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Abstract

An explicit form of genus character L-functions of quadratic orders is presented in full
generality. As an application, we generalize a formula due to Hirzebruch and Zagier on the class
number of imaginary quadratic fields expressed in term of the continued fraction expansion.

1 Statements of main results

In 1970’s, Hirzebruch and Zagier discovered and proved a beautiful formula on the class number
of imaginary quadratic fields in terms of the continued fraction expansion [10, 31, 32, 33], a typical
special case being the following.

Theorem (Hirzebruch-Zagier). Let p > 3 be a prime number such that p =3 (mod 4), and

\/]3: a0+ —1: [(10,&1,(12,&3,"‘ ,CLQt]
ap+—
! 1
az + —
be the continued fraction expansion of \/p with (a1, az,as, - ,az) the minimal period. Suppose that

the class number h(4p) in wide sense of Q(./p) is equal to 1. Then the class number of Q(\/—p)

s given by
2t

=1

In this paper, we obtain a counterpart of this theorem when p is congruent to 1 mod 4, as
a consequence of our computation of an explicit formula for the genus character L-functions of
general quadratic orders, together with a generalization of a formula of Zagier on the value at 0 of
such an L-function.

Corollary 1 to Theorem 3. Let p be a prime number such that p = 1 (mod 4), and let
2,/p = lag, a1, Gz, a3, -, ) be the continued fraction expansion of 2,/p. Suppose that the (wide)
class number h(4p) of the quadratic order of discriminant 4p is 1. Then the class number of

Q(v/—p) is given by

2t

h-4p) = 3 > (~1)'as
=1
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As examples, take p = 53 and p = 73. Both satisfy h(4p) = 1. We compute

2v/53 = [14,1,1,3,1,1,1,6,1,1,1,3,1,1,28] and 2v73 =[17,11,2,1, 3,8, 3,1, 2, 11, 34],

thereby obtain

1 18
P(—4-53) = 5(-1+1-3+1-14+1-6+1-1+1-3+1-1+28) =2 =6

and

1 12
h(~4-73) = 5(-1142-1+3-8+3-1+2-11434) = = =4

We may obtain a number of results of similar kind. We present here another two.

Corollary 2. Let p be a prime such that p =1 (mod 12) and suppose h(p) = 1. Let (1+3./p)/2 =

[ap, a1, ag, as, -, az| be the continued fraction expansion. Then we have
L2
h(=3p) = 3 ;(_1)1%.
1=

For instance, by the continued fraction

1+3v73
2

=[13,3,6,12,1,1,1,12,6, 3, 25),

we deduce

1
h(—3-73):5(—3—#6—12—1—1—1+1—12+6—3+25): =4.

Do | 0o

Corollary 3. Let p be a prime such that p = 1 (mod 24) and suppose h(p) = 1. Let 3\/p =
[ap, a1, ag, as, -, az| be the continued fraction expansion. Then we have

2t

M(-3p) = 5 > (~1)ias

i=1

As an example, take the same p = 73 as above but this time compute

3V73=[25,1,1,1,2,1,1,5,1,4,1,5,1,1,2,1,1,1,50],
which implies

1 40
h(—3-73):1—0(—1+1—1+2—1+1—5+1—4—1—1—5—1—1—1—1—2—1—1—1—1+50):E:él.
We are now going to state our main theorems on L-functions.
Let A be a quadratic discriminant, that means, A is a non-square integer such that A = 0,1
(mod 4). Suppose that d; is a fundamental discriminant which divides A and that A/d; is a
discriminant. Then we may write A = dids fg with another fundamental discriminant ds and a

natural number fy. With these is associated a genus character XEhA)dQ on the narrow class group

CJAr of the order Op of discriminant A. We recall precise definitions and basic facts on quadratic
orders, quadratic irrationals, and general genus characters in §7 Appendix 1. We then define the
genus character L-function for R(s) > 1 by

(&)

(A) y._ Xdy,d (a)
L(S’Xdl,dg) = Z ml (2a)s ’
Oa —invertible ideal a COA A
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where the sum is taken over all Oa-invertible ideals a of Oa and 9a(a) = (Oa : a) denotes the
norm of a. This function is analytically continued as a meromorphic function to the whole s-plane.
We first establish the following.

Theorem 1. For A = dydyf3 as above, one has the identity

A
L(s,x$,) = L(s, xar ) (s, Xas)

1— =5)(1 — —s\ __
< 11 (1 = xa, (P)p~*) (1 — Xxap (P)P™°) f_p1—2s

L2 (015 — xay () (P — X (P)

plfo
p:prime
Here, L(s,x4) is the Dirichlet L-function of the Kronecker character xq(x) = (2), the product on
the right runs over the prime factors of fo and m,, is a positive integer such that p™» is the highest
power of p dwiding fo if fo > 1, while the empty product is understood as being 1 if fo = 1.

When at least one of d; is odd and 2 { fy, this is Proposition 4.2 in Chinta-Offen [4]. The
formula (4) in [13] can be regarded as a special case when d; = 1. Note however that no detailed
proofs have been given in neither of these. In view of its importance for our purpose, we give a
complete proof of Theorem 1 in the next section. Tomoyoshi Ibukiyama has informed the authors
that he also proved this result in a different manner ([12]). His motivation comes from an explicit
trace formula of the Hecke operator acting on the space of Siegel modular forms.

With the same notation as in Theorem 1, for any prime p | fo, put
mpflemps( 1

— s — —5) — —s _ 1-s _
ep(s, X)) = (1 = xa (P)p™*) (1 — x4, (P)P ™) f_p1—2s P xa @)W = xa W) g

Then
(A)

A 2s—1
€p(1 - S,Xéljb) = Ep(S,Xdl,dQ)P( s=lmy,

Recall the functional equation of the Dirichlet L-function L(s, x4) with fundamental d,

A\ (543 a1t
()" (5 (2" ()
(2

where 64 = 0ifd > 0 and 64 = 1 if d < 0. Combined, we obtain a functional equation of L(s, Xd, d2)
by multiplying suitable gamma factors. We remark here that the local factor €,(s, XEhA)dQ) enjoys
the Riemann hypothesis as analogous to [14].

Now suppose A is positive and let XOA be the set of all reduced real quadratic irrationals of
discriminant A. For a = (b + v/A)/(2a) € XQ, the lattice a = [a,aa] = Za + Zaa is an Oa-
regular ideal and we put Xfiﬁb (o) = X¢(11A112<a) (see §7 Appendix 1 for basic definitions and the

terminologies).

Theorem 2. The notation being the same as in Theorem 1, suppose that A is positive and that dy
and do are distinct negative fundamental discriminants. Then we have

A 1 A
LX) = g 2 Xm(@)lal,

0
aeXy

where |a] denotes the integer such that |a] < o < |a + 1.



Combining Theorems 1 and 2 together with the classical Dirichlet’s formula
2h(d)
w(d)’

where d is any negative fundamental discriminant and w(d) is the number of units in the order Oy,
we obtain the following identity.

L(Oa Xd) =

Theorem 3. Under the same assumption and the notation in Theorem 2, we have the identity

h(dy)h(d2) (1= xa, ()1 = xa () =™ ' (p — xa, () (P — xax () (A)
M) (d) 1:[ 1—p _%;g dy.a, (@) ]

p:prime
The empty product is understood as being 1 if fo = 1.

Zagier proved this result in the case where (di,d2) = 1 and fy = 1. When d; and dy are not
relatively prime (with d; # d2) and fy = 1, the identity has been conjectured experimentally by
Y. Kido in his master’s thesis [15].

We give some examples. First, take A = 160 (this example is taken from [15, p. 39]). For the
choice dy = —4, dy = —40, fo = 1, we have h(—4) = 1, w(—4) = 4, h(—40) = 2, w(—40) = 2 and
the left-hand side is 24-1-2/(4 - 2) = 6, whereas ZaEXO x(120)40(04) |a] = 6 (see the table below).
For di = —8, dy = —20, fo = 1, we have h(—8) = 1, w( 8) =2, h(—20) = 2, w(—20) = 2 and
24-1-2/(2-2) =12, whereas Zaex%o ngﬁ?220(a) la] = 12.

Next take A = 1440 and let dy = —4, dy = —40, fo = 3. We then have y_4(3) = —1,
X—40(3) = —1 and hence the Euler factor ((1—(—1))(1—(-1))—(3—(-1))(3—(-1)))/(1—-3) =6.
Therefore the left-hand side is equal to 24 -1-2/(4-2) x 6 = 36, which agrees with the right-hand
side, as calculated in the table.

If we take dy = —8, do = —20, fo = 3 with the same A = 1440, the value of the Euler factor is
2 because x_g(3) = x—20(3) = 1 and the left-hand side equals 12 x 2 = 24. This coincides with the
value of the right-hand side computed in the table.

type of o ‘ a € X{s, cont.frac. X(lfo 10(a) o] X(lgo 90(@) o]
(3,10,-5) | 5(5+2V10) [3,1,3,2] -3 +3
(5,10,-3) | £(5+2V10) [2,3 ] +2 —2

(8,8,-3) | 7(2++10) [1, 3 3] +1 —1

(3,8,-8) | 3(2+V10) [3,2,3,1] -3 +3
(1,12,-4) | 2(3 ++/10) (12, 3] +12 +12
(4,12,-1) | 13+ V10) 3,12 -3 -3

6 12

When the class number h(A) is equal to 1, the right-hand side of Theorem 3 is given in terms
of the period of a single reduced quadratic number, and hence we may obtain such statements as
corollaries presented at the beginning, by taking suitable small values of d;, as many as you like.

Remark. Lu [20] obtained analogous but considerably different formulas for h(d;)h(dz2) in the case
dy | d2, fo = 1. As a consequence, he obtained the same statement as Corollary 1 when p = 1
(mod 8) assuming h(p) = 1 as an example in [20, p. 1147]. Notice that, as we see in Remark 1 of
Section 4, h(4p) = h(p) holds in this case. Unfortunately, the proof in the paper [20] is very short
and heavily depends on the author’s previous papers which are hardly accessible.



1440) 1440
type of « ‘ ae€XYy,, cont.frac. ! 4 40( ) X(—s _%O(a) la]

(13,20,-20) | £(54+3V10) [2,4,2,1] +2 —2
(20,20,-13) | {5(5+3V10) [1,2,4,2] -1 +1
(8,24,—27) | 3(2++10) [3,1,6,1] +3 -3
(27,24,-8) | 2(2++10) [1,6,1,3] —1 +1
(5,30,-27) | 2(5+2v10) [6,1,3,1] +6 —6
(27,30,-5) | 5(5+2v10) [1,3,1,6] -1 +1
(8,32,—13) | 1(8+3V10) [4,2,1,2] —4 +4
(13,32,-8) | £(8+3V10) [2,1,2,4] +2 —2
(1,36,-36) | 6(3++/10) 36, 1] +36 +36
(36,36,—1) | L(3+10) [T, 36] —1 —1
(4,36,-9) | 3(3+/10) [9,4] -9 -9
(9,36,—4) | 2(3+V10) [4,9] +4 +4
36 24

The outline of the present paper is as follows. In Section 2, we give a proof of Theorem 1 by
direct computations. In Section 3, we recall works of Meyer, Siegel and Zagier, which will be used
to prove Theorem 2. Corollaries are proved in Section 4 assuming Theorem 3, Theorem 3 follows
from Theorems 1, 2, and Theorem 2 is proved in Section 5. At the final step to prove Theorem 2,
we follow Zagier’s treatment given in [32, Lemme, p. 90]. After submitting the first draft of this
paper, we find that Theorem 2 is known by Lang [18, (2.17), p. 423]. We include his sophistcated
proof in Section 8 as Appendix 2, since in our opinion it should be widely known. At the same
time, we find other works of Lang [16, 17], Lang and Schertz [19], which might be useful to study
Kido’s conjecture. Section 6 is devoted to give a new proof of the explicit formulas of the Dirichlet
series associated to the primary representation numbers by genera obtained in [11, 23]. In fact, by
orthogonality of genus characters, we see that our Theorem 1 and their formulas are equivalent to
each other. As a consequence, we present the second proof of Theorem 1. Section 7 (Appendix 1)
gives a summary on quadratic orders and irrationals.

