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Abstract. We introduce and study a “level two” analogue of finite multiple

zeta values. We give conjectural bases of the space of finite Euler sums as

well as that of usual finite multiple zeta values in terms of these newly de-
fined elements. A kind of “parity result” and certain sum formulas are also

presented.

1. Definitions and conjectures

The finite multiple zeta value ζA(k1, . . . , kr) is an element in the Q-algebra A
defined by

A :=
∏
p

Z/pZ /
⊕
p

Z/pZ = {(a(p))p | a(p) ∈ Z/pZ}/ ∼ .

Here, p runs over all prime numbers, and the relation (a(p))p ∼ (b(p))p means that
the equality a(p) = b(p) holds in Z/pZ for all but a finite number of p. We often
identify a representative a = (a(p))p with the element in A that it defines. Precisely,
ζA(k1, . . . , kr) is defined as follows.

Definition 1.1. For a tuple of positive integers (k1, . . . , kr) (called an index), define
the (A-) finite multiple zeta value ζA(k1, . . . , kr) ∈ A by

(1) ζA(k1, . . . , kr)(p) =
∑

0<m1<···<mr<p

1

mk1
1 · · ·mkr

r

mod p.

This is a finite analogue of the usual multiple zeta value in R:

(2) ζ(k1, . . . , kr) =
∑

0<m1<···<mr

1

mk1
1 · · ·mkr

r

.

To ensure the convergence, we need the condition kr > 1 here, but for ζA(k1, . . . , kr),
obviously we do not need such a restriction.

In recent years, a vast amount of work has been done on the classical multiple
zeta value (2) and its numerous variants and generalizations including the finite
multiple zeta value (1). A central conjecture concerning finite multiple zeta values
predicts a deep connection between finite and classical multiple zeta values (see
[7, 8] for the precise statement). For references to the extensive literature on the
subject, one may refer to the book [16] by Zhao and the website [5] maintained by
Hoffman.
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In this paper, we consider the following “level two” variant ζ
(2)
A (k1, . . . , kr) of

ζA(k1, . . . , kr).

Definition 1.2. For an index (k1, . . . , kr), define the finite multiple zeta value of

level two ζ
(2)
A (k1, . . . , kr) in A by

(3) ζ
(2)
A (k1, . . . , kr)(p) =

∑
0<m1<···<mr<p/2

1

mk1
1 · · ·mkr

r

mod p.

The difference is that the summation extends up to p/2 instead of p. We mention
that this sum for special indices was already considered in several literatures, for
instance in Pilehrood-Pilehrood-Tauraso [11]. See also [16].

For later use, we note here that, by putting ni = 2mi first and then changing ni

with p− nr+1−i, we have two expressions

ζ
(2)
A (k1, . . . , kr)(p) = 2k1+···+kr

∑
0<n1<···<nr<p

ni: even

1

nk1
1 · · ·nkr

r

mod p(4)

= (−2)k1+···+kr

∑
0<n1<···<nr<p

ni: odd

1

nkr
1 · · ·nk1

r

mod p.(5)

In particular, ζ
(2)
A (k1, . . . , kr) may be viewed as a finite analogue of Hoffman’s “t-

value” [4], up to a constant multiple. We further note that, if we write the sum on
the right as∑

0<n1<···<nr<p
ni: odd

1

nkr
1 · · ·nk1

r

= 2−r
∑

0<n1<···<nr<p

(1− (−1)n1) · · · (1− (−1)nr )

nkr
1 · · ·nk1

r

,

we see that ζ
(2)
A (k1, . . . , kr) can be written as a Q-linear combination of “finite Euler

sums,” as studied for instance in Zhao [15, 16].
We introduce three Q-subspaces of A spanned by the usual finite multiple zeta

values, our level-two analogues, and the finite Euler sums.

Definition 1.3. For each integer k ≥ 0, define the Q-vector spaces Z(1)
A,k, Z

(2)
A,k,

and Ek in A by Z(1)
A,0 = Z(2)

A,0 = E0 = Q and

Z(1)
A,k :=

∑
k1+···+kr=k
r≥1, ∀ki≥1

Q · ζA(k1, . . . , kr) (k ≥ 1),

Z(2)
A,k :=

∑
k1+···+kr=k
r≥1, ∀ki≥1

Q · ζ(2)A (k1, . . . , kr) (k ≥ 1),

and

Ek := Q-span of all finite Euler sums of weight k,

namely, all elements in A of the form( ∑
0<m1<···<mr<p

(±1)m1 · · · (±1)mr

mk1
1 · · ·mkr

r

mod p

)
p
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with k1+ · · ·+kr = k (r ≥ 1,∀ki ≥ 1) and with all possible signs in the numerator.
Further, we set

Z(1)
A :=

∞∑
k=0

Z(1)
A,k, Z(2)

A :=

∞∑
k=0

Z(2)
A,k, E :=

∞∑
k=0

Ek.

Proposition 1.4. The space Z(2)
A is a Q-subalgebra of E.

