On Poly-Bernoulli Numbers
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1. Main theorems

In our previous paper [1], we defined and studied “Poly-Bernoulli numbers” which
generalize the classical Bernoulli numbers. As a continuation, we present here two results,
one of which is a further investigation of Clausen-von Staudt type theorem that was
treated only in “di-Bernoulli” case in [1], the other being a combinatorial closed formula

for negative index poly-Bernoulli numbers.

Poly-Bernoulli numbers B (n =0,1,2,...) are defined for each integer k by the

generating series
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end of the paper. In [1], we obtained an explicit formula for B
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where {7’;} is an integer referred to as the Stirling number of the second kind (“Stirling

subset number” in Knuth’s terminology, we adopt his notation [2]).

Let p be a prime number. First of all, it is clear from the above formula (1) that the
Bﬁlk) is p-integral when p is larger than n 4+ 1. Our first theorem gives an information on
the p-part of Bff) forp<n-+1.

Theorem 1 (Clausen-von Staudt type theorem). Assume k > 2. Let p be a prime
number satisfying k +2 < p <n+ 1.

(i) If n=0 mod (p—1), then pkB,(Lk) is a p-adic integer and satisfies

p"B® = _1  mod DL,

(i) Ifn#0 mod (p— 1), then P 1B s a p-adic integer. It satisfies
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Remark. 1. That the pk_lB,(lk) (p—1 fn) and pkalk) (p — 1|n) are p-integral (k + 2 < p)
has also been obtained independently by Roberto Sdnchez-Peregrino in [3].

2. If n #0,1 mod (p— 1), the congruence in (ii) may be written as

B
PP IBW = (n — n’)T mod pZ,,

where n’ is a unique integer with n’ = n mod p — 1 and 1 < n’ < p. Actually, it was

shown in [1] the congruence

)" n | _ B
o1 :(n—n’)T mod pZ,
if n #0,1 mod (p — 1) (the assumption made there that n being even can be loosened

to the present one).

3. When p > n+ 1, the formula (1) shows that the congruence BY = BY%) mod p holds
for any integers k and £’ satisfying £ = k' mod (p — 1).
The number B,(Lk) is a positive integer when k is non-positive. Our second theorem is

a closed formula (which is completely different from (1)) for this integer.

Theorem 2 (Closed formula). For any n,k > 0,we have

min(n,k)
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Remark. This formula gives another proof of the symmetry B = B,i_”) mentioned in

1].

The proofs of theorems 1 and 2 will be given in §2 and §3 respectively.
2. Proof of Clausen-von Staudt type theorem

Let k£ > 2 and p be a prime number satisfying k£ +2 < p < n + 1. To prove theorem
1, we estimate the p-order of each summand % in (1), which we denote hereafter
by b%k)(m). We prove (i) and (ii) simultaneously. The p-order of an integer a is denoted
by ord,(a) with the convention ord,(p') = t. Write m+1 = ap®, (a,p) =1,e > 0. If e = 0,
then b (m) is p-integral. We can ignore this term, because by the assumption k£ > 2 we

have pk_lbgﬂ) (m) =0 mod pZ,. Since {Zl} is an integer, we have
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First, assume e > 2. We show that p*b!/ (m) =0 mod pZ, and moreover pE1p) (m)=0
mod pZ, if n Z0 mod (p — 1). Using ord,(m!) =32 [ } we have
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> pl-l-ek=(1+p-1) " ~1—ck
> 14+(e—1)p-1)—1—ek=(e—-1(p—-1)—ek
> (e—1)(k+1)—ek=—-k+e—1
> —k+1.

Thus we get ord, ( +1)k> > —k+1 and so pF by (m ) is p-integral. Hence P (m) =0

mod pZ,. If any one of the above inequalities is strict (i.e. ‘>’), then we get P16 (m) =
0 mod pZ,. The only case when the equalities hold everywhere is when e = 2, m+1 = p?,
and p = k+2. In this case, the following lemma (a = p) implies 1) (m) =0 mod pZ,

ifn#0 mod (p—1).
Lemma. Let n and a be natural numbers. We have the congruence

a —

—1
{ n } (C 1) mod p ifn=a—1+c(p—1)n for somec>a

ap — 1
b 0 modp otherwise.

Proof. Use the following formula for a generating function of {"} ([4, (7.47)]):

i{:@}ﬂ:(1—x)(1_;;...(1_m)- (2)

If m = ap — 1, the right-hand side of this formula is congruent modulo p to

xP—1 = la+i—1\ , = fa+i—1 4
_ ap—1 i(p-1) _ a—1+(a+i)(p—1)
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(we have used (1 —x)(1 —2z)---(1 —(p—1)z) =1 —2P"! mod p). Putting a +1i = c,
we obtain the lemma.