We use the following integral formula initiated by Hecke and Meyer to prove Theorem 2. For
z=x+1iy € C with y = J(z) > 0, and s € C with R(s) > 1, let

Yy’ o 1(0 .0
E = —_— — = — =
(2,9) Z |m +nz?s’ 0z (81‘ 8y>

m,n€Z
(m,n)#(0,0)

Then, for A = dydaf3 >0, dy <0, do <0, dy # da (d; fundamental), we have

% 9 5ol ((s+1)/2)?
S0 AR ONL ) [ 5B bz = 28O 1)
o]+ eck

Here the path of integration on the left-hand side is taken as follows. Let ¢y > 1 be the generator
of the unit group of positive norm, that is, {¢ € O; N (e) > 1} = (—1,¢) = +eZ, ¢ > 1. For any
Oa-invertible fractional ideal b with b = [51, 82] such that (5185 — B182)/N(B2) > 0, we define
My € SL2(Z) and a real number o by

B\ B1 ) B
<62>—Mb<62>, Mb—<c d)ESLQ(Z), Oé.—@.

By means of the linear fractional transformation, the matrix M, has two fixed points a = 51/
and o/, where o/ < a by the assumption. Let Cy, be the geodesic semi-circle connecting o and a.



For any fixed zy € Cpy,, the integral is taken along the line Cyy, from zg to 25 := My(20) € Ch,,
My(z0) = (azo + b)(czo +d)~!
Similarly, when A = dyds fg < 0 with fundamental d;, we have

E A2
> X (®) U(}?A)S) = <u|> L(s, x0,)

[6]+ect

with & in the upper-half plane satisfying [{p]~ = Lgl([b]ﬂ (see §7 Appendix 1 for notation), while,
when A = dydafZ >0, dy > 0, d2 > 0, dy # do (d; fundamental), we have

5/2
2 Ve / Blavs) dt = 28T 1)),

r
[b]teck ()

where the path of integration is the same as above, and dI? = (dx? + dy?)/y? is the hyperbolic line
element.

In the above three formulas, the averages on the left-hand sides are taken over CY, in other
words, over all classes of “not negative-definite” primitive forms of discriminant A. In [5, 6] and [21],
similar averages over all classes of “not negative-definite” forms of discriminant A are computed.
In view of the above three identities and the Mobius inversion formula, Theorem 1 and their results
seem to be equivalent (cf. [21, Corollary 1.2.4, p. 13]). We refer the reader to [5, 6, 7, 21] for a
recent progress and a survey on related topics. In particular, it turns out that such “not necessarily
primitive” averages of E(z,s) are the Fourier coefficients of real analytic modular forms.
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2 Proof of Theorem 1

Let oa = 0 or 1 according as A = dydaf? is even or odd. Put wa := (oa + VA)/2, where VA :=
i1=s1en(A)/2, /|A]. We frequently use a canonical parametrization of lattices in K := Q(v/A) and
that of ideals of Oa as given in [8, Theorem 5.3.1, p. 129, Theorem 5.4.2, p. 133]. A lattice
b=la,r +wal] (a,7 € Z,a #0) in K is an ideal of O if and only if a | N(r + wa). In this case,
this ideal b is Oa-primitive and DA (b) = |a|. An ideal b = [a,7 + wa] (a,7 € Z,a # 0) of Oa
is Oa-invertible if and only if (a, A, N (r + wa)/a) = 1. By definition, an ideal of Oa is called
Oa-regular if and only if it is an Oa-invertible and Oa-primitive ideal of Oa (cf. [8, Definition
5.4.1, p. 132]).

Any Oa-regular ideal b = [Hp p'?,r +wa] has a unique factrization into Oa-regular ideals with
mutually coprime prime-power norms. Explicitly, b =[], 6@, 6®) .= [pl 1+ wa], Na(6®P) = plr,
which can be drawn from [8].* Hence, similarly as in [13], we have the Euler product expression

L(S Xdl d2 H L S Xdl d2

prime p

“Let a = [[~, p be a prime factorization of ¢ € N\ {1}. Put Ip,l;' = {b6@; Oa-regular ideal, Ma(b®) =
P}, I, = {a;Oa-regular ideal, Ma(a) = a}. It is not difficult to see that the map I, ]Pii — I, given by
(b(l), e ,b<m)) —a=][", 6@ is a well-defined bijection using [8, Theorem 5.4.6, p. 137], [8, Exercise 5.4.8, p.
139] and [8, Theorem 5.4.2, p. 133]. For example, to see that this is one-to-one, we may write 6 = [Piiv %]
a = [a, b'*'Q‘/E]. Then, it follows from % €a=T[" 069 cb® that b = B; (mod 2p'1). Hence, b® has the

I




where
(A)

A Xd ,d n(p
L (S X¢(11,)612) Z N7 Z ts :

O A —invertible ideal a COA t>0
N (a)=p!
Here, we define
@) [t/2] [t/2]
(AN — t— 2]
m(p’) = E Xdy o (@) = E : E : Xd1,d2 Z 01(p
O —invertible ideal a COA 7=0 O —regular ideal b
‘J’IA(a):pt mA(h):pt—Qj

ap) = Y. XL

O —regular ideal b
N (b)=p®

Let us define 1o (p') and 6y (p®) analogously by replacing all of the values XEIIA)dQ(b) with 1, that is,

taking dy = 1, in the definitions of n; (p') and 6 (p®).

Let K = Q(v/A) and A = dg f? with dg the discriminant of K and f the conductor of A. For
any prime not dividing the conductor, the treatment is essentially the same as in the case of the
maximal order Og,.. The unique factorization into prime ideals holds for any non-zero ideal a of
O prime to f, that is, (Ma(a), f) =1 ([8, Theorem 5.8.1, p. 174]) and we know the factorization
of a rational prime p{ f into prime ideals of Oa ([8, Theorem 5.8.8, p. 178]).

For primes p dividing the conductor f, the values 7y(p!) are given in [3, Lemma 4, p. 264]. In
addition, in [3, p. 263], we have the list of all regular Oa-ideals b such that 9 (b) is any power of

(A)

prime p | f. To determine the value of x &y d,» We compute the associated class of primitive forms

@gl([b]+), and then apply the definition of X((i?,)dz’ for which we refer the reader to Appendix 1 in

§7. A character sum evaluation given in [29, Proposition 4.1, p. 86]" and the identity n;(p'*?) =
n;(p') + 0;(p'2) (¢t > 0) are useful.

2.1 0Odd prime factors with p | f

Lemma 1. Let p be an odd prime factor of f and denote by n the largest integer such that d :=
A/p*™ is a discriminant. The values 0;(p®) are given as follows. Here ¢ is the Euler function.
(1) For a < 2n,
(a) if a is odd, then Oy(p®*) =0, 01 (p*) =0,
(b) if a = 2h is even, then 0y(p®) = (p"), 61(p%) = ©(p").
(2) For a > 2n, we make a case distinction according to the value of (%).
Case 1. Suppose (p) 1.
(a) If a > 2n, then 6y(p*) = 2¢(p"),
while 6 (p*) = xdl(p)“ 20(p") if ptdy, 02(p") =0 if p | du.
(b) If a = 2n, then Oy (p? ) p"l(p—2),
while 61(p*™) = p"~H(p = 2) if ptdu, 1(P*") = —p" " if p | .

Case 2. Suppose (p) —1.
(a) If a > 2n, then 6y(p*) =0, 61(p*) = 0.

form b® = [pil b+‘ﬁ] This means that b € I 1, is determined uniquely from a. In [8, Exercise 5.4.8, p. 139], i

addition to the condition b = b; (mod 2a;) for i € {1 2} given there, it seems better to impose b* = A (mod 4a1a2)
Such an integer b is uniquely determined modulo 2a1a2 [8, Exercise 6.4.12; p. 219].
(29, Proposition 4.1, p. 86] Let p be an odd prime, a,b, c integers such that p { a. Put f(z) = az® + bz + ¢,

- —Xp* (a)7 if pJva
D =b*> — 4ac, xp+(n) = (Z-). Then, one has Xp* (f(m)) = .
’ ( ) m (;d D) ’ (p - 1)XP* (CL), if p ‘ D.



(b) If a = 2n, then y(p*") = p",
while 01(p™™) = p™ if ptdy, 01(p°") = —p" " if p | dr.

Case 3. Suppose p | d.

(a) If a > 2n + 1, then 6y(p®) =0, 61(p®*) = 0.

(b) If a = 2n, then Oy(p*™) = (p™), 61(p?) = ©(p").

(c) If a = 2n + 1, then Oy(p*"*+1) = p",

while 0 (57"1) = xay (P)p" Zfﬂdl, 1™ ) = xax (0)P" if p | 1.

Proof. We give the proof for (2) the Case 2 (b), other cases being treated similarly. In general, an
Oa-primitive ideal b of O has the form b = [a,r + wa], where a,r € Z, a > 0, a | N(r + wa),
MNMa(b) = a. This is an oriented basis in the sense that 1 = a,f2 = r + wa satisfy (5155 —

B162)/ VA < 0, where B is the conjugate of . The representative of the equivalence class of
binary forms associated to [b]" can be taken as

fo:= farrws(@,y) = a”Haz + (r +wa)y)(az + (r + wp)y) = la,2r + oa, N(r +wa)/d],

that is, we have [fy] = ®1'([b]") through the bijection ®a : Fa — C£ explained in §7.1.

Let us compute 6;(p®) in the case a = 2n and (%) = —1. The lattice b = [p?",7 + wa] is
an Oa-regular ideal if and only if there exists m € Z such that 2r + oa = p"m, p f m? — d by
Butts-Pall’s list. Since we are assuming (g) = —1, this is equivalent to 2r + oA = p"m. Note that

[p?", 71 + wa] = [p*™, 72 + wa] if and only if r; = 75 (mod p??). Hence, m can run through mod
2p™ such that m = oa (mod 2), and we have

0o(p>") = > 1= Y 1=p"

O —regular ideal b m (mod 2p™)
‘nA(l‘):PQn m=oa (mod 2)

On the other hand, one has fy(z,y) = p*"z? + mp™zy + (m? — d)/4)y* and by definition

- 1 if )=1 1 if prd
X(q)(b)_{, if(pg) =1 W (b)_{ if pt i,

. . X .
Xp+(m? = d), if (p,q*) # 1, oz Xpr(m? —d), ifp|d.

