(n,2m+1)
m−n . Then, by (3.11), we have b̃

(0)
0 = 1.

Furthermore the following lemma holds.

Lemma 3.8. For m ∈ Z≥1, we have the recursion

b̃(m)
n =

2n+ 1

2

{
nb̃

(m−1)
n−1 − (2n+ 1)̃b(m−1)

n + (n+ 1)̃b
(m−1)
n+1

}
(n ≤ m), (3.13)

where we interpret b
(k)
i = 0 for i < 0 or i > k.

Proof. It follows from (3.10) that(
d

dx

)2m+1

tanh2n+1(x/2) =
2m+1∑
j=0

b
(n,2m+1)
j tanh2n−2m+2j(x/2). (3.14)

Differentiating twice and using (3.10), we see that the left-hand side is equal to(
d

dx

)2m(
2n+ 1

2
tanh2n(x/2)− tanh2n+2(x/2)

)
=

2n+ 1

2

(
d

dx

)2m−1{
n tanh2n−1(x/2)− (2n+ 1) tanh2n+1(x/2) + (n+ 1) tanh2n+3(x/2)

}
=

2n+ 1

2

{
n

2m−1∑
j=0

b
(n−1,2m−1)
j tanh2n−2m+2j(x/2)

− (2n+ 1)
2m−1∑
j=0

b
(n,2m−1)
j tanh2n−2m+2+2j(x/2)

+ (n+ 1)

2m−1∑
j=0

b
(n+1,2m−1)
j tanh2n−2m+4+2j(x/2)

}
.

If we let x→ 0, this goes to

2n+ 1

2

{
nb

(n−1,2m−1)
m−n − (2n+ 1)b

(n,2m−1)
m−n−1 + (n+ 1)b

(n+1,2m−1)
m−n−2

}
=

2n+ 1

4

{
nb̃

(m−1)
n−1 − (2n+ 1)̃b(m−1)

n + (n+ 1)̃b
(m−1)
n+1

}
.

On the other-hand, the right-hand side of equation (3.14) tends to b
(n,2m+1)
m−n = b̃

(m)
n /2 as

x→ 0. Thus we obtain (3.13). □

Proof of Theorem 3.1. For {a(m)
i } defined by (3.6), set ã

(m)
i = (2i+1)a

(m)
i . Then (3.6) can

be written as ã
(0)
0 = 1 and

ã
(m)
i =

2i+ 1

2

{
iã

(m−1)
i−1 − (2i+ 1)2ã

(m−1)
i + (i+ 1)ã

(m−1)
i+1

}
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which has exactly the same form as (3.13) for b̃
(m)
n , namely ã

(m)
n = b̃

(m)
n . Comparing (3.8)

and (3.12), we obtain gm(x) = hm(x). Thus we complete our second proof of Theorem
3.1. □

4. Multi-index case

We may define the multi-poly-cosecant numbers D
(k1,...,kr)
n by

A(k1, . . . , kr; tanh(t/2))

sinh t
=

∞∑
n=0

D(k1,...,kr)
n

tn

n!
,

where the function

A(k1, . . . , kr; z) = 2r
∑

0<m1<···<mr
mi≡i mod 2

zmr

mk1
1 · · ·mkr

r

for k1, . . . , kr ∈ Z is 2r times Ath(k1, . . . , kr; z) which was introduced in [9, §5]. (Our Ak(z)

is A(k; z).) We can regard D
(k1,...,kr)
n as a level 2-version of the multi-poly-Bernoulli numbers

B
(k1,...,kr)
n and C

(k1,...,kr)
n defined in [5].

In [9], we introduced the function

ψ(k1, . . . , kr; s) =
1

Γ(s)

∫ ∞

0
ts−1A(k1, . . . , kr; tanh(t/2))

sinh(t)
dt (ℜs > 0),

which can be analytically continued to C as an entire function. In the same manner as in
the “level 1” case (ξ- and η-functions reviewed in the same paper), we see that the numbers

D
(k1,...,kr)
n appear as special values of ψ(k1, . . . , kr; s) at non-positive integer arguments:

ψ(k1, . . . , kr;−n) = (−1)nD(k1,...,kr)
n (n = 0, 1, 2, . . .).

Also, we can obtain a similar recurrence relation for multi-poly-cosecant numbers as

D(k1,...,kr−1,kr−1)
n =

⌊n
2
⌋∑

m=0

(
n+ 1

2m+ 1

)
D

(k1,...,kr)
n−2m

for any r ≥ 1, ki ∈ Z and n ≥ 0.
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