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Abstract. We review several occurrences of poly-Bernoulli numbers in various contexts, and dis-
cuss in particular some aspects of relations of poly-Bernoulli numbers and special values of certain
zeta functions, notably multiple zeta values.
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1. INTRODUCTION

The poly-Bernoulli numberB(k)
n and its modificationC(k)

n are defined for any integers
k∈ Z andn≥ 0 by the generating series

Lik(1−e−x)
1−e−x =

∞

∑
n=0
B(k)

n
xn

n!
and

Lik(1−e−x)
ex−1

=
∞

∑
n=0

C(k)
n

xn

n!

respectively1. Here,Lik(z) denotes the formal power series∑∞
m=1zm/mk (thekth polylog-

arithm whenk > 0 and the rational function(zd/dz)−k (z/(1−z)) whenk≤ 0). When
k = 1, these generating series become

xex

ex−1
and

x
ex−1

(
=

xex

ex−1
−x

)
,

and hence bothB(k)
n andC(k)

n generalize the classical Bernoulli numbersBn, via choosing
one of the conventions of the sign ofB1 =±1/2.

These numbers were introduced in [11] and [4], and studied further in [5], [16], [1].
Most of these investigations are in line with the classical results of Clausen, von Staudt,
and Kummer, or pursuits of connections with values of zeta functions. Recently however,
the numberB(k)

n with negativek appeared in rather unexpected ways in [8] and [12] as
cardinalities of some combinatorial objects.

In the present article, we take up yet other appearances of poly-Bernoulli numbers,
namely Hoffman’s multiple harmonic sumsmodp and special values of certain types of
zeta functions, and discuss some aspects of relations between poly-Bernoulli numbers

1 We use the notationB(k)
n instead ofB(k)

n , which is often used for Carlitz’s Bernoulli number of higher
order.
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and multiple zeta values. We also review in the final section the above mentioned
combinatorial interpretations of poly-Bernoulli number with negative index.

2. SPECIAL VALUES OF A CERTAIN ZETA FUNCTION AND
MULTIPLE HARMONIC SUMS modp

In [4], we studied the functionξk(s) (k≥ 1) defined by

ξk(s) :=
1

Γ(s)

∫ ∞

0

ts−1

et −1
Lik(1−e−t)dt.

The integral converges for Re(s) > 0 and the functionξk(s) is meromorphically contin-
ued to the wholes-plane. We obtained in [4] the following expression ofξk(s) in terms
of the (single variable) multiple zeta functions:

ξk(s) = (−1)k−1[ζ (s,2,1, . . . ,1︸ ︷︷ ︸
k−1

)+ζ (s,1,2,1, . . . ,1︸ ︷︷ ︸
k−1

)+ · · ·+ζ (s,1, . . . ,1,2︸ ︷︷ ︸
k−1

)

+s·ζ (s+1,1, . . . ,1︸ ︷︷ ︸
k−1

)
]
+

k−2

∑
j=0

(−1) jζ (k− j) ·ζ (s,1, . . . ,1︸ ︷︷ ︸
j

), (1)

where

ζ (s1,s2, . . . ,sn) := ∑
m1>m2>···>mn>0

1
ms1

1 ms2
2 · · ·msn

n
(2)

is the multiple zeta function (this is meromorphically continued toCn ([2]), but we
only need the single variable version with all arguments except for the first one fixed).
In particular, the values ofξk(s) at positive integer arguments (≥ 2) can be written as
a linear combination (overZ) of multiple zeta values (= values at positive integers of
ζ (s1,s2, . . . ,sn)). As a by-product of his study of so-called Ohno’s relation [14], Y. Ohno
deduced from the above expression the following simple formula (we shiftk by 1 for a
reason explained later)

ξk−1(n) = ζ ?(k,1, . . . ,1︸ ︷︷ ︸
n−1

) (k, n≥ 2), (3)

where

ζ ?(k1,k2, . . . ,kn) := ∑
m1≥m2≥···≥mn≥1

1

mk1
1 mk2

2 · · ·mkn
n

is the “non-strict” multiple zeta value (or multiple zeta-star value).
As for the values at negative integers, we obtained in [4] the formula

ξk−1(−n) = (−1)nC(k−1)
n (n = 0,1,2, . . .) (4)

in terms of the modified poly-Bernoulli number.
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Now, let p be an odd prime number. Following Hoffman [10], we denote by
S(k,1n−1)(p−1) the finite sum obtained by truncating the series forζ ?(k,1, . . . ,1︸ ︷︷ ︸

n−1

) right

before the primep enters into denominators:

S(k,1n−1)(p−1) := ∑
p−1≥m1≥m2≥···≥mn≥1

1

mk
1m2 · · ·mn

.