This implies

Z 1=7p", if p1dy,

m (mod 2p™)

A) m=oa (mod 2)

0:1(p™") = X (0) = € 7774 o

OAreguZ;r ideal b v Z Xp* (m2 - d) = _pn 17 lfp | d17
N (0)=p2" m (mod 2pM)

m=oa (mod 2)
as stated. To get the last value when p | dy, we put m = 2] + oA with [ mod p”, and apply [29,
Proposition 4.1, p. 86]. O

Remark. The sums over m mod 2p™ such that m = oa (mod 2) can be replaced by the sums over
m mod p" if we take representatives m suitably in the sense that m = oa (mod 2) holds, which is
possible because p” is odd. See a note before [3, Lemma 3, p. 263].

Lemma 2. Under the same assumption and notation as in Lemma 1, the values n; (p') are given
as follows.

Case 1. Suppose (p) 1.
(o) Suppose that t is odd.



(0-i) If t < 2n, then no(p') = 0, n1(p*) = 0.

(0-ii) If t > 2n, then no(p') = (t — 2n + 1)p(P"), m(P") = xa, (p)'(t — 2n + 1) (p").
(e) Suppose that t = 2s is even.

(e-i) If t < 2n, then no(pt) = p*, n1(pt) = p°.

(e-ii) If t > 2n, then mo(p") = (t — 2n + D)p(p™), m(p") = Xa, (P)'(t — 2n + L)p(p").

Case 2. Suppose (%) =-1.

(o) If t is odd, then no(p') =0, m(p') = 0.
(e) Suppose that t = 2s is even.
(e-i) If t < 2n, then no(pt) = p*, m(p') = p°.
(e-ii) If t > 2n, then no(pt) = p™ + p" 1,
while m(p*) = p" +p" " if pfdi, and m(p') =0 if p| di.

Case 3. Suppose p | d.
(0) Suppose that t is odd.

(0-i) If t < 2n, then no(p') =0, m (p') = 0.

(0-ii) If t > 2n, then no(p') = p",

while 11(p') = Xa, (P)P™ if p1 d1, and ni(p') = xa,(P)P" if p | di.

(e) Suppose that t = 2s is even.

(e-i) If t < 2n, then mo(p") = p*, m(p') = p°.

(e-ii) If t > 2n, then no(p') = p™, m(p') = p".

The proof of Lemma 2 is a direct application of Lemma, 1.

Put z := p~*. By Lemma 2, we can compute p-factors explicitly for any odd prime p | f. The
results are as follows. Here n, which can be characterized by p™ || f, is as in Lemmas 1, 2, and
my > 0 is defined by p™ || fo.

Case 1. Suppose (%) = 1. One has

(1 = xa, (P)2)* — p" "2 (1 — xa, (p)p)” ot
Lo, ) = )0 e o
1,d2 1—p"x
q—pz2 pldi.
If p{dy, then ptda, mp =n, Xa, (P)Xdy (P) = 1.
If p | dy, then p | dg, mp =n—1, xq,(p) = xa,(p) = 0.
Case 2. Suppose (%) = —1. One has
(1+2)(1 — =) +p" '2*"(1 - pz)(1 + px) Pt
) ].’
(A 1 —px?)(1 — 22
Lp(syx(il,dQ) - ( )( ) 1— anL'Qn
W? p|di.

If p { dy, then p{daz, my =n, xq,(P)xd.(p) = —1.
If p | di, then p | d2, mp =n —1, xa,(p) = xd,(p) = 0.

Case 3. Suppose p | d. One has

@) 1= pz—p"a*(1 - pfx)(—ppz)
Lp(S’Xdl,d2> - (1 —pl’g)(l — ,B.’E) )

where 8 = x4, (p) or x4,(p) according as ptd; or p | d.



If p{dy, then p | d2, my, = n.
If p | di, then p { dg, my, = n.

We remark that m, can be 0 only when x4, (p) = xd4,(p) = 0, since n > 1. Hence, the above
formulas coincide with the p-factor of the formula in Theorem 1 for any odd prime p | f;

(1= x4, (P)x) (1 = xa, (p)x) — P 2™ (p2 — xa, () (P2 — X4 (P))
(1 = xa, (P)2)(1 = Xay (p)2)(1 — p?) '

2.2 2-factor with 2| f

For any discriminant d, we have the decomposition d = dyf? with a fundamental discriminant dy
and a natural number f. Let us put A(d) := dp and denote by Ag(d) the 2-part with sign (including
1) of the fundamental discriminant A(d). Hence As(d) € {1,—4,+8} and A(d)/Az2(d) is an odd
fundamental discriminant.

Let A = dids fg be a quadratic discriminant as given in Theorem 1 and my > 0 an integer such
that 2™2 || fo. We also write A = dg f? as usual, and suppose 2 | f throughout this section 2.2.
Let n denote the largest integer such that d := A /22" is a discriminant. In other words, 2" || f and
50 Ag(d) = Ag(dg). This d is an odd discriminant (i.e. Ag(d) = 1) if and only if Ag(dy) = Aa(d2).

Note that Ag(d) = —4 if and only if (Aqs(dy),As(d2)) € {(1,—4),(—4,1),(8,-8),(—8,8)},
and in this case one has d = 12 (mod 16). We see As(d) = 8 if and only if (Aa(dy), Az2(ds)) €
{(1,8),(8,1),(—4,—8),(—8,—4)}, and in this case one has d = 8 (mod 32). We also see Ag(d) = —8
if and only if (Aa(dy1), Aa(da)) € {(1,-8),(—8,1),(—4,8),(8,—4)}, and in this case one has d = 24
(mod 32). In these cases that 2 | Ag(d), if either Ay(dy) or Ag(ds) is equal to 1, then n = ma.
Otherwise, n = ma + 2 if Ag(d) = —4, and n = mg + 1 if Ag(d) = £8.

Note that (%) = —1 if and only if d = 5 (mod 8), and () = 1 if and only if d = 1 (mod 8),
because d is a discriminant. Taking these remarks into account, we apply the list in [3, p. 263] of
regular Oa-ideals b such that DA (b) is any power of 2 | f. The proof of the following Lemmas 3,
4 are similar to those of Lemmas 1, 2.

Lemma 3. Suppose that 2 | f. Let n denote the largest integer such that d := A/2?" is a discrim-
inant. Then the values 6;(2%) are given as follows. Here ¢ is the Euler function.

Case 1. Suppose (%) =1.
(a) If a < 2n is odd, then 6p(2%) =0, 6,(2%) = 0.
(b) If a = 2h < 2n — 6, then 6p(22") = (2", 61(22") = (2M).
(c) If a = 2n — 4, then 0(22"~4) = p(2"72),
while 01(227~4) = p(2772) if Ag(dr) € {1, -4}, and 61(22"4) = —p(2"72) if Ay(dy) = £8.
(d) If a = 2n — 2, then 0(22"72) = p(2"1), while 61(2?"2) takes the value
027 if Ag(dy) =1, and —(2"7 1) if Ag(dy) = —4, and 0 if Ay(dy) = +8.
(e) If a = 2n, then 0p(2%") =0, 01(22") = 0.
(f) If a > 2n, then 6p(2%) = 2¢(2"),
while 91(2a) = Xdy (2)(1 . 2(,0(2n) Zf Ag(dl) == 1, and 91(2a) =0 Zf2 | Ag(dl)

Case 2. Suppose (%) =-1.
(a) If a < 2n is odd, then 6p(2%) =0, 6,(2%) = 0.
(b) If a = 2h < 2n — 6, then 0p(22") = (2"), 61(22") = (2M).
(c) If a = 2n — 4, then 0(2°"~4) = p(2"72),
while 01 (227~4) = p(2772) if Ag(dr) € {1, -4}, and 61(22"4) = —p(2"72) if Ag(dy) = £8.
(d) If a = 2n — 2, then 0o(p*"~2) = (2"1), while 61(2*"~2) takes the value
027 if Ag(dy) =1, and —(2" 1) if Ag(dy) = —4, and 0 if Ay(dy) = +8.
(e) If a = 2n, then 0y(22") = (2"11),
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'LUthe 91(2277,) = 90(271/-1-1) ’Lf Ag(dl) = 1) and 91(2277,) — 0 Zf2 | A2(d1)
(f) If a > 2n, then 6y(2%) =0, 6,(2%) = 0.

Case 3. Suppose 2| d and both As(dy) and Ay(ds2) are even.
(a) If a < 2n is odd, then 05(2%) = 0, 61(2%) = 0.
(b) If a = 2h < 2n — 4, then 0p(22") = (2M), 61(22") = (2M).
(c) If a = 2n — 2, then 0p(22"72) = p(2"~1),
while 61(22772) = p(2"71) if Ag(d) = £8, and 61(22772) = —p(2" 1) if Ag(d) = —4.
(d) If a = 2n, then 0(2%") = p(2"),
while 01(22") = —p(2") if Ag(d) = &8, and 61(2%") = 0 if As(d) = —4.
(e) If a =2n + 1, then 6p(22"1) = 27, 9,(22"+1) = 0.
(f) If a > 2n + 1, then 6y(2%) = 0, 6,(2%) = 0.

Case 4. Suppose 2 | d and either As(dy) or As(ds) is equal to 1.
(a) If a < 2n is odd, then 6p(2%) =0, 6,(2*) = 0.
(b) If a = 2h < 2n, then 0y(227) = (27), 6,(227) = (2M).
(c) If a = 2n + 1, then 0y(22"1) = 27,
while 01(22") = x4, (2)2" if 24 Aa(dr), and 61(227) = x4, (2)2" if 2 | Aa(dy).
(d) If a > 2n + 1, then 6y(2%) =0, 6,(2%) = 0.

For an integer a, let us denote by ordy(a) an integer such that 2°792(%) is the highest power
of 2 dividing a. Notice that when the discriminant d defined in Lemma 3 is odd, then n >
OI‘dQ(AQ(dl)) = Ordg(AQ(dQ)) by definition.

Lemma 4. Under the same assumption and notation as in Lemma 3, the values n;(2') are given
as follows.

Case 1. Suppose (%) = 1.
(o) Suppose that t is odd.
If t < 2n, then no(2Y) =0, n1(2) = 0.
[Ft > 2, then 1o(2) = (t — 20+ D@(2), m1(2) = xay ()t — 20+ 1)(2").
(e) Suppose that t = 2s is even.
(e-i) If t < 2n then no(2') = 25, and if t > 2n then no(2') = (t — 2n + 1)p(27).
(e-ii) If Ao(dy) = 1, then m1(2%) = no(2Y) for any even t.
(e-iii) Suppose 2 | Ag(dy).
If t < 2n — 2orda(As(dy)), then m(28) = 25.
If t > 2n — 2orda(As(dy)), then n1(2Y) = 0.

Case 2. Suppose (%) =—1.
(o) Suppose that t is odd. Then no(2') =0, n1(2') = 0.
(e) Suppose that t = 2s is even.
(e-i) If t < 2n then no(2!) = 2%, and if t > 2n then no(2!) = 2" + 2n~L.
(e-ii) If Ao(dy) = 1, then m1(2Y) = no(2Y) for any even t.
(e-iii) Suppose 2 | Ag(dy).
If t < 2n — 2orda(As(dy)), then np(28) = 25,
If t > 2n — 2orda(As(dy)), then n1(2%) = 0.

Case 3. Suppose 2| d and both As(dy) and Aa(ds2) are even.
(0) Suppose that t is odd. Then 11(2%) = 0.
(e) Suppose that t = 2s is even.

