
MULTIPLE ZETA VALUES

MASANOBU KANEKO

In a paper published in 1776 ([11]), Euler studied the series
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Born in 1707, Euler was already in his late sixties when he published this
paper. More than forty years earlier, he had found the famous formula
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where Bm is the Bernoulli number. In [11] Euler examines in detail relations
between the double series (1) and the series of the form (2), which is the value
of Riemann’s zeta function. The paper [11] is the origin of the study of what
we call today the multiple zeta values. However, it was only in the twentieth
century that this series regained the interest of many mathematicians. At
first some sporadic research was done for its own sake, or motivated by
analytic number theory. Since the 1990s the series (1) has drawn more
and more attention, as it turned out that this series is related to many other
fields of mathematics, including Galois representations, arithmetic geometry,
quantum groups, invariants for knots, mathematical physics, etc.

This article gives a survey of the fundamentals of the multiple zeta values,
and introduces an approach using regularization in order to understand the
relation among various multiple zeta values. Due to the nature of this article,
all the citations of references are grouped in the last section.

1. Definitions and problems

For an n-tuple of positive integers (k1, k2, . . . , kn), we define the multiple
zeta value ζ(k1, k2, . . . , kn) as the sum of the infinite series

(3) ζ(k1, k2, . . . , kn) =
∑

m1>m2>···>mn>0

1

mk1
1 mk2

2 · · ·mkn
n

,

where the summation runs over all the ordered positive integers. We call
(k1, k2, . . . , kn) the index of ζ(k1, k2, . . . , kn). We assume k1 ≥ 2, since the
series does not converge if k1 = 1. With this notation Euler’s series (1)
equals ζ(m,n) + ζ(m+ n).

The series (3) may be expressed in terms of a multiple integral:

(4) ζ(k1, k2, · · · , kn) =
∫

· · ·
∫

1>t1>t2>···>tk>0

dt1
A1(t1)

dt2
A2(t2)

· · · dtk
Ak(tk)

,

1
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where k = k1 + k2 + · · ·+ kn and

Ai(t) =

{
1− t, i = k1, k1 + k2, k1 + k2 + k3, . . . , k1 + k2 + · · ·+ kn,

t, otherwise.

Since we assumed k1 ≥ 2, we have A1(t1) = t1. We also have Ak(tk) = 1− tk
by the definition of k. These facts assure the convergence of the integral.
The multiple integral (4) can be written as an iterated integral (from right
to left):

(5)

∫ 1

0

dt1
A1(t1)

∫ t1

0
· · ·
∫ tk−2

0

dtk−1

Ak−1(tk−1)

∫ tk−1

0

dtk
Ak(tk)

.

Expanding 1/(1−ti) and integrating it term by term, we see that the integral
equals the sum of the series (3).

The sum k = k1 + k2 + · · · + kn is called the weight of the multiple zeta
value ζ(k1, k2, . . . , kn), and the number of ki in the index, n, is called its
depth. The condition k1 ≥ 2 implies that the weight is a positive integer at
least 2. The depth n satisfies 1 ≤ n ≤ k − 1. In the integral expression (4)
the weight is nothing but the number of variables in the integral, and the
depth is the number of 1/(1− ti) in the integrand.

Example. The only multiple zeta value of weight 2 is ζ(2). There are two
multiple zata values of weight 3, namely ζ(3) and ζ(2, 1). The depth of ζ(3)
is 1, and the depth of ζ(2, 1) is 2. There are four multiple zeta values of
weitht 4: ζ(4), ζ(3, 1), ζ(2, 2) and ζ(2, 1, 1). Their depths are 1, 2, 2 and 3
respectively.

In (4) we have two possibilities for Ai(ti) for each i satisfying 2 ≤ i ≤ k−1.
This implies that there are 2k−2 different indices (k1, k2, . . . , kn) of weight k.
This, however, does not necessarily mean that there are 2k−2 different mul-
tiple zeta values of weight k. For example, Euler showed ζ(2, 1) = ζ(3).
(It is a good exercise for a reader to prove this equality.) We also have
ζ(2, 1, 1) = ζ(4) for weight 4.