If we use a closed formula for the modified poly-Bernoulli numberC(k)
n ,

C(k)
n = (−1)n

n

∑
i=0

(−1)i i!
{n+1

i+1

}

(i +1)k

(
{n+1

i+1

}
= Stirling number of the second kind = the number of ways to partition a set of

n+1 elements intoi +1 nonempty subsets), which can be proved in a similar way as in
[11] for the parallel formula forB(k)

n , we easily see that Hoffman’s congruence (Theorem
5.4) in [10] is equivalent to the following congruence.

Theorem (Hoffman [10]). Fork,n≥ 1 and any primep > n, we have

S(k,1n−1)(p−1)≡ (−1)nC(k−1)
p−1−n mod p. (5)

Combining this with the formula (4) forξk−1(−n), we obtain

S(k,1n−1)(p−1)≡ ξk−1(−p+1+n) mod p. (6)

In view of the formula (3), this is quite amusing. That is to say, the value ofξk−1(s) at
positiven is the multiple zeta-star valueζ ?(k,1, . . . ,1︸ ︷︷ ︸

n−1

), and if we truncate this series to

getS(k,1n−1)(p−1) and reduce it modulop, then the resulting value is congruentmodp
to the value ofξk−1(s) atn− (p−1), the shift ofn by p−1!

Through his study [10] and numerical experiments, Hoffman conjectures the sums
S(k,1n−1)(p−1) are the “building blocks” of multiple harmonic sumsmodp. To be more
precise, he considers multiple harmonic sums of general type

∑
p−1≥m1≥m2≥···≥mn≥1

1

mk1
1 mk2

2 · · ·mkn
n

or ∑
p−1≥m1>m2>···>mn≥1

1

mk1
1 mk2

2 · · ·mkn
n

(ki ≥ 1),

and he conjectures that all these general sums are congruentmodp to a polynomial
(with rational coefficients, independent ofp) of “height 1” sums, i.e., a polynomial of
S(k,1n−1)(p−1) with variousk andn.

Hoffman also proved the duality

(−1)kS(k,1n−1)(p−1)≡ (−1)nS(n,1k−1)(p−1) mod p.
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This can be deduced via (5) from the duality (inZ, not only modp)

C(−k)
n−1 = C(−n)

k−1 (k,n≥ 1)

of the modified poly-Bernoulli numbers of negative index (similarly proved as in the
case ofB(−k)

n , B(−k)
n = B(−n)

k (k,n≥ 0), given in [11]).
Recall the (easily proved) congruence of truncated Riemann zeta values

1+
1
2n +

1
3n + · · ·+ 1

(p−1)n ≡ 0 modp

which is valid for allp > n. The above mentioned duality of Hoffman follows from this
(as many of the congruences in [10] do) if the difference

(−1)kS(k,1n−1)(p−1)− (−1)nS(n,1k−1)(p−1)

is expressed as a polynomial in the truncated Riemann zeta values (Hoffman proved
the duality in another way and we do not know if this is the case). Inspired by this and
suggestive formulas (3), (6), we surmised that the difference of two multiple zeta-star
values

(−1)kζ ?(k,1, . . . ,1︸ ︷︷ ︸
n−1

)− (−1)nζ ?(n,1, . . . ,1︸ ︷︷ ︸
k−1

) (7)

may be written as a polynomial in the Riemann zeta values, and did numerical exper-
iments which were in favor of this. Soon after the author had informed him of this
speculation, Yasuo Ohno kindly pointed out that this was indeed the case. In fact, using
(3) and (1) together with his main result in [14], we obtain

(−1)kζ ?(k,1, . . . ,1︸ ︷︷ ︸
n−1

)− (−1)nζ ?(n,1, . . . ,1︸ ︷︷ ︸
k−1

)

= (n−1)ζ (n+1,1, . . . ,1︸ ︷︷ ︸
k−2

)− (k−1)ζ (k+1,1, . . . ,1︸ ︷︷ ︸
n−2

)

− (−1)k
k−2

∑
j=1

(−1) jζ (k− j)ζ (n,1, . . . ,1︸ ︷︷ ︸
j−1

)+(−1)n
n−2

∑
j=1

(−1) jζ (n− j)ζ (k,1, . . . ,1︸ ︷︷ ︸
j−1

).

Since the multiple zeta values of hight 1 (= of typeζ (m,1, . . . ,1)) are polynomials in
the Riemann zeta values ([3], [9], see also [15]), we conclude that the quantity (7) is a
polynomial in the Riemann zeta values.

Note that the duality

ζ (k+1,1, . . . ,1︸ ︷︷ ︸
n−1

) = ζ (n+1,1, . . . ,1︸ ︷︷ ︸
k−1

)

of multiple zeta values of height 1 does not hold forζ ?-values as it stands, and no
duality-like formula forζ ? is known so far. The assertion

(−1)kζ ?(k,1, . . . ,1︸ ︷︷ ︸
n−1

)− (−1)nζ ?(n,1, . . . ,1︸ ︷︷ ︸
k−1

) ∈Q[ζ (2),ζ (3),ζ (5), . . .]
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may be regarded as a kind of duality (modulo the ring of Riemann zeta values
Q[ζ (2),ζ (3),ζ (5), . . .]). It may be of interest to note that the correspondence of indices

(k,1, . . . ,1︸ ︷︷ ︸
n−1

)←→ (n,1, . . . ,1︸ ︷︷ ︸
k−1

)

here is different from the duality of usual multiple zeta values. (For this reason we shifted
the index in (3).)