Ift < 2n — 8 + 2orda(Aa(d)) then my(2) = 2%,

If t > 2n — 6 + 2orda(As(d)) then ni(2Y) = 0.
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The formula for ng(2t) for t > 0 is the same as given in Case 4 below.

Case 4. Suppose 2 | d and either As(dy) or As(ds) is equal to 1.
(0) Suppose that t is odd.

(0-i) If t < 2n, then no(2') = 0, n1(2%) = 0.

(0-ii) If t > 2n, then no(2t) = 27,

while 11(2') = xa, (2)2" if 21 Ag(dr), and n1(2") = x4, (2)2" if 2| Ao(dy).

(e) Suppose that t = 2s is even.

(e-i) If t < 2n, then no(2!) = 25, my(2) = 25.

(e-ii) If t > 2n, then no(2) = 2", ny(2t) = 2".

Put x := 27°. By Lemma 4, we can compute the 2-factor explicitly when 2 | f. The results are
as follows. Here n is as in Lemmas 3, 4, that is 2" || f, and mgy > 0 is defined by 22 || fy.

Case 1. Suppose (%) = 1. One has

(1 — xa, (2)2)% — 2" 12" (1 — xq, (2)22)

L Ao(dy) =1,
L(sx2),) = (1= 2291 — xa, ()2 ()
2 ’Xd1,d2 1— (2$2)n70rd2(A2(d1))+1
— L2 As(dy).

If AQ(dl) = 1, then AQ(dQ) = 1, ma2 =N, Xd; (2)Xd2(2) =1.
If 2 ’ AQ(dl), then Ag(dg) = Ag(dl), n=ms + OI‘dg(AQ(Ch)), Xdy (2) = Xd2(2) = 0.

Case 2. Suppose (%) = —1. One has

(1+2)(1 —2)+2" 122 (1 — 22)(1 + 22)

(Aa) \ 1—2x2)(1 — 22 ’
LQ(Sa Xd17d2) - ( 1 _)(<2$2)n2)rd2(A2(d1))+1

1 — 222 ’

If Ag(dl) =1, then Ag(dg) =1, mo = n, Xd1(2)Xd2(2) = —1.
If 2 | Ag(dl), then Az(dg) = Az(dl), n =ms + OrdQ(AQ(dl)), Xd1 (2) = Xd2(2) =0.

Ao(dy) =1,

2| Ag(dy).

Case 3. Suppose 2 | d and both Ay(d;) and Aa(d;) are even. One has
a) \ 1— (2x2)n73+0rd2(A2(d))
LQ(Sa thdQ) = 1_ 9222

If Ag(d) = —4, then ma + 2 = n. If Ag(d) = £8, then mg +1 =n.
Hence, n — 3 + orda(As(d)) = mg + 1.

Case 4. Suppose 2 | d and either As(dy) or Ag(dy) is equal to 1. One has

)\ _ 1= fr—207a?(1 - 261)(—282)
La(8, Xy ) = (1—22%)(1 - Bu) ’

where 8 = x4, (2) or x4,(2) according as 2 { Aa(dy) or 2 | Aa(dy).
If 2 )[ AQ(dl), then 2 ’ Ag(dg), n = ms.
If 2 ’ Ag(dl), then 2+A2(d2), n=ms.

We remark that mo can be 0 only when x4, (2) = x4,(2) = 0, since n > 1. Hence, the above
formulas coincide with the 2-factor of the formula in Theorem 1 when 2 | f;

(1 — xa, (2)2) (1 — X (2)2) — 227 12™2 (22 — x4, (2)) (22 — Xap(2))
(1= xa, (2)2) (1 = Xd, (2)2) (1 — 222) '
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2.3 p-factor with p{ f

For any prime not dividing the conductor f, the similar counting argument as given in Sections
2.1, 2.2 works.

Lemma 5. Let A = dydaf§ be as in Theorem 1 and write A = dg f2, where dy is the discriminant
of K = Q(vVA) and f is the conductor of A. Let p be any prime such that pt f. Then, one has

s D) 1
B Xiva) = T o 0 xa )

Proof. Let a be an Oa-invertible ideal of Oa such that 9a(a) = p* (t > 1). Let q be any prime
ideal of Oa satisfying a C q. It follows from p' € p!Oa = ad’ C q that ¢ N Z = pZ, and thus q is
exactly the one described in [8, Theorem 5.8.8, p. 178]. Let Qa(*) = (%) be the quadratic symbol
defined in [8, p. 85]. Here () in the right-hand side is the Kronecker symbol defined in [8, p. 82]. If
p1 fo, then QA (p) = x4, (P)Xd,(p) by [8, Theorem 3.5.1, p. 82]. Note that Qa(p) # 0 implies p { A,
and p 1 fo. By the unique factorization of a into prime ideals ([8, Theorem 5.8.1, p. 174]) together
with the factorization of a rational prime p { f into prime ideals of O ([8, Theorem 5.8.8, p. 178]),
one can deduce the followings; (1) if Qa(p) = 1 then xq4, (p)xa,(p) = 1 and m1(p*) = (t + 1)xa, (P)?,
(2) if Qa(p) = —1 then xq, (p)xa,(p) = —1 and 7 (p') = 1 or 0 according as 2 | t or 2 1 ¢, (3) if
Qa(p) = 0 then xa, (p)Xd>(P) = 0, (Xa: (P)s Xas(P)) # (0,0) and n1(p*) = B, where 3 = xq, (p) or
Xd,(p) according as p { di or p { da. These results agree with the case ¢t = 0, that is n(1) = 1.
Simple calculations yield the desired formula as stated in Lemma 5. O

In this way, we get all of the Euler factors of the formula stated in Theorem 1. Notice that any
prime p 1 f satisfies p{ fo. This completes the proof of Theorem 1. O

Remarks. 1. We give another proof of Theorem 1 in Section 6.

2. We may put d; = 1 and A = dafZ to get the formula in [13]. See [1, Proposition 10.18,
p. 171] for a different proof of this special case.

3. A similar computation is worked out in a paper by K. Wong [30] which appeared when we
were finishing this part of our paper. It seems possible to get Theorem 1 by pushing forward his
computation, or using results of [5, 6, 21], together with the Mobius inversion as in the manner of

[1].

3 Meyer-Siegel-Zagier

The proof of Theorem 2 uses Meyer-Siegel’s analytic class number formula. Although, the results
in this section can be found in the literatures, we include a summary for convenience of the readers.
Let Ca be the class group and CZ the narrow class group of a quadratic discriminant A. We write
a~ b if a and b are equivalent and denote by [a] the equivalence class of a. We write a ~ b for
proper equivalence, in other words, equivalence in the narrow sense, and denote a proper equivalence
class of a by [a]T. The principal ideal generated by 8 € Q(v/A) is denoted by (8) := fOa. We
then define for R(s) > 1 the L-function associated to a narrow class character x of C{ by

L(SvX) = Z mX(a)

Oa —invertible ideal a COAa

where the sum is taken over all Oa-invertible ideals a of Oa and 9Ma(a) denotes the absolute norm
of a.
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Proposition 1. [C. Meyer, C. Siegel] Let A > 0 be a quadratic discriminant. Suppose that x is a
narrow class character such that x((8)) = signN(B) for any B € Q(vVA)*. We assume N(ea) = 1
for the fundamental unit en > 1 of the real quadratic order Oa. Under these assumptions, L(s,x)
can be continued meromorphically to the whole complex s-plane, and the value at s = 0 has the
form

LO0.x) = Y X(O)x((B2))G(b) =2 > x(0)x((52))G(b),

[b]teck [bleCa

where

G(8) = — [Log (= — a)(=z — a')n(2)")]

4 20

Here n(z) := s [Too_ (1 — e*™™m=) js the Dedekind eta function, zq is any point of the upper-half
plane, and for any Oa-invertible fractional ideal b with b = [B1, Ba] such that (8185— 51 82) /N (B2) >
0, the point 2§ := My(z0) and the real number o are defined by

B1 . B1 . a b . _az0+b B 8,
EA(32>_Mb<52>’ Mb_(c d>€SL2(Z), Zo-—Mb<zo>—CZO+d, a.—@.

The Log is any fized branch of the logarithm.

Proof. The proof closely follows that of [28], where only the case of fundamental discriminant is
treated and the value at s = 1 instead of s = 0 is considered. So we give a sketch of the proof.
Suppose that $(s) > 1. We rearrange the sum

L(s,x) = > @M@ =3 3 @M@

O —invertible ideal a COa []eCa Oa—ideal a€l]

Fix representatives ¢ so that ¢ C Oa, and take their conjugate ideals ¢/ € [c]~!, which are Oa-
invertible ideals of Oa satisfying ¢’ = (9a(c)) ([8, Corollary 5.4.3, p. 136]). For two lattices
a, b in K := Q(VA), let (a : b) := {a € K;ab C a} ([8, p. 116]). Using [8, Lemma 5.3.4,
p. 130] and the argument in [33, §11], the map (¢’ \ {0})/OX 2 {a € [¢J;a C Oa} given by
d(B) := B(Ona :k ) is well-defined and ¢ is a bijection. Note that if a = ¢(3), then ac’ = () and
thus |N(B8)| = Na()Na(a), x(a)x(c) = x((B)) (cf. [8, Theorem 5.1.3, p. 116], [8, Theorem 5.4.6,
p. 137))*. Hence we deduce (cf. [33, p. 88])%

S @M@ = XN 5 Lo (X))

Oa—ideal a€lc]

where, for any Oa-invertible fractional ideal b, we put

Lova(s:x) = Y x(B)N(B)™*,  Ua:= (ea) = €&. (2)

0#£B8€b/Un
Writing ¢/ = b, we obtain

L) =5 32 XORAO) Lo (5.

[bleCa

In the sum, each term is independent of the choice of a representative of class in Can. Here, we
extend DA (b) := n=2Ma(nb), where n is any natural number such that nb is an ideal of Oa and
Na(nb) = (Oa : nb) is the absolute norm of nb.

In [8, Theorem 5.1.3, p. 116], (¢ :x £€a) = |N(€)|(c :x a) should be read (¢ : €a) = |[N(&)|(c : a).
51 arises from the difference between OX = (—1,ea) and Ua = (ea).