What type of questions do we ask ourselves about these values?
Euler’s formula (2) gives the value of ζ(2k). It involves Bernoulli numbers,

which are number-theoretically interesting objects. Other known examples
include

ζ(2, 2, . . . , 2︸ ︷︷ ︸
n

) =
π2n

(2n+ 1)!
(6)

and

ζ(3, 1, 3, 1, . . . , 3, 1︸ ︷︷ ︸
2n

) =
2π4n

(4n+ 2)!
.(7)

Both of them are of the form (rational number) · π(weight), but neither con-
tains such a subtle quantity as Bernoulli numbers. Apart from a small
number of such examples, there are very few known values. At present,
the main interest of research is to find various relations among the multiple
zeta values, rather than the values themselves. Zagier has conducted a large
amount of numerical computations and found that there should be many



MULTIPLE ZETA VALUES 3

Q-linear relations among them. For example, there are 28 = 256 indices of
weight 10, but all the multiple zeta values of weight 10 seem to be expressed
as a Q-linear combination of seven of those. He verified it up to 200 digits
after the decimal. However, there seem to be no linear relations between
the values of different weights. Based on the numerical experiments up to
weight 12, Zagier advanced a conjecture.

Definition. For k ≥ 0, define Zk as the Q-vector space given by

Z0 = Q, Z1 = {0},

Zk =
∑

1≤n≤k−1
k1+···+kn=k,k1≥2

Q ζ(k1, k2, . . . , kn) (k ≥ 2).

In addition, we define Z =
∑

k≥0Zk.

For k ≥ 2, Zk is the finite dimensional Q-vector subspace in R spanned
by 2k−2 multiple zeta values of weight k. Z is the Q-vector subspace in R
spanned by all the multiple zeta values.

Conjecture (Zagier). The dimension dimQZk should satisfy the recurrence
relation

dimQZk = dimQZk−2 + dimQZk−3 (k ≥ 3).

This is the most fundamental conjecture in this subject. Let {dk}k≥0 be
the sequence defined inductively by d0 = 1, d1 = 0, d2 = 1, dk = dk−2+dk−3

(k ≥ 3), then the conjecture states that dimQZk = dk. Recently a very
important result was proved independently by Goncharov and Terasoma.

Theorem (Goncharov, Terasoma). For all k ≥ 0 we have

dimQZk ≤ dk.

Both proofs use the fact that the integral (4) can be regarded as a period
of certain cohomology, and use Borel’s result on the rank of K-groups and
a recent result on the mixed Tate motives in order to bound the dimension
from above. As for a lower bound of dimQZk, we have no known bound
better than the trivial 1 ≤ dimQZk.

We note that Z can be regarded not only as a Q-vector space but also
as a Q-algebra. To see that the product of two multiple zeta values is
again a linear combination of multiple zeta values, we can use either the
series expression (3) or the integral expression, and prove it directly by
reorganizing the range of the sum or the integral. We will introduce algebraic
formulations describing these multiplication rules in §3.

Problem. Find the sturcture of Z as a Q-algebra.

Goncharov has made a specific conjecture concerning this problem, but
very little is known. The theorem of Goncharov and Terasoma gives an upper
bound for the number of algebraically independent elements of theQ-algebra
Z, but we have very little information as to which relations contribute to
bound the dimension. In what follows, we will focus on the linear relations,
as an algebraic relation can be reduced to a linear relation once the product
is expanded.
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2. Various linear relations

In this section we first state some known linear relations. We begin with
the so-called duality. Any index with k1 ≥ 2 can be written uniquely in the
form

k = (a1 + 1, 1, . . . , 1︸ ︷︷ ︸
b1 − 1

, a2 + 1, 1, . . . , 1︸ ︷︷ ︸
b2 − 1

, . . . , as + 1, 1, . . . , 1︸ ︷︷ ︸
bs − 1

),

where a1, b1, a2, b2, . . . , as, bs ≥ 1, and s ≥ 1. Then

k′ = (bs + 1, 1, . . . , 1︸ ︷︷ ︸
as − 1

, bs−1 + 1, 1, . . . , 1︸ ︷︷ ︸
as−1 − 1

, . . . , b1 + 1, 1, . . . , 1︸ ︷︷ ︸
a1 − 1

)

is an index whose first element is greater than 1. We call k′ the dual index
of k. Note that the dual index of k′ is k.