Now suppose e = 1 (m = ap —1). If a > 3, then p?|(ap —1)!. Hence ord, ( +1) ) >
—k+1, from which follows pt~1p{ (m) =0 mod pZ,. If a = 2, then ord,(m!) =1 and
ord, <( = ) = 1 — k. Hence ord (b,(lk (m)) =1—k+ord, ({}) and so pkb,({f)(m) =0
mod pZ,. If n #1 mod (p — 1), we see from the above lemma (a = 2) that {21]”_1} =0
mod p. From this we have pt~1p{F) (m) =0 mod pZ, if n #1 mod (p—1). If n =1



mod (p— 1) and n =1+ ¢(p — 1) with ¢ > 2 (¢ = 1 cannot occur because n > m), then

we see by the lemma that {2;11} =c—1= —n mod p. From this, we obtain
21
k—17(k) _ e ST {2p 1
(229)
= % mod pZ,.
- _ o . (k) -, 1}
Finally, the case a = 1 (m = p — 1) gives us by’ (m) = ——2=%+. From the lemma, we

P
have {pfl} =0 mod pifn#0 mod (p—1) and thus p"~ b (m) = _]l){p—l} mod pZ,.

If n=0 mod (p— 1), then {pfl} =1 mod p and p*b¥ (m) = —1 mod pZ,. Summing
up, and noting the factor (—1)" before the summation in (1) (also note n is odd if n =1

mod (p — 1)), we obtain the theorem.
3. Proof of the closed formula for negative index poly-Bernoulli numbers

In this section we prove Theorem 2. In the course of our proof, we obtain

Proposition. For alln > 0,

Example. By - BV +B{™® =1-2+1=0, BY - B{? + B{? - B[ + B{ Y =
1 -84 14—8+1=0, etc.

This is trivial when n is odd because of the symmetry mentioned in the remark after the
theorem.

In order to prove the theorem, we calculate the generating function >~ 2 ;7 B,(fk)x”yk

of BS™ in the following form:

iiB fvy—zpa 2)p;(y (3)

n=0 k=0

where A
gla?
l—2)(1—-22)---(1—(G+1Dax)
Once we establish this, the theorem follows by equating the coefficients of both sides,

pj(z) = (

because we have by the formula (2) in §2
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Put the left-hand side of (3) = B(x,y). Using (1) we have
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Here we use (2) to get
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The proposition follows from this. Namely, putting y = —x gives
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while by definition

B(z,—z) = ii(—l)kBﬁ@x”’Lk

and hence the proposition.

Let us return to the proof of (3). We need the following lemma.

Lemma. (i) 1_(771—+1)y = jmo @)pj(y)-
i e (M = com i @iz



Proof will be given later. From (5),

By = Sy M L

_ Wi <(_1>mm! §<_1>n{;}xn>g@)pj<y> (by Lemma (1)
_ jiopxy) @(—wmm‘@) g—w{;}x”)

_ i_o;my) i}(—n"ﬂ (ni(—l)mm' (") {;’;})

_ fjp@)ij'{jﬂ}x (by Lemma (i)

= ij (2)p;(y) (by (4)).

This is (3) and thus the theorem is proved.

Proof of Lemma. (i) The following partial fraction expansion is easily established by

residue calculation:

) ym & m
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From this we have
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This gives Lemma (i).
(ii) First we show
> n+1]t"
_ 1\ t_lj t
> raf b =y

For this, we start with

(this is [4, (7.49)]). Replacing j by j + 1,

% - i {Jil}g

n=j+1
0 n+ 1} $ntl
= 5 , ——— (n—n+1).
!
— j+1) (n+1)!
Differentiation by ¢ gives
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From this we have

The proof will be finished if we show

> (e (){n)

The left-hand side is equal to
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Since ) (TJ”) XM= (l_i((ﬁ, (replace m by m —j in >0 (") X™

we obtain
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This completes the proof of the lemma and Theorem 2 is thus established.

Table 1: B (=5< k<5, 0<n<7)

"ol 1] 2 3 4 5 6 7
2
—5 | 1]32] 454 | 4718 | 41506 | 320462 | 2441314 | 172344383
4 |1]16] 146 | 1066 | 6902 41506 237686 | 1315666
3 |18 | 46 | 230 1066 4718 20266 85310
o 14| 14 | 46 146 454 1394 1246
1 1] 2] 1 8 16 32 64 128
0 |11 1 1 1 1 1 1
1 1| 3 : 0 —= 0 = 0
5 N T T _ 38 — 5
4 36 24 450 40 2205 168
3 I R 1243 49 75613 599
8 216 288 54000 7200 3704400 35280
4 11 L[ [ 4 26291 1921 845233 1048349
16 1296 3456 3240000 144000 1555848000 59270400
5 1 1 _ 179 515 _ 216383 _ 183781 4644828197 153375307
32 7776 41472 194400000 25920000 653456160000 49787136000
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