14



For z =z +iy € C with y > 0, and s € C with R(s) > 1, let

— oy 2 _1(9 0
Bes) = 2 hwm 0s <8x ay>

m,ne”Z
(m,n)#(0,0)

As is well-known, the Eisenstein series E(z,s) can be continued meromorphically to the whole
complex s-plane. In addition, s(s — 1)I'(s)E(z,s) is smooth in (z,s) (z = x +iy € C, y > 0,
s € C), and holomorphic in s € C (cf. [9, Theorem 11.6, p. 128], [27, Theorem 8.10, p. 55|, [34,
Proposition, p. 266]). By Meyer-Siegel [28, pp. 126-129], one has¥

e x((52)) s acL(s +1)/2)°
; PRACDEEE S UNC) VA TL[,,UA(S,X).
Here the notation in Proposition 1 is used and the path of integration on the left-hand side is
taken as follows. The matrix My has two fixed points a := 31/82 and o, where o/ < a by the
assumption. Let Cyy, be the geodesic semi-circle connecting o/ and a. For any fixed zg € Cyy,, the
integral is taken along the line Cyy, from zg to 2§ := My(29) € Cy, -

Noticing the relations x((82)) = x((f2)) and I'(s + 1) = sI'(s), we have

_ s D(s) [0 28) do
L(s,x) = [b]%;A X(b) i - x((B2))VA s +1)/2) 5 E(z,5) d

b]+ect

Using the fact that E(z,0) is a constant (E(z,0) = —1 cf. [34, Proposition, p. 266]), we deduce

i1 _ %9 (0
L(0,x) = 2T(1/2)2 > x(0)x((B2) /ZO £ (aSE(z,S) s:o> dz. (3)
[b]teck
It is known that (cf. [25, (5), p. 273]), for z € C, y = J(z) > 0,
9 4
55 L(z:8)| = —log(yln(2)[") — 2log(27),
& s=0
and that, when z € Cyy,, one has (cf. [28, p. 132])!
11 ,
P 5%log ((z—a)(z—a ))
Therefore, for z € Cyy,, we obtain
9 (9 __190 - () = L )z — o ()
2 (68E<z,s> SZO) = g o (=~ a)(z — a)n(2)") = 3 log (=~ a)(= — a)n(2)")
and

%9 (0
/Z 6z<(‘93E(z’S) _

0

YIndeed, the computation given in [28, pp. 126-129] for any positive fundamental discriminant works for any
general quadratic discriminants A > 0.

I, has the form |z — era/' = ";"l. If we put w = z — 2% o‘/ and = = |w|* = B%. Therefore,
2 w2 —432 z—a)(z—a’
mEmw—mmw— £ 0B Coeleme e 104112 (log(sa) Hog(s—a),
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This together with (3) completes the proof of Proposition 1. By the remark after [28, Theorem
12, p. 133], the point 2y can be chosen as any point in the upper-half plane. Indeed, G(b) in
Proposition 1 is holomorphic on the upper-half plane as a function of zg. In addition, it is constant
on C)y, as we saw in this proof (cf. Lemma 6 below). O

To compute the value G(b), put 6(z) := 6Log(n(2)*), where we choose and fix the branch by

A 0 eZm'nmz
§(2) = 6L = 2miz — 24 . S(z) > 0.
() = OLos(ole)!)s=2miz =20 30 s 9

Following [32, (3), p. 82], for any M € SLs(Z), we define

1
nar = g d(M(z)) — d(z) — 12Log(cz + d)}. (4)
i
Here Log in the right-hand side is defined by the principal value, that is, Log(cz + d) := Log|cz +
d| + tArg(cz + d) with —7 < Arg(cz +d) < n.**
By Meyer (cf. [32, Theoreme, p. 86]), we have

Lemma 6. [C. Meyer] Under the same assumption as in Proposition 1, one has

Gb) = T3t Lowa(0.0) = X((82) 75"

Here Ly 1, (s, x) is defined by (2).
Proof. Put z* := My(z), a* := My(a) and o* := My(a’). The first statement follows from

)

Log(n(:4)") — Log(n(z0)") = £{0(:4) — 8(:0)} = Tmar, + 2Log(ezo +d),

/
* * 20 — & * % 20 — &

S (cz0 + d)(ca + d)’ T = (czo + d)(ca’ +d)’

[Log(z — a) + Log(z — a')]zg = —2Log(cz0 + d),

where the principal value is chosen for Log. In fact, noticing

B
- n

« 3 a*=a, ea=ca+d, er-éx=1, ¢>0,
2

we have
[Log(z —a) + Log(z — O/)]zi
= Log(zy — a*) + Log(z} — ™) — Log(zp — a) — Log(zp — ')
/
20 — & 20 — &
L
czo + d)ea +Log (czo + d)€y
= —2Log(czp + d).

— Log(z0 — a) — Log(zo — &)

= Log
(

The second statement can be deduced from the proof of Proposition 1 together with the first
statement (cf. [32, (17), p. 87]). O

“*In terms of Rademacher’s ® defined in [26, (71.21), p. 150] for M € SL2(Z), one has ny = —3sign(c) + ®(M) if
¢ # 0, and ny = —3(1 —sign(d)) + ®(M) if ¢ = 0. In fact, this follws from (4) and [26, (71.22), p. 151]. The value
nas is independent of z, and is an integer since ®(M) € Z by [26, Corollary, p. 155].
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Using the reciprocity law of the Dedekind sum, we can evaluate nys (cf. [32, Lemme, p. 90]).
For integers ¢, d with (¢,d) =1, ¢ > 0, the Dedekind sum is defined by (cf. [26, (68.3), p. 146])

C

s(d,c) ==Y _((k/c))((kd/c)). (5)

k=1
Here ((x)) =2 — |z| —1/2if v ¢ Z, and ((z)) := 0 if x € Z. When (¢,d) =1, ¢ > 0, d > 0, this
satisfies (cf. [26, (69.6), p. 148])
A+d>+1 1
12¢d 4 (6)
—s(d,c), and s(d,c) = s(a,c) if ad =1 (mod ¢) by [26, (68.4)(68.5), p. 146].

s(d,c) + s(c,d) =
Moreover s(—d, c)

For any M = € SLa(Z), one has n_pr = npr+6sign(c) if ¢ # 0, and n_ps = npy—6sign(d)

a b

c d
if ¢ =0 by (4) (cf. [32, (4), p. 82]).
Lemma 7. [R. Dedekind] If M = < Z Z

a+d

> € SLo(Z) satisfies ¢ # 0, then one has

ny = —sign(c) (3 +12s(d,|])) -

Proof. If ¢ > 0, it is given in [32, Theoreme, p. 83| or [26, (67.6), p. 145]. If ¢ < 0, it follows from
n_pr = nar+6sign(c) that nayr =n_p +6 = =24 — (34 12s(—d, —c)) +6 = “T2+ (3 + 12s(d, |c])).
This lemma can also be deduced from [26, (71.22), p. 151] and [26, (71.21), p. 150]. O

Lemma 8. Suppose that M = ( ch Z

SLy(Z). Then one has

) € SLo(Z) satisfies ac # 0. Put M' = ( 11L —01 )M .

nar = ny + u — 3sign(a) — 3sign(ac) + 3sign(c).

In other words,
Ju+94+ny if a <0 and ¢ > 0,
= u—34+ny if a>0o0rc<0.

Proof. Applying Lemma 7 to M’ = ( uaa— ¢ Ubb_ d >, one has
— b
g = 2270 Gen(a) (3 + 125(b, [a])
a

Since ad — be = 1, we have —bc = 1 (mod |a|) and s(b,|a|) = s(—c, |a|]) = —sign(c)s(|c], |a]). By
(6),
a?+c2+1 1 a2+02+1_1

s(lel, al) = —s(lal, |e]) + lalld 1 = —sien(e)s(d, [e]) + 2/allc] 1

Here, we used ad = 1 (mod |c|) and s(|al, |c|) = sign(a)s(a,|c|) = sign(a)s(d, |c|) at the second
equal sign. Hence,

— b 2 2 1
nyr = u+ ety _ sign(a) (3 + 12sign(a)sign(c)s(d, |c|) — a—|—|c’+ + 3sign(c)>
ale

— b 2 2 1

= u+ o 3sign(a) — 12sign(c)s(d, |¢|) + et 3sign(a)sign(c)

ac

a+d . . . .

= u+ — 3sign(a) — 12sign(c)s(d, |c¢|) — 3sign(a)sign(c).

This yields the desired formula. O
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Lemma 9. Let n be a natural number, and let u; > 1, j =0,1,2,--- ,2n—1 be integers. We define
M e SLy(Z) by

= (0 (T ) (M ) me e

Then one has
2n—1

nyr = E ﬁj.
J=0

Proof. We prove this lemma by induction on n, that is, the half of the number of matrices defining

M. Put M := < o

8 for My(—M), and then using Lemma 7 for —M;, we see that

—1 . . .. .
0 > Notice that the (1,1) component of —Mj is positive. So using Lemma

N_MoM; = U0 — 3 +n_n = uo — 3+ (—ur +3) = up — uy.

This confirms the case n = 1. Suppose that n > 2. Put

?72' -1 ﬂg'+1 -1 172'?72'_;,.1—1 —’172'
s = (7 3) ()= (P )

All components of N; are negative, those of N1 N3 --- N,,_1 have the same signature (—1) and
thus the (1,1) component of (—1)"M; Ny - - Ny_ is positive. Using M = My(—1)"M;Ny--- Ny_1
together with Lemma 8, we get

n—1
)

N1y Mo My Map_y = U0 — 3+ N1y My Ny Ny = U0 — 3+ (=1 — 3) + n_1ynn, ., _,

Noticing that n(_1ynn,..N,_; = (—1)»-1N;..N,_; T 6 as mentioned before Lemma 7, we conclude

T(—1)"MoM;-Map—y — Y0 — U1+ (_1)n=1N N,y = U0 — UL + T 1)n=1 Mo My Moy 1 -

This completes the proof of the lemma by induction. O

Remark. Meyer’s results [22] on the value Ly 17, (1, x) are summarized in [18, (2.3), p. 421] and in
(32, §II1].

4 Proofs of Corollaries

We prepare the following facts.

Proposition 2. Let di,ds be any fundamental discriminants such that dy # do. For any natural
number fo, put A = dydaf3. Then,

(1) Xgﬁ)@ defined in §7 is a character of C{ (a narrow class character).
(2) When di <0 and dy < 0, it satisfies X&ﬁ;(@)) = signN () for any o € Q(VA)*.

Proof. By the definition of XEhA)dQ and the group isomorphism ® in §7 together with [8, Theo-

rem 6.5.11, p. 231] and [8, Theorem 6.5.5, p. 227], we see that XillA)dz is a character of CJAF. This

shows the statement (1). To prove (2), for a € Q(\/Z) with V() > 0, it is easy to see that
&, ([20A]T) = [1,04, (6a — A)/4]. Hence, Xéi)dQ((a)) = xa, (1) = 1. While, for o € Q(v/A) with
N(a) <0, we have &' ([aOA]") = [(A — oa)/4, —oa, —1] and X((,‘llA,)dQ((a)) = x4, (—1) = —1, since
di < 0. ]
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Lemma 10. Let €5 > 1 be the fundamental unit of a real quadratic order Oy.

(1) For any quadratic discriminant d > 0, if N'(eq) = —1, then d is not divisible by any prime p
such that p =3 (mod 4).

(2) Let dy,da be any negative fundamental discriminants such that dy # da. For any natural number
fo, put A = dldgfg. Then we have N (ea) = 1. Accordingly, the period length of the continued
fraction expansion of any « € XOA must be even [8, Theorem 2.2.9, p. 44].

Proof. The statement (1) is given in [8, Theorem 5.2.2, p. 124]. We prove the statement (2).

Case 1. Suppose that A is divisible by a prime p = 3 (mod 4). By (1), we deduce N(ea) = 1.
Case 2. Suppose that A is not divisible by any prime p = 3 (mod 4). Since d; < 0 and p = 1
(mod 4) is a positive prime discriminant, each d; must be divisible by the negative prime discrim-
inant —4 or —8. Hence 42 | A. In this case, On = [1,v/A/2] ([8, p. 118]), and e has the form
en = = + yv/A/2 for some integers z,y. Then N(ep) = 22 — y?A/4 = 22 = 0,1 (mod 4). So
N(ea) = —1 is impossible. O

The idea to prove Lemma 10 (2) in case fy = 1 is taken from [15, Proposition 5.1, but we
simplify Kido’s argument.