Theorem (Duality). For mutually dual indices k and k′ we have

ζ(k) = ζ(k′).

This equality can be seen easily from the integral expression (4) by the
change of coordinate (t1, t2, . . . , tk) → (1− tk, . . . , 1− t2, 1− t1).

The first example of the duality is Euler’s relation ζ(2, 1) = ζ(3). For
instance, by letting s = 1, a1 = 1, b1 = k−1, we have ζ(2, 1, 1, . . . , 1︸ ︷︷ ︸

k−2

) = ζ(k).

We note that the indices of known values (6) and (7) are self-dual. Is there
any reason to believe that the self-dual case is easier?

We list some examples of linear relations.

Theorem (Hoffman’s relation). Fix an index (k1, k2, . . . , kn). Then

n∑
l=1

ζ(k1, . . . , kl + 1, . . . , kn)

=
∑

1≤l≤n
kl≥2

kl−2∑
j=0

ζ(k1, . . . , kl−1, kl − j, j + 1, kl+1, . . . , kn).

Theorem (Sum formula). Fix n and k satisfying 1 ≤ n ≤ k − 1. Then∑
k1≥2,k2,...,kn≥1,
k1+···+kn=k

ζ(k1, . . . , kn) = ζ(k).

In other words, the sum of all the multiple zeta values of a fixed weight and
depth equals Riemann’s zeta value of that weight.

Theorem (Ohno’s relation). Let (k1, k2, . . . , kn) and (k′1, k
′
2, . . . , k

′
n′) be mu-

tually dual indices, and let l ≥ 0. Then∑
e1+e2+···+en=l

ζ(k1 + e1, k2 + e2, . . . , kn + en)

=
∑

e′1+e′2+···+e′
n′=l

ζ(k′1 + e′1, k
′
2 + e′2, . . . , k

′
n′ + e′n′).
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As a matter of fact, all the theorems in this section can be deduced from
this last one. We leave to the reader how to deduce them.

3. Double shuffle relations

As we mentioned earlier, the product of two multiple zeta value is a
linear combination of multiple zeta values with rational (actually integer)
coefficients. In order to describe the conversion rule from a product to sums,
we proceed as follows.

Let H = Q⟨x, y⟩ be the nonocommutative polynomial ring over Q with
two variables. Define H1 = Q+ Hy and H0 = Q+ xHy. In other words, let
H1 be the subalgebra of H generated by 1 and monomials ending y, and H0

the subalgebra generated by monomials starting with x and ending with y,
together with 1.

For a monomial w = u1u2 · · ·uk ∈ H0 with ui = x or y, define

Ai(t) =

{
t if ui = x,

1− t if ui = y,

and let

Z(w) =

∫
· · ·
∫

1>t1>t2>···>tk>0

dt1
A1(t1)

dt2
A2(t2)

· · · dtk
Ak(tk)

.

Since w ∈ H0, we have A1(t1) = t1 and Ak(tk) = 1 − tk; thus the above
integral converges. Extending this Q-linearly, we obtain a map

Z : H0 −→ R.

(Here, we set Z(1) = 1.) It is clear from the integral expression (4) that

Z(xk1−1 y xk2−1 y · · ·xkn−1 y) = ζ(k1, k2, . . . , kn).

The total degree of w is the weight, and the degree with respect to y is the
depth of ζ(k1, . . . , kn).

Define zk = xk−1y. Then Z(zk) is the Riemann zeta value ζ(k). The
algebra H1 is a (noncommutative) free Q-algebra generated by zk (k =
1, 2, 3, . . . ), and we have Z(zk1zk2 · · · zkn) = ζ(k1, k2, . . . , kn) (k1 ≥ 2).