3. CENTRAL BINOMIAL SERIES

In this section we review another case of appearance of poly-Bernoulli numbers as
special values of a certain type of zeta function.

Let ζCB(s) be the following Dirichlet series:

ζCB(s) :=
∞

∑
m=1

1

ms
(2m

m

) .

This converges absolutely everywhere. It is shown in [6] that the valueζCB(k) for each
positive integerk≥ 2 is written as aQ-linear combination of multiple zeta values (of
height 1) and multiple Clausen and Glaisher values. The latter two are real or imaginary
parts (according to the parity of weights) of values at 6th root of unity of the multiple
polylogarithm

Lik1,...,kn(z) := ∑
m1>···>mn>0

zm1

mk1
1 · · ·mkn

n
.

On the other hand, the valueζCB(k) for k≤ 1 is always aQ-linear combination of 1
andπ/

√
3. This is a result of D. H. Lehmer [13], who used the formula

2xarcsin(x)√
1−x2

=
∞

∑
m=1

(2x)2m

m
(2m

m

) |x|< 1

and its successive differentiations to derive it. More precisely, his result is as follows.
Define two sequences of polynomials{pk(t)} and {qk(t)} (k = −1,0,1,2, . . .) by

p−1(t) = 0, q−1(t) = 1 and the recursion

pk+1(t) = 2(kt+1)pk(t)+2t(1− t)p′k(t)+qk(t),
qk+1(t) = (2(k+1)t +1)qk(t)+2t(1− t)q′k(t) (k≥−1).

The first few arep0(t) = q0(t) = 1, p1(t) = 3,q1(t) = 2t + 1, p2(t) = 8t + 7,q2(t) =
4t2 +10t +1, . . .. Then we have fork≥−1

∞

∑
m=1

(2m)k(2x)2m

(2m
m

) =
x

(1−x2)k+3/2

(
x
√

1−x2pk(x2)+arcsin(x)qk(x2)
)
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and consequently

ζCB(−k) =
1
3

(
2
3

)k

pk
(1

4

)
+

1
3

(
2
3

)k+1

qk
(1

4

) π√
3

(k≥−1). (8)

This means that the valuesζCB(−k) (k≥ −1) all lie in the two dimensionalQ-vector
space spanned by 1 andπ/

√
3. This is reminiscent of the result of Euler forζ (s). The

values ofζ (s) at positive integers give variety of (conjecturally) transcendental numbers
including powers ofπ (at even arguments), whereas the values at negative integers all
lie in a one dimensionalQ-vector space (Q itself) and are explicitly described by the
Bernoulli numbers.

Now, R. Stephan [17] observed that the rational part of this evaluation (8) is nothing
but (the third of) the anti-diagonal sum of poly-Bernoulli numbers of negative indices:

(
2
3

)k

pk
(1

4

)
=

k

∑
l=0

B(−l)
k−l .

This observation is still conjectural. A possible approach to a proof is to use an explicit
formula given in [7].

We do not know whether the coefficient ofπ/
√

3 in (8) has any connection to poly-
Bernoulli or allied numbers.

4. COMBINATORIAL INTERPRETATIONS OF
POLY-BERNOULLI NUMBER WITH NEGATIVE INDEX

The numbersB(−k)
n with k,n≥ 0 are positive integers ([11], [5], see also [16]). We end

this article with two beautiful combinatorial interpretations ofB(−k)
n due to C. Brewbaker

and S. Launois.

A lonesum matrixis a matrix with entries 0 and 1 whose row-sums and column-sums

determine the matrix uniquely. For instance, the matrix




1 0
1 1
1 0


 gives t(1,2,1) and

(3,1) as row- and column-sums respectively, and from these two vectors, the original
matrix is recovered uniquely. The theorem of Brewbaker states that the number of
lonesum matrices of a given size is equal to the poly-Bernoulli number.

Theorem (Brewbaker [8]). For k,n ≥ 1, the number ofk× n lonesum matrices is

equal toB(−k)
n .

The second interpretation ofB(−k)
n concerns the number of special type of permuta-

tions. LetSn denote the symmetric group of ordern, which we identify with the set of
all permutations on the set{1,2, . . . ,n}. S. Launois proved the following.
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Theorem (Launois [12]). Let k andn be positive integers. The cardinality of the set

{σ ∈Sk+n|−k≤ σ(i)− i ≤ n,1≤ ∀i ≤ k+n}

is equal toB(−k)
n .

Incidentally, either of these interpretations makes the aforementioned duality formula
B(−k)

n = B(−n)
k (k,n≥ 0) apparent.
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