Lemma 11. For any quadratic discriminant d, let K = Q(\/ﬁ) and d = di f%. Here di is the
discriminant of K and f is the conductor of d. Suppose that f > 1. Let Og,. be the ring of integers
of K, xa, the Kronecker symbol of K, ¢ the Euler function, and

= (0} :0}), ye=f J[ (=xacl@a™.

prime qlf

Then, one has

(1) h(d) = h(dg)¥(f)/v.
(2) For d >0, we have v | p(f)Y(f).

Proof. The formula (1) can be found e.g. in [1, Theorem 6.12 (2), p. 90], [8, Theorem 5.9.7, p. 184].
The statement (2) should also be standard but for convenience we give a sketch of the proof. Let
€q > 1 (resp. €4, > 1) be the fundamental unit of Oy (resp. Ogy ). [8, Theorem 5.2.3, p. 125] tells

us that v = min{n € N:ej € Oy} and ¢g = ¢ _. Since eq), € (O, /fOuy ), We have ed(f) =1
(mod fOy, ), where ®(f) := |(Od,. / fOay)*|. In view of fOq4, C Oq4 ([8, Theorem 5.1.7, p. 118]),
we see ei((f) € 04N0O; =0y (cf. [8, Theorem 5.2.3, p. 125]) and thus v divides ®(f). On the
other hand, ®(f) = ¢(f)¥(f) by [8, Proposition 5.9.4, p. 181]. O

Lemma 12. If p = 1 (mod 4) is a prime, then x> — py?> = —1 has an integral solution (x,y).
Accordingly, the fundamental unit €, > 1 of O, satisfies N(ep) = —1.

Proof. See [8, Theorem 5.7.1, p. 160] or [24, Theorem 107, p. 203]. O

We shall prove Corollaries 1, 2 and 3 using Theorem 3. Theorem 3 follows from Theorems 1
and 2, and Theorem 2 will be proved in the next section.

We recall here some facts needed below. Let di, do be any negative fundamental discrimi-
nants such that d; # do. Let oo = 0 or 1 according as A = didaf? > 0 is even or odd. The
basis number is defined by wa := (oA + VA)/2. Tt has the continued fraction expansion of the
form wa = [ug, ut, Uz, us, -+, Uz = [uo,ul, o+, uj—1,&;] when A > 5 ([8, Theorem 2.3.5, p. 54]).
Indeed, we see 1/(wa — |wa]) € X4, which has a periodic continued fraction expansion by [8,
Theorem 2.2.2, p. 39], and the period length must be even by Lemma 10 (2). Note that &; is given
by & = [uy, Uji1, Ujt2, -, Uz, Ut, U, -+, Uj—1) for j = 1,2,---,2t, in particular u; = [§;]. [8,
Theorem 1.3.5, p. 17] (or [8, Theorem 2.2.2, p. 39]) tells us that &; € XX and the type (a;, bj,c;)
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of &; satisfies a; > 0. The lattice 1(§;) = [aj,a;&;] is an Oa-regular ideal by [8, Theorem 5.4.5,
p. 136].

By [8, Theorem 2.2.2, p. 39], we see that ; ~ wa, & ~4 (—1)7wa for every j. Moreover, wa
—wAa by [8, Theorem 1.3.8, p. 19], Lemma 10 (2) and [8, Theorem 2.2.9, p. 44]. We refer Appendix
1 for the symbols ~, ~. Therefore, by [8, Theorem 5.5.7, p. 144], we deduce that [I(§;)] = [I(wa)]
for all 7, [I(&)] [ (wa)]T for any even j, [I(wa)]T # [[(&)]T = [VVAI(wa)]T for any odd k. Let
gan = [1,0a, (oA — A)/4] be the prlnClpal form (cf. [8, p. 193]), which satisfies ®1'([I(wa)]T) =

[ga]. For any even j, one has Xdl dz( (&) = XEIIA)dQ(I(wA)) = XEIIA)dQ(gA) 1. On the other
hand, for any odd j, one has X, (1(6)) = Xgou, (VA Tea)) = X (VA (L(wn)) =

s1gn(./\/'(\/Z))Xl(il7212 (I(wa)) = —1 by Proposition 2. Hence, Xd1 dg( (&) = (1) for any j.

Proof of Corollaries 2 and 3. To prove Corollary 2, let di = —3,d2 = —3p, fo = 1, thus A = 9p.
Since p = 1 (mod 12), the fundamental discriminant dg of K = Q(4/9p) is p, and the conductor
of Ais f =3, p(3) = ¢¥(3) = 2. Put v, = (O) : Og,). By Lemma 11 and the assumption
h(p) = 1, one has v, | 4 and h(9p) = 2/v,, which is a natural number. While, by Lemmas 10 (2)
and 12, we conclude v, > 1, v, = 2, and h(9p) = 1. Hence, all elements in Xgp are equivalent to
wop = (14 3,/p)/2. With the above notation, we deduce that Xgp ={&;7=1,2,---,2t} (cf. [8,
Theorem 2.2.2, p. 39]) and that

2t

2t
S @lal = S @1E] = S (-1,

a€xy, i=1 i=1

where we put X( 5) gpla) == X(Qp) ,(I(a)) for a € Xgp.
Corollary 2 follows from this combmed with Theorem 3 and h(—3) = 1, w(—3) = 6, w(—3p) = 2.
Corollary 3 is the case d; = —3,d2 = —3p, fo = 2, and can be proved in the same manner. O

Proof of Corollary 1. Let dy = —4,dy = —4p, fo = 1, thus A = 16p. Since p = 1 (mod 4), the
fundamental discriminant dx of K = Q(v/16p) = Q(v/4p) is p. Put v, = (O, : Ofg,), vp = (Op -
Oj,). Lemma 11 implies h(4p) = h(p)(2 — xp(2))/vp and vy | (2 — xp(2)), namely h(p) | h(4p).
Since we are assuming h(4p) = 1, we get h(p) = 1. Accordingly, we have v, =1 if p=1 (mod 8),
and v, =3 if p=5 (mod 8). On the other hand, Lemma 11 implies h(16p) = 2(2 — x,(2))/v,, and
vy | 4(2 = xp(2)). By Lemmas 10 (2) and 12, v, > 1 is even. It follows from Oy, C Oy, C O) that
vp | v,. These observations imply h(16p) = 1 as we will see below.
Case 1. When p =1 (mod 8), since h(16p) = 2/v,, is a natural number, an even v, > 1 must equal
to 2 and h(16p) = 1 as desired.
Case 2. When p = 5 (mod 8), v, | 12 and v, is divisible by v, = 3, so v, € {3,6,12}. Since v,
must be even and h(16p) = 6/v,, is a natural number, we conclude v, = 6 and h(16p) = 1.

By the same reasoning as the proof of Corollary 2, Corollary 1 follows from h(16p) = 1, Theorem
3 together with wig, = 2,/p and the known values h(—4) = 1, w(—4) = 4, w(—4p) = 2. O

Remarks. 1. When p =1 (mod 8), h(4p) = 1 is equivalent to h(p) = 1. Indeed, Lemma 11 tells us
that h(4p) = h(p)(2 — xp(2))/(O; : Oy,) and that (O : Op) | (2 — xp(2)). Since x,(2) = 1, we
deduce that (O) : Oy,) = 1, h(4p) = h(p). In particular, we have h(4 - 73) = h(73), which equals
to 1. See the table in [8, pp. 22-23].

2. By (14 +/53)/2 = [4,7], we find [7] = (7 +/53)/2 € X% ([8, Theorem 2.2.2, p. 39]) and
€53 = (7+/53)/2 ([8, Theorem 2.2.9, p. 44]). Using vs3 := (05 : Of3) | 3 and €53 ¢ OF 55, We see
vs3 = 3, and h(4 - 53) = h(53) (cf. Lemma 11), which equals to 1. See the table in [8, pp. 22-23].
Note that the value vs3 = 3 can be obtained from [8, Theorem 5.2.3, p. 125].
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5 Proof of Theorem 2

Suppose that A is of the form A = didaf3 as in Theorem 2. In view of the bijection ta (cf. §7
Appendix 1), it holds that Ca = {[I(£)]; [¢]~ € Xa}, where we take £ with ¢ € X [8, Theorem 5.5.7,
p. 144]. Let (a, b, ¢) be the type of £. The Oa-regular ideal b := I(§) = [a&, a] has the basis f1 = a,
B2 = a satistying (8185 — B182) /N (B2) =& =& > 0.

Let & = ¢ and & = [ug,ur, Uz, -, Uxn—1) = [uo,u1,--- ,uj—1,&;] be the continued fraction
expansion, where 2¢ is the period length (cf. Lemma 10 (2), [8, Theorem 2.2.2, p. 39]). [8,
Theorem 1.3.5, p. 17] tells us that & € X and that the type (aj,b;,c;) of &; satisfies a; > 0.
One has & ~ &, & ~4 (—1)J¢ for every j by [8, Theorem 2.2.2, p. 39], and & =, —¢ by [8,
Theorem 1.3.8, p. 19], Lemma 10 (2) and [8, Theorem 2.2.9, p. 44]. Hence by [8, Theorem 5.5.7,
p. 144], we see that [I(&;)] = [I(&)] for all j, [I(&)]T = [L(¢)]T for any even j, and [I(§)]" #
[T(&)]T = [I(&)]T = [VAI(E)]T for any odd k. For b = I(¢), it follows from [8, Theorem 5.5.4,
p. 142] that [b] = [I(&)]" U [I(&1)]T. Notice that X((i?dg( (&) = —Xéﬁ)@ (I(€)), as (cf. Proposition
2)

X (I(€)) = X (VAN (1(6)) = signW (VA (1(6) = —x ), (1(€)).

A i .
Hence, one has x5, (1(€)) = (~1)7x{, (I(€) and xgl,@w&))xdl 5, (1(€5)) = (1) for any j.
By the fourth displayed identity in [8, p- 45] (cf. [8, (1), p. 26]), the matrix M, defined in

Proposition 1 for b = I(£) with the basis 51 = a&, f2 = a is given by
_ (w1 up 1 Uge—1 1
M"‘(l 0)(1 0> ( 1 o)'
-1 . . .
Put J = ( ) Using the identities

(5 0)7=-(7 ) o (Fo)-(3 ) =0 1)
sz(—l)f<a1° _01)<1;1 _01>---<172;—1 _01> 5= (— L.

This™t together with Lemma 9 implies that

—_ O

1
0

we have

2t—1 2t—1 (A)
g, = 3 (—1)uy = X, (1 Z Xdydy (1 (&5))1€5]-
=0

By summing over Ca = {[1(§)]; [{]~ € Xa}, it follows from Proposition 1 and Lemma 6 together
with Proposition 2 and Lemma 10 (2) that

A A A ny
L(O’ Xilly)dZ) =2 Z Xél7)d2 (I(&-))X217212((a I(é) = Z Xd1 d2
[El~eXa aEXO
where we put X&ﬁb( ) xfﬁ)@( (@) for a € XQ. Here we used the fact that the set XQ consists
ofall §; (j =0,1,2,--- ,2t — 1) with [¢]. running through X, where ; are defined as above from
given £ € XQ (cf. [8, Theorem 2.2.2, p. 39]). This completes the proof of Theorem 2.