The “harmonic product ∗” on H1 is defined as follows. First, for k, l ≥ 1
and for w, w1, w2 ∈ H1, we define

1 ∗ w = w ∗ 1 = w,

zkw1 ∗ zlw2 = zk(w1 ∗ zlw2) + zl(zkw1 ∗ w2) + zk+l(w1 ∗ w2),

and then we extend it by Q-bilinearlity.
The harmonic product ∗ gives the Q-vector space H1 a structure of com-

mutative Q-algebra, and H0 becomes its Q-subalgebra. We denote these
algebras by H1

∗ and H0
∗, respectively. Then, the multiplication law of mul-

tiple zeta values using series expression can be stated as follows: the eval-
uation map Z : H0 → R is an algebra homomorphism with respect to the
multiplication ∗; that is,

(8) Z(w1 ∗ w2) = Z(w1)Z(w2)
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for all w1, w2 ∈ H0. For example, the harmonic product zk ∗ zl = zkzl +
zlzk + zk+l corresponds to the formula ζ(k)ζ(l) = ζ(k, l) + ζ(l, k) + ζ(k+ l).
As a product of the series we see that

ζ(k)ζ(l) =
∑
m>0

1

mk

∑
n>0

1

nl
=
∑
m>0
n>0

1

mknl

=

( ∑
m>n>0

+
∑

n>m>0

+
∑

m=n>0

)
1

mknl

= ζ(k, l) + ζ(l, k) + ζ(k + l).

The definition of the harmonic product ∗ describes the way of developing
series in such a way inductively.

Another product X is called “shuffle product” and is defined on all of H.
It is defined by

1 X w = w X 1 = w,

uw1 X vw2 = u(w1 X vw2) + v(uw1 X w2)

(w, w1, w2 ∈ H and u, v ∈ {x, y}), and is extended by Q-bilinearlity. With
respect to this multiplication, a Q-vector space H becomes a commutative
Q-algebra. We denote it by HX . It is easy to see that H1 and H0 are
subalgebras of HX , and we denote them by H1

X and H0
X respectively. Then,

the classically known shuffle product for iterated integrals translates to the
fact that the map Z is a homomorphism with respect to X:

(9) Z(w1 X w2) = Z(w1)Z(w2).

For example, corresponding to the shuffle product xy X xy = 4x2y2+2xyxy,
we have the relation

ζ(2)2 =

∫∫
1>t1>t2>0

dt1
t1

dt2
1− t2

·
∫∫

1>s1>s2>0

ds1
s1

ds2
1− s2

=

∫
· · ·
∫

1>t1>t2>0
1>s1>s2>0

dt1
t1

dt2
1− t2

ds1
s1

ds2
1− s2

=

 ∫
· · ·
∫

1>t1>t2>s1>s2>0

+

∫
· · ·
∫

1>t1>s1>t2>s2>0

+

∫
· · ·
∫

1>s1>t1>t2>s2>0

+

∫
· · ·
∫

1>t1>s1>s2>t2>0

+

∫
· · ·
∫

1>s1>t1>s2>t2>0

+

∫
· · ·
∫

1>s1>s2>t1>t2>0

 dt1
t1

dt2
1− t2

ds1
s1

ds2
1− s2
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= 4

∫
· · ·
∫

1>u1>u2>u3>u4>0

du1
u1

du2
u2

du3
1− u3

du4
1− u4

+ 2

∫
· · ·
∫

1>v1>v2>v3>v4>0

dv1
v1

dv2
1− v2

dv3
v3

dv4
1− v4

= 4ζ(3, 1) + 2ζ(2, 2).

Combining (8) and (9), we obtain

(10) Z(w1 X w2) = Z(w1 ∗ w2) (w1, w2 ∈ H0).

The relations among multiple zeta values obtained in this way are called
double shuffle relations. The expression “double shuffle” comes from the
fact that we consider the definition of the harmonic product as a shuffle of
the range of the sum. The first example of such relations is

(11) 4ζ(3, 1) + 2ζ(2, 2) = 2ζ(2, 2) + ζ(4) (= ζ(2)2),

which gives 4ζ(3, 1) = ζ(4).
Although the double shuffle relations arise very naturally, they do not

account for all the linear relations. For example, the relation ζ(2, 1) =
ζ(3) for weight 3 does not come from double shuffle relations. In weight 4
we should have three independent linear relations, but the double shuffle
relations account for only one of them. We would like to obtain more linear
relations systematically, and in a natural way if possible. We will introduce
the idea of “regularization” in the next section. We will see that most
(conjecturally all) of the theorems quoted in the previous section can be
obtained using this idea.

4. Regularization and generalized double shuffle relations

For an index (k1, k2, . . . , kn) with k1 = 1, the series (3) and the integral (4)
do not converge, but we can use the technique called regularization to asso-
ciate a finite value to such an index. We first explain it algebraically. First,
note that we have the isomorphisms of commutative algebras H1

∗ ≃ H0
∗[y]

and H1
X ≃ H0

X [y]; the former was shown by Hoffman, while the latter has
been known classically. It claims that they are isomorphic to the polynomial
rings in the variable y with coefficients in H0

∗ and H0
X , respectively. Together

with the fact that Z is a homomorphism with respect to each multiplication,
we have the following.

Proposition. There are two homomorphisms

Z∗ : H1
∗ −→ R[T ] and ZX : H1

X −→ R[T ]

such that the restriction of each of these homomorphisms to H0 coincides
with Z : H0 → R, and that the image of y is T .

From now on, we cosider indices k = (k1, . . . , kn) with k1 ≥ 1 (allowing
k1 = 1). For such an index k = (k1, . . . , kn), the images of the monomial
xk1−1y · · ·xkn−1y ∈ H1 by the maps Z∗ and ZX are denoted by Z∗

k(T )
and ZX

k (T ) respectively. If k1 ≥ 2, we have Z∗
k(T ) = ZX

k (T ) = ζ(k).
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Table 1.

k (1) (1,1) (1,2)

Z∗
k(T ) T

1

2
T 2 − 1

2
ζ(2) ζ(2)T − ζ(2, 1)− ζ(3)

ZX
k (T ) T

1

2
T 2 ζ(2)T − 2ζ(2, 1)

Analytically, these polynomials may be interpreted as follows. For Z∗
k(T ),

the finite sum

(12) ζN (k1, . . . , kn) :=
∑

N>m1>m2>···>mn>0

1

mk1
1 mk2

2 · · ·mkn
n

can be shown to diverge with the order of Z∗
k(logN) when we let N → ∞.

To be precise, there is a nonnegative integer j such that

(12) = Z∗
k(logN + γ) +O(N−1 logj N) (N → ∞),

where γ is Euler’s constant. For the harmonic series we have the formula

1 +
1

2
+ · · ·+ 1

N − 1
= logN + γ +O(N−1).

The left-hand side is ζN (1), which corresponds to y in H1. On the other
hand, for the index k = (1), we have Z∗

k(T ) = T . Thus the right-hand side
is equal to Z∗

k(logN+γ)+O(N−1) with k = (1). As for ZX
k (T ), we consider

the integration obtained by replacing the limit of integral 1 by 1− ϵ (ϵ > 0)
in (4):

(13)

∫
· · ·
∫

1−ϵ>t1>t2>···>tk>0

dt1
A1(t1)

dt2
A2(t2)

· · · dtk
Ak(tk)

.

This has a finite value even when k1 = 1. The behavior as we let ϵ → 0 is
such that there is a positive integer j satisfying

(13) = ZX
k (log(1/ϵ)) +O(ϵ log(1/ϵ)j).

Note that ZX
k (T ) = T when k = (1). Since the series (12) and the integral

(13) are compatible with the harmoing product and the shuffle product
respectively, we see that the asymptotic behavior of these series and integrals
can be described by Z∗

k(T ) and ZX
k (T ) inductively from the case k = (1). As

for the concrete expressions of Z∗
k(T ) and ZX

k (T ), we see, again by induction,
that for an index k of the form k = (1, 1, . . . , 1︸ ︷︷ ︸

s

,k′) (s ≥ 0, k′1 ≥ 2), both

Z∗
k(T ) and ZX

k (T ) are of the form

ζ(k′)
T s

s!
+ (lower degree terms).

For each i, the coefficient of T i is a Q-linear combination of multiple zeta
values with weight k− i, where k is the weight of k. We list a few examples
in Table 1.