""We owe this identity to Kido’s exposition [15] of Zagier’s works [31, 32].
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6 A remark on Dirichlet series of the primary representation num-
bers by genera

In this section, we shall show that our Theorem 1 is equivalent to the formulas in [11, Theorem 10.1,
p. 295] for A < 0 and [23, Theorem 3, p. 52] for A > 0. Let A be a quadratic discriminant. Let

ga = CJAr /CX2 ~ A /SQA be the genus group of discriminant A, and gAA = SX/?QA the group of
genus characters. By [8, Theorem 6.5.2, p. 223], we have |Ga| = |Q/Z| = 2#A)~1 with an explicit
natural number pu(A), which can be found in [8, p. 222]. Following [11, p. 277], we define
F(A) :={dy;d; is a fundamental discriminant, d; | A, and A/d; is a discriminant}.
It is known that F(A) is a group under a suitable binary operation, |F(A)| = 22) and that
the set {Xéi)dQ;dl € F(A)} covers G SX/?QA exactly twice. We refer to [11, p. 279] for the
discussion about the map F(A) — SX/?QA ~ GA sending d; to Xéﬁzb, which turns out to be a
group epimorphism with the kernel {1,dx}, where df is the discriminant of K = Q(v/A). In
particular, Xfﬁ)@ = Xéﬁ)@ if and only if (di,d2) € {(e1,e2), (e2,€1)}.
For any x € C;Z and s € C with R(s) > 1, we obtain

L(s,x) = > @M@ = 3 x) Y M@

Oa—invertible ideal a COa [c]*GCX Oa—ideal a€[c]t

Fix representatives ¢ so that ¢ C Oa, and take their conjugate ideals ¢’ € ([¢]*)~!, which are Oa-
invertible ideals of Oa satisfying ¢¢’ = (9a(c)) ([8, Corollary 5.4.3, p. 136]). For two lattices a, b
in K = Q(VA), let (a:x b) :={a € K;ab C a} ([8, p. 116]), and let OX" := {e € OX; N(€) > 0}.

Using [8, Lemma 5.3.4, p. 131] and the argument in §11 [33], the map {8 € ¢; N'(8) > 0}/OX™" 2
{a € [c]T;a C Oa} given by ¢(B) := B(Oa :k ¢) is well-defined and ¢ is a bijection. Note that
if @ = ¢(3), then ac’ = (8) and thus N (8) = Na(¢)Na(a) (cf. [8, Theorem 5.1.3, p. 116], [8,
Theorem 5.4.6, p. 137]). Hence we deduce

S M@ = MalPLE . (s).
Oa—ideal agfc]* 4

where, for any Oa-invertible fractional ideal b, we put

Ligals)= 3 N@™

Beb/OXT, N(8)>0
Putting ¢ = b, we obtain
L(s;x) = D XONA®) Ly oon(s) = D X(G) >, Na(6) Ly o (9): (7)
[b]teck Gega [b]TeG

In the innermost sum, each term is independent of the choice of a representative of class in G.
Here, we extend DM (b) := n=2Na(nb), where n is any natural number such that nb is an ideal of
OAa. For any fixed genus Gg € Ga, by the orthogonality relation, one has

A A
S L GOLs X)) = D Y X (GoOXG L (G) Y Ma(6) Ly i (5)

Xiy €6 &), eGa G<0a i ec
A
= ) > Xél,’dQ(GoG) > MNa(b Ow(s)
Gega Xfi?,)dQG(jZ [b]*eq
= 2N(A)—1 Z mA( 8L+O><+() (8)
[b]t€Go
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The sum in the right-hand side of (8) is the Dirichlet series of the number of primary represen-
tation by the genus Gy studied in [11, Theorem 10.1, p. 295] for A < 0 and [23, Theorem 3, p. 52]
for A > 0. In terms of our notations, their results can be stated as

I S NC U S | SR T

[b]+€Go mlf prime plm, pt(f/m)
A —5 —s
<> WL GO xa) L xa) ] @ xa @)~ xa )P (9)
dieF(A/m?2) prime p|(f/m)

Here we write A = dg f2, where df is the discriminant of K = Q(v/A), f is the conductor of A,
and for d; € F(A/m?) C F(A) (cf. [23, Lemma 1 (b), p. 29]), we let d2 be the discriminant of
Q(/A/dr) = Q(v/A/(m?2dy)). The empty products here and in the followings are understood as
being 1.

To get (9) for A < 0, we used [1, Theorem 6.12 (2), p. 90] or [8, Theorem 5.9.7, p. 184], and
we multiplied % instead of d; > 0 posed in [11, Theorem 10.1, p. 295].

Notice that Hprime plf, pl(f/m) (1 — Xdg (p)p_l) = Hprime plm, pl(f/m) (1 — Xdx (p)p_l). While, to
get (9) for A > 0, we used [23, (96), p. 56].

In (9), let fo be a natural number defined by A/d; = daf3. Here, dg and fo depend only on
dy, since A is fixed. By [23, Lemma 1 (e), p. 29], for any natural number m and any fundamental
discriminant d, the condition “m | f and d; € F(A/m?)” is equivalent to “d; € F(A) and m | fo”.
Hence (9) can be written as

248 N7 MAMPLE o ()= D Xty (G) s, xay) L5 xa) D '™

[b]+€Go d1EF(A) m| fo
X 11 =xax@p™") I O=xa@p )1 = xa@p ). (10)
prime pjm, pi(f/m) prime p|(f/m)

If fo > 1, let m,, be a positive integer such that p™» is the highest power of p dividing fo as in
Theorem 1. For any m | fo with m = Hp\fo PP, we put

hp(rp, 8) = { 1= Xa, (P)xa (PP~ rp =y,
paP (1 — Xd; (p)pis)(l — Xd2 (p)pis% 0< Tp < mp.
It is elementary to see that the right-hand side of (10) is given by
mMp
A — (25—
> X (Go)L (s, xa ) Essxa) [T D 0~ by ()
di€F(A) plfo rp=0

with the convention of the empty product mentioned after (9). Indeed, using the same notations as
above, we can write didy = dg f with f; € N, so that f = fof1. Noticing that p | f; is equivalent
to “p| dy and p | dy” for any prime p, we deduce

I C—xa@r0=xa@pr )= ][] %09

prime p|(f/m) prime p|fo
1, Tp = My,
Tp,8) 1= _ _
997, 9) { (1= xa,(P)p~* )1 = Xxa:(P)P™"), 0 <1p <mp.

Similarly, noticing that x4, (p)xd, (p) is 0 or x4 (p) according as p | f1 or p{ fi1, we have

H (1 — Xdg (p)lfl) = H kp(Tp),

prime p|m, pt(f/m) prime p|fo
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_ -1 _
kp(rp) := 1= Xa,(p)xa. ()™, T'p = Mp,

1, 0 <r, <my.

Defining hy,(rp, s) = gp(rp, $)kp(rp), we get the desired expression as stated.
Using ep(s,xéi)@) defined in (1), we obtain Z;Z":O p~ @D p (1), 8) = ep(s,xéi)dZ) and con-
clude that the formula (9) has the form

Z mA O><+(S)

[b+€G0
A
= 2 Y xSL(GOLGs.xa)L(s.xa) [ (s xion,). (11)
Xill,dzegA prime p|fo

In view of (8), the formula (11) is a consequence of our Theorem 1, and we get a new proof of
(9). Conversely, (11) gives another proof of Theorem 1. In fact, using (7) for given XEIA%Q € Ga,

then using (11) and the orthogonality relation, we deduce that

L S Xel 62 Z Xel ) GO) Z mA( SL:OX+( )
Goela 6]t €Go

_ A A
gl-n(a) H° S XL (GoX S (Go) | Lisixa) (s, xa) [ en(sixioh,)

X&?)@ cGa Go€Ga prime p|fo
A
= L(S)Xel)L(S)Xez) H 6p(8,Xg1’)e2). (12)
prime p|fo

This is the statement of Theorem 1.
We conclude that our Theorem 1 is equivalent to (9) obtained in [11, 23].

7 Appendix 1: quadratic irationals

7.1 Correspondences

A discriminant d (that is, d is an integer with d # 0, d = 0,1 (mod 4)) is called fundamental if it
is a discriminant of a quadratic field or 1, and discriminants (—1)®=1/2p (p odd primes) together
with —4, 8, —8 are called prime discriminants. It is known that d is a fundamental discriminant if
and only if d is a product of mutually coprime prime discriminants, except for d = 1. An integer A
is called a quadratic discriminant if A = 0,1 (mod 4), A # O. For any quadratic discriminant A,
we have the unique decomposition A = dg f? with dg the discriminant of the field K = Q(v/A)
and f € N, which is called by the conductor of A (cf. [8, Theorem 1.1.6, p. 4], [8, Theorem
1.1.9, p. 6]). Let oa = 0 or 1 according as A is even or odd. Put VA := j(17518n(A)/2 /]A]
and wa = (oa + VA)/2. Let Oa := [1,wa] be the associated order ([8, Definition 5.1.6, p.
118]). For any non-zero ideal a of Oa, we put Ma(a) = (Oa : a) the absolute norm of a. By
definition, a € K = Q(v/A) is a fractional Oa-ideal if and only if a is a lattice in K such that
Oaa C a. A fractional Oa-ideal a is Oa-invertible if and only if there exists a fractional Oa-
ideal a; such that aa; = Oa ([8, Definition 5.3.3, p. 130]). For any fractional Oa-ideal a, we
extend MNa(a) := n 2Na(na), where n is any natural number such that na is an ideal of On.
We can take such an n by [8, Lemma 5.3.4, p. 130], and this definition is independent of the
choice of n. For lattices a, b in K = Q(vA), let (a :x b) := {a € K;ab C a} ([8, p. 116]).
For any fractional Oa-invertible ideals a, b and A € K*, it is not difficult to check the following
relations; Ma (ab) = Na(a)Na(b), ad’ = (Na(a)), Na((N)) = IN(N)], and (a :x b) = a(Oa :x b),
Na((a:x b)) = Na(a)Na(b)™
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Two fractional Oa-ideals a and b are equivalent, denoted by a ~ b, if and only if there exists
A € Q(vVA)* such that a = Ab. We denote by [a] the equivalence class of a, and by Ca the set
of all equivalence classes of Oa-invertible fractional Oa-ideals. Two fractional Oa-ideals a and b
are properly equivalent (in other words, equivalent in the narrow sense), denoted by a ~; b, if and
only if there exists A € Q(v/A)* with A/(A\) = AN > 0 such that a = Ab. We denote by [a]* the
proper equivalence class of a, and by CX the set of all proper equivalence classes of Oa-invertible
fractional Oa-ideals ([8, pp. 140-141)).

Let Xa := {¢ = (b+VA)/(2a);a # 0, b,c € Z,(a,b,c) = 1,b*> — 4ac = A} be the set of all
quadratic irrationals of discriminant A. A quadratic irrational £ = (b4 v/A)/(2a) € Xa is called
of type (a, b, c) and discriminant A. Put (whenever it is meaninful)

_az+f [ a B
M(z).—72+6 for M—<7 5).

Two numbers 21, zo € Xa are equivalent (z; ~ z) if and only if there exists M € GL2(Z) such
that z; = M(z9). Denote by [£]. the equivalence class of £, and by X the set of all equivalence
classes of Xao. Two numbers z1, 2o € XA are properly equivalent (21 ~4 z2) if and only if there
exists M € SLy(Z) such that z; = M(z2). Denote by [{]~, the proper equivalence class of &, and
by XX the set of all proper equivalence classes of Xa ([8, p. 12]).