In particular, the constant terms Z∗
k(0) and ZX

k (0) are called the regular-
ized (renormalized) values of ζ(k1, k2, . . . , kn). Thus, for an index k we have
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two different regularized values, one obtained using the series and the other
using the integral. For w ∈ H1, the constant term of Z∗(w) and of ZX(w)
are denoted by Z∗

0 (w) and ZX
0 (w), respectively.

Let us describe the polynomials Z∗
k(T ) and ZX

k (T ) further, especially
the relation between them. It gives us an important clue when we try to
generalize the double shuffle relations. First, define a power series G(u) with
R-coefficents by

G(u) = exp

( ∞∑
n=2

(−1)n

n
ζ(n)un

)
.

Using the well-known properties of the gamma function, we see that

G(u) = eγu Γ(1 + u) (|u| < 1),

where γ is once again Euler’s constant. Then, define an R-linear map ρ :
R[T ] → R[T ] by the formula

ρ(eTu) = G(u) eTu.

In other words, if we write G(u) =
∑∞

k=0 γku
k (γ0 = 1, γ1 = 0, γ2 =

ζ(2)/2, . . . ), ρ is defined by the formula

ρ
(T l

l!

)
=

l∑
k=0

γk
T l−k

(l − k)!
(l = 0, 1, 2, . . . ),

and extended by R-linearlity. By the definition of G(u), its coefficient γk is
an element of weight k of the Q-subalgebra of Z generated by the Riemann
zeta values.

Theorem (Zagier, Boutet de Monvel). For any index k we have

(14) ZX
k (T ) = ρ(Z∗

k(T )).

As an example, consider k = (1, 2). From Table 1 we see

ζ(2)T − 2ζ(2, 1) = ζ(2)T − ζ(2, 1)− ζ(3).

(Note that ρ(T ) = T .) From this we obtain Euler’s relation ζ(2, 1) = ζ(3),
and we see that the space Z3 of weight 3 is one dimensional. Similarly,
comparing both sides of (14) for k = (1, 3) and k = (1, 2, 1) respectively, we
have

ζ(3)T − 2ζ(3, 1)− ζ(2, 2) = ζ(3)T − ζ(4)− ζ(3, 1),

ζ(2, 1)T − 3ζ(2, 1, 1) = ζ(2, 1)T − ζ(3, 1)− ζ(2, 2)− 2ζ(2, 1, 1).

Thus we have
ζ(4) = ζ(3, 1) + ζ(2, 2) = ζ(2, 1, 1)

These relations together with 4ζ(3, 1) = ζ(4) obtained from (11) show that
the dimension of Z4 is 1. The proof of the theorem is based on the com-
parison between (12) and (13). See the references for detail. Now, here are
some generalizations of the double shuffle relations.

Theorem. The following relations hold.

(i) For any w1 ∈ H1 and w0 ∈ H0, we have ZX
0 (w1 X w0−w1 ∗w0) = 0.

(i′) For any w1 ∈ H1 and w0 ∈ H0, we have Z∗
0 (w1 X w0 −w1 ∗w0) = 0.

(ii) For any m ≥ 1 and w0 ∈ H0, we have ZX
0 (ym ∗ w0)) = 0.
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(ii′) For any m ≥ 1 and w0 ∈ H0, we have Z∗
0 (y

m X w0 − ym ∗ w0)) = 0.

If we take w1 ∈ H0 in (i) or (i′), we obtain the double shuffle relation (10).
(ii) and (ii′) are specializations of (i) and (i′), respectivley. (Set w1 = ym.)
Since ZX

0 (ym) = 0, we do not have the term ym X w0 in (ii). All of (i),
(i′), (ii) and (ii′) can be obtained from (14). Conversely, we can derive (14)
from one of these. The totality of the relations obtained from (8), (9) and
(14) coincides with the relations obtained form (i). Also, it coincides with
the relations (ii) or (ii′) together with (10). Thus, all of these relations are
called generalized double shuffle relations.

Conjecture. Any linear relation among multiple zeta values is a conse-
quence of generalized double shuffle relations. As for algebraic relations,
any relation can be obtained from (8), (9) and the relations in the theorem
above.

It will be a very important task to understand these relations from a
different point of view.

5. Supplements and references

§1. To see that k1 ≥ 2 is a sufficient condition for the convergence, re-
gard (3) as a Dirichlet series with respect to m1 and estimate the coef-
ficients. The analytic continuation and the values at negative integers of
the function obtained by regarding the indices of the multiple zeta values
as the variable are studied, for example, in Akiyama-Egami-Tanigawa [1],
Akiyama-Tanigawa [2], Arakawa-Kaneko [4] and Matsumoto [26]. [26] con-
tains a history of analytic number theory and detailed references.

Zagier [38] gives a credit to Kontsevich for the integral expression (4).
Although the direction is different, K. T. Chen has studied far more general
iterated integrals. See the special issue of the Illinois Journal of Math. 34
(1990).

The value ζ(2, 2, . . . , 2) can be obtained easily by comparing the infinite
product expansion and the Taylor expansion of sinx. For the evaluation
of ζ(3, 1, . . . , 3, 1) and its generalization, see Borwein-Bradley-Broadhurst-
Lisonek [5] and Bowman-Bradley [7]. See [38] for Zagier’s conjecture. See
Broadhurst-Kreimer[8] for its generalization that takes the depth into ac-
count, and the generalization to the case of so-called Euler sums. Goncharov
has also done some broad research on the series generalizing multiple zeta
values and Euler sums. In particular, he studied them in relation to the Ga-
lois representation of the fundamental group of P1 \ {0,∞, roots of unity}.
A serious reader can learn the conjecture together with its background from
Goncharov [13, 14, 15, 16, 17], etc. For Terasoma’s work, see [36]. As for
the independence of multiples zeta values, we see at least that Z is infinite
dimensional, using Euler’s formular for Riemann zeta values and the tran-
scendence of π. Recently, Rivoal [35] showed that there are infinitely many
Q-independent numbers among the Riemann zeta values at odd integers.

§2. See Zagier [38], Hoffman [19] and Ohno [28] for theorems in this section.
For a recent attempt to understand Ohno’s relation from the connection
formula for the multi-polylogarithm function, see Okuda-Ueno [30]. Also,
Hoffman-Ohno [21] gives a direction to its generalization.
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We did not mention the relations obtained from the theory of knots in
the text. See Le-Murakami [25] and Ihara-Takamuki [23] for this direction.
Ohno-Zagier [29] gave a direct proof for some of the relations in [25]. They
obtained beautiful results on combination of multiple zeta values expressible
in terms of Riemann zeta values, a generalization of Euler’s attempt for the
case of depth 2.

§3. Description of the products and relations of multiple zeta values using
the Q-algebra H was initiated by Hoffman [20]. For shuffle products, see
Reutenauer’s textbook [34]. For shuffle products of iterated integrals, see
Ree [33]. See also Minh-Petitot [27] for algebras of multiple zeta values and
polylogarithms.

At the end of §3 we mentioned that almost all relations can be deduced
from the generalized double shuffle relations. Curiously, it is still unknown
whether the simplest relation, the duality, is subject to the generalized dou-
ble shuffle relations.

§4. The main reference for this section is [22]. While the fact that the two
regularizations are related by the map ρ has long been known by Zagier,
Boutet de Monvel [6] also obtained it independently.

We explain here briefly the relation between the regularization and the
so-called Drinfel’d associator [10].

Let us use the same notation ZX
0 for the extension of the regularization

ZX
0 to H through the isomorphism HX ≃ H0

X [x, y] (namely, take an element
of HX , regard it as a polynomial in two variables x and y with H0

X coeffi-
cients, take its constant term, and then apply Z). Define a formal power
series Φ(X,Y ) in two variables X and Y with real coefficients by