For A > 0, let XQ = {€ € Xa;—1 < ¢ < 0,1 < &} be the set of all reduced irrationals ([8,
Definition 1.3.1, p. 16]). For any & € Xa, there exists n € X4 such that & ~1 1 ([8, Theorem 1.3.5,
p. 17)). For ¢ = (b+ VA)/(2a) € Xa, the lattice I(¢) := [a,a€] is an Oa-regular ideal and
MNA(L(§)) = |a| ([8, Definition 5.4.1, p. 132], [8, Theorem 5.4.5, p. 136]). By definition, an ideal a
of Op is called reduced if a = I(£) for some & € XX ([8, p. 143]). Similar statements hold in the
case of A < 0.

We denote by f = [a, b, ¢] the quadratic form f(z,y) = ax?®+bry+cy? with a, b, c € Z. For such

an f, the action f — Af of A = < : ? > € SLy(Z) is defined by (Af)(z,y) := flax+vyy, fx+y)

([8, Definition 6.1.2, p. 194]). For any quadratic discriminant A, let Fa be the set of all equivalence
classes with respect to the action f +— Af of A € SLy(Z) on “not negative-definite” primitive forms
of discriminant A ([8, p. 197]). We denote by [f] (or [a, b, c]) the equivalent class of f = [a, b, c|. Let
&= (b+VA)/(2a) for f = [a,b,c] of discriminant A (s O). This &; is a solution of f(X,—1) = 0.
Hence, when A > 0, one has £} < &7 if a > 0, while {y < &} if @ < 0. When A < 0, one has
J(&f) > 0if f is positive-definite.
Fact 1. For A > 0, the map Ja : a — XL defined by 9a([f]) := (€]~ is bijective. For A <0,
the map YA : §a — Xa defined by A ([f]) := [£f]~ is bijective. See [8, Theorem 6.1.7, p. 197].
Fact 2. For any A, the map ta : Xa — Ca defined by ta([¢]~) := [1(§)] is bijective. For A > 0,
the map ta : X§ — CJ defined by ta([¢]~,) := [I(£)]T, where ¢ is chosen to be of type (a,b,c)
with a > 0, is bijective. See [8, Theorem 5.5.8, p. 146].
Fact 3. The map ®a : §a — CL defined by ®a([f]) := [I(ff)\/Z(I_SIgn(a)
f =la,b,c]. See [8, Theorem 6.4.2, p. 214].

The set §a has a group structure compatible with that of CJAF. The product of Fy, Fo € Fa is
given by Fi * Fy := &' (DA (F1)Pa(F2)). Hence ®a becomes a group isomorphism.

. . n | 1xal ifA<O,
Following [8, Theorem 1.3.10, p. 20], we define h(A) := |Xal, AT (A) = { PRETE

2
) |* is bijective. Here

Hence,

h(A) =[Cal,  hT(A) = [3al = ICAl.
Remark 1. For A <0 and &€ = (b+VA)/(2a) € Xa, we have 91'([¢]~) = [|al,b, (b* — A)/(4]a])].

Remark 2. In general, for A > 0, the map ta has the form ta([¢]~,) = [I(ﬁ)\/Z(PSign(a))/z]J“,
where ¢ is of type (a,b,c) and discriminant A.
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Remark 3. For any fractional Oa-invertible ideal a, take an integral basis a = [51, 2] satisfying
(B185 — B B2)/VA < 0 (an oriented basis), where 8’ is the conjugate of 3. We can associate a “not
negative-definite” primitive form of discriminant A corresponding to this basis by f3, g,(x,y) :=
Na(a) LBz + B2y)(Bix + Bhy). The equivalence class [fs, s,] is determined uniquely from a
(more precisely, from [a] 1), and is independent of the typical choice of the oriented basis. Moreover,
& ([a]*) = [f5,.5,] (cf. [33, §10]). We see that ta = ®a09x" and that ¢ ([[B1, B2]]T) = [B2/Bi]~s
if A > 0, while (x"([[1,3]]) = [B2/B1]~ if A < 0 using any oriented basis 81, 32. Notice that

5fﬂ1,62 - /82/61'

7.2 Genus characters

In this section, we recall the definition of genus characters for general discriminant. Let d; and do
be two fundamental discriminants, which are not necessarily relatively prime. Then A := dyda fZ is
a discriminant for any natural number fy. Conversely, for any discriminant A, take any fundamental
discriminant d; | A such that A/d; is a discriminant. Then a fundamental discriminant dy and
a natural number fp are determined uniquely by the expression A/d; = dy f02. Note that A is

a quadratic discriminant if and only if d; # do. When A = didyf3 is a quadratic discriminant,
(A)

we associate the genus character x, 4y On the set of all “not negative-definite” primitive binary
quadratic forms of discriminant A as follows (see [2,83], [11,§2], and [8, §6.5] (in particular, p. 226,
Theorem 6.5.11 in p. 231, and Theorem 6.5.5 in p. 227 of [8]));

X (lab,e)) = I1 X9([a,b,d]),

prime discriminant g¢*|d;

@) (lq.b. o) . d Xer(@) if (a,07)
e = {3

where xq+(m) := (?n—*) is the Kronecker character. When d; = 1, we understand that XE!?)dQ takes
the value 1 identically. This XEhA)d2 becomes a character on §a by putting XEhA)dQ(F) = Xél )dQ( f)
with F' = [f]. For any quadratic discriminant A, let us define

1,
1,

F(A) :={d1;d; is a fundamental discriminant, d; | A,and A/d; is a discriminant}.

It is known that F'(A) is a group under a suitable binary operation, and that the map F(A) —
Fa/T4 sending d; to XélA)dQ turns out to be a group epimorphism with the kernel {1,dx}. Here
dg the discriminant of K = Q(v/A). In particular, XéﬁLQ Xgl,g if and only if (di,ds) €
{(e1,e2), (e2,€1)}. Note that if ¢* is odd then ¢* = (—1)(¢~D/2¢ with an odd prime ¢ := |¢*|, and

we have yg«(m) = (Legendre’s symbol) for any integer m. ¥

q

#'Here we give additional remarks. Notice that if an odd prime discriminant ¢* | dy satisfies ¢* | a, then ¢* |
A + 4ac = b and ¢* | b. We have ¢* { ¢ since (a,b,c¢) = 1. If ¢* | ¢, we deduce ¢* { @ in the same manner. When
q* | d1 and ¢ is an even prime discriminant, then A 4 4ac = b is even. Hence 21 a or 2t ¢ because of (a,b,c) = 1.
Therefore either (a,q¢*) =1 or (¢,q*) =1 is fulfilled for any prime discriminant ¢* | di. If (a,¢*) =1 and (¢, ¢*) =1,
we have xq¢+(a) = xq=(c) by [8, Theorem 6.5.5, p. 227]. An equivalent definition of Xl(i?llz is Xfﬁzz (f) := xd, (m), where
m is any integer such that (m,A) = 1 and represented by f. Such an m always exists by [8, Theorem 6.2.1, p. 199],
and the value of Xil?,)dg is independent of the specific choice of m by [8, Theorem 6.5.3, p. 223]. For such an m, it

follows that m € Ker(Qa) by [8, Theorem 6.5.3, p. 223], and that 1 = Qa(m) = (£) = (£) (£) = xa, (M)xa, (M) =

N A N o Ay i A A
Xgh >d2 (f)xil2 )dl (f). Hence, we have x&l )d2 = Xéz >d1 Similarly, we conclude Xgll,)dz (FixFy) = Xt(h )d2 (F1)X£l1 )dz( F3) for

any F; € §a. Indeed, when F; € Fa represents m; with (A, m;) = 1, then F; Fg represents mimz by [8, Corollary
6.4.8, p. 217], and thus one has X&?’)@(Fi x Fy) = (mf;w) = (%) (7%) = Xd1 d2(F1)Xd1 a, (F2).
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By means of the group isomorphism ®x : §a — CI, the character XélA)ch gives a character of

CX. We then define the genus character L-function for R(s) > 1 by

(A) XEiA)d (a)
. 1,d2
L(S’XdeQ) T Z CﬁA(a)s :
Oa —invertible ideal a COAa

Here the sum is taken over all Oa-invertible ideals a of Oa.
8 Appendix 2: H. Lang’s evaluation of n,,

According to H. Lang [18, (2.14), p. 423], for any M = < Z b > € SLy(Z), we define (M) by

d
—12¥(M) = &(M) — 3sign(c),

where we set sign(c) = 0 if ¢ = 0, and ®(M) is Rademacher’s ® (cf. [26, (71.21), p. 150]), that is,
O(M) =b/d if ¢ =0, while —12¥ (M) = nyps if ¢ # 0 (cf. Lemma 7). In terms of the notations in
Lemma 6, Meyer’s formula can be stated as

—4x?
Loua(1,x) = ————=x((82))¥(Me),  Loua(0,x) = —4x((52)) ¥ (Mp).
2 Ma(6)VA 4
Suppose that N" = (7)), N' = (53), N = (£%) € SLy(Z) satisty N” = N'N. By [26,
Theorem, p. 152], one has ®(N) + ®(N') — ®(N") = 3sign(cc'¢”), in other words,
1

U(N")y —¥(N) - ¥(N') = —Z{sign(c) + sign(c’) — sign(c”) — sign(ec'd”)}. (13)

Let n be a natural number, and let u; > 1, j = 0,1,2,--- ,2n — 1 be integers. We define

M € SLy(Z) by

. Uuo 1 ul 1 U2n—1 1
u=( ) (F0) (M o)

According to [18, p. 422], we put

AJ:(ulj (1)) A§=<(ff)j <_10)j+1>7

My = AjAT--- A, M, :=A0A---A,1 (1<v<2n).

Noticing the identity ( C{ _01 ) ( _bl (1) > - < ‘1’“ é ) ( ll’ é ) it hold that M} = M, for

any even v > 2 (in particular M3, = M), and M} = M, _1A}_, for any odd v > 2 (cf. [18, p. 423]).
By definition, all components of M,, are positive when v > 2.
In view of M} = M A%_, the relation (13) for (N”,N',N) = (M}, M}_,, A% _) tells us that

v—1> v—1“v—1
V(M) =W(My_y) +¥(4,1)  (v=2) (14)
Indeed, when v is even, ¢’ > 0 follows from M} = M, and sign(c) = (—1)*"! = —1 by the

definition of A% ;. If v > 4 is even, since M} | = M} ,A% , = M, _9A}_,, one has ¢ > 0 by
noticing u,—o > 0. If v = 2, by M}_, = A}, one has ¢ =1 > 0. Hence (13) implies (14). When
v is odd, ¢ > 0 follows from M} _; = M, _1, and sign(c) = (—1)""! = 1 by the definition of A%_;.
Since M = M} A% | = M, _1A}_,, we see that ¢ > 0 by u,—; > 0. Hence (13) implies (14).
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It follows that

2n—1 1 2n—1 ) ' 1 2n—1 ‘
U(M) = w(Mg,) = Y WA = =5 > (1w = (1)73) = =5 > (=1 u;.
=0 7=0 =0

Here at the third equal sign, we used —12¥ (A7) = nx, Lemma 7 and s(0,1) =0 (cf. (5)). This
gives another proof of Lemma 9 by noticing that two definitions of M coincide with each other (cf.
Section 5).
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