Φ(X,Y ) =
∑
W

ZX
0 (w)W,

where W runs over all the monomials in X and Y , and w is defined as
the element of H obtained by replacing uppercase letters in W by lower-
case letters. This is the generating function of the regularized values of the
integrals (4) allowing both A(t1) = 1 − t1 and A(tk) = tk.It is not diffi-
cult to see that this generating function coincides with the KZ-associator
of Drinfel’d up to some conventional sign and constant multiple. It is an
important problem to understand the relation between the functional equa-
tion of the Drinfel’d associator and the relations among the multiple zeta
values. Racinet has done some interesting work ([31] [32]) in this direction
recently. Recent work of Furusho [12] also points in that diredction, and
links it to the “stable derivation algebra” ([24]). The last theorem in §4 has
yet another equivalent description in terms of the derivations on H. The Lie
algebra generated by the derivations arising there has a suggestive structure,
but its importance is yet to be clarified.

The references given here are not at all complete. For more extensive
references on the multiple zeta values, see the bibliographies in the survey
articles by Cartier [9] and Waldschmidt [37], as well as the useful Web site
maintained by Hoffman:

http://www.usna.edu/Users/math/meh/biblio.html
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It has links to the electronically available preprints.
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Séminaire Bourbaki, 53éme année, 2000–2001, 885 (2001).

[10] V. G. Drinfel’d, On quasitriangular quasi-Hopf algebras and a group closely connected
with Gal(Q̄/Q), Leningrad Math. J. 2 (1991), 829–860.

[11] L. Euler, Meditationes circa singulare serierum genus, Novi Comm. Acad. Sci.
Petropol 20 (1776), 140–186, reprinted in Opera Omnia ser. I, vol. 15, B. G. Teubner,
Berlin (1927), 217–267.

[12] H. Furusho, The multiple zeta value algebra and the stable derivation algebra,
preprint (2000).

[13] A. B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math.
Res. Letters, 5 (1998), 497–516.

[14] A. B. Goncharov, The dihedral Lie algebras and Galois symmetries of π
(ℓ)
1 (P1 \

{0, µN ,∞}), Duke Math. J., 100 (2001), 397–487.
[15] A. B. Goncharov, Multiple ζ-values, Galois groups and geometry of modular varieties,

in ECM volume, Progress in Math. 201 (2001), 361–392.
[16] A. B. Goncharov, Multiple polylogarithms and mixed Tate motives, preprint (2001).
[17] A. B. Goncharov, Periods and mixed motives, preprint (2002).
[18] A. Granville, A decomposition of Riemann’s zeta-function, in London Math. Soc.

Lecture Note Ser. 247, Cambridge, 1997, pp. 95–101.
[19] M. Hoffman, Multiple harmonic series, Pacific J. Math., 152 (1992), 275–290.
[20] M. Hoffman, The algebra of multiple harmonic series, J. of Algebra, 194 (1997),

477–495.
[21] M. Hoffman and Y. Ohno, Relations of multiple zeta values and their algebraic ex-

pression, preprint, (2000).
[22] K. Ihara, M. Kaneko, and D. Zagier, Derivation and double shuffle relations for

multiple zeta values, preprint (2002).
[23] K. Ihara and T. Takamuki, The quantum g2 invaiant and relations of multiple zeta

values, J. of Knot Theory and Its Ramifications 10 (2001), 983–997.
[24] Y. Ihara, On the stable derivation algebra associated with some braid groups, Israel

J. Math., 80 (1992), 135–153.
[25] T. Q. T. Le and J. Murakami, Kontsevich’s integral for the Homfly polynomial and

relations between values of multiple zeta functions, Topology and its Applications,
62 (1995), 193–206.

[26] K. Matsumoto, On analytic continuation of various multiple zeta-functions, preprint,
(2000).



MULTIPLE ZETA VALUES 13

[27] H. N. Minh and M. Petitot, Lyndon words, polylogarithms and the Riemann zeta
function, Discrete Math. 217 (2000), 273–292.

[28] Y. Ohno, A generalization of the duality and sum formulas on the multiple zeta
values, J. of Number Th., 74 (1999), 39–43.

[29] Y. Ohno and D. Zagier, Multiple zeta values of fixed weight, depth, and height, Indag.
Math., 12 (4), (2001), 483–487.

[30] J. Okuda and K. Ueno, New approach to Ohno relations for multiple zeta values,
preprint, (2001).
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