Proof. That the space Z(2)
A is contained in E has already been remarked above.

And that Z(2)
A is closed under multiplication is seen by the fact that the standard

harmonic (or stuffle) product rule applies also to the defining sum of ζ
(2)
A (k1, . . . , kr)

in (3). (E is a Q-algebra by the same reasoning.) □
Based on an evidence supported by numerical experiments, we propose the fol-

lowing conjecture.

Conjecture 1.5. i) Z(2)
A = E.

ii) The set {ζ(2)A (k1, . . . , kr) | r ≥ 1, ∀ki : odd ≥ 1} forms a linear basis of Z(2)
A .

Remark 1.6. The conjectural dimension (as a Q-vector space) of Ek (k ≥ 1) is given
by the Fibonacci number Fk (= Fk−1 + Fk−2, F1 = F2 = 1) (cf. [16, §8.6.3]). The
cardinality of the set in ii) above is easily seen to be equal to Fk. Also note that

the number of ζ
(2)
A (k1, . . . , kr) of weight k is 2k−1 which is much smaller than that

of finite Euler sums of weight k, namely 2 · 3k−1.

Proposition 1.7. The space Z(1)
A of ordinary finite multiple zeta values is con-

tained in Z(2)
A ; we have the inclusions Z(1)

A ⊂ Z(2)
A ⊂ E.

Proof. This can be seen from the identity

(6) ζA(k1, . . . , kr) =

r∑
i=0

(−1)ki+1+···+krζ
(2)
A (k1, . . . , ki)ζ

(2)
A (kr, . . . , ki+1),

where we set ζ
(2)
A (∅) = 1, together with Proposition 1.4 (that Z(2)

A is closed under
multiplication). This identity, which is useful in several places in the rest of the
paper, is a consequence of the following division of the sum∑

0<m1<···<mr<p

=

r∑
i=0

∑
0<m1<···<mi<p/2<mi+1<···<mr<p

in the definition and the change mj → p−mj for j = i+ 1, . . . , r. □
Remark 1.8. This is reminiscent of the definition of the “symmetric multiple zeta
values,” a conjectural real counterpart of finite multiple zeta values. See [7, 8] for
the details on this.

Also from the numerical experiments, we surmise

Conjecture 1.9. i) If all ki are greater than 1, each ζ
(2)
A (k1, . . . , kr) is in Z(1)

A .

ii) The set {ζ(2)A (k1, . . . , kr) | r ≥ 1, ∀ki : odd ≥ 3} constitutes a basis of Z(1)
A .

Remark 1.10. The conjectural dimension of Z(1)
A is given by the sequence dk−3

defined recursively by dk = dk−2 + dk−3, d0 = 1, d1 = 0, d2 = 1. (cf. [7, 16]). The
cardinality of the set in ii) above equals dk−3.
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2. Examples in low depths and a parity result

First we define two specific elements L(2) and Z(k) (k ≥ 2) in A as

L(2)(p) :=
2p−1 − 1

p
mod p and Z(k)(p) :=

Bp−k

k
mod p,

where Bn denotes the nth Bernoulli number. Note that, by the definition of A,
we may ignore possible (finitely many) p’s such that the right-hand sides are not
well defined. These elements are respectively a natural analogue of log 2 and the
conjectural “true” analogue of ζ(k) mod π2 in A. We refer the reader to [8] for
more details on these. We first recall known formulas for depth (the length of the
index) less than or equal to 2 ([12, Th. 5.2], [10, Lem. 1]). We give proofs for the
convenience of the reader.

Proposition 2.1 ([12], [10]). i) ζ
(2)
A (1) = −2L(2) and ζ

(2)
A (k) = (2 − 2k)Z(k) for

k ≥ 2.

In particular, ζ
(2)
A (k) = 0 if k is even.

ii) If k1 + k2 is odd,

ζ
(2)
A (k1, k2) =

1

2

{
(−1)k2

(
k1 + k2

k2

)
+ 2k1+k2 − 2

}
Z (k1 + k2) .

Proof. i) From the computation using the binomial formula, we have

2L(2)(p) =
(1 + 1)p − 2

p
mod p =

p−1∑
i=1

(−1)i−1

i
mod p.

This is equal to −ζ
(2)
A (1) because∑

0<i<p
i:even

1

i
mod p =

1

2
ζ
(2)
A (1)(p) and

∑
0<i<p
i:odd

1

i
mod p = −1

2
ζ
(2)
A (1)(p),

as seen from (4) and (5).
For the second equality, we use the Seki-Bernoulli formula for sum of powers (cf.

[1]). We start with

ζ
(2)
A (k)(p) =

∑
0<m<p/2

1

mk
mod p =

∑
0<m<p/2

mp−1−k mod p.

The last sum, for large enough p, is equal to
(
Bp−k

(
p+1
2

)
−Bp−k(1)

)
/(p−k), where

Bn(x) denotes the Bernoulli polynomial (cf. [1, Rem. 4.10]). From the formula
Bn(1/2) = (21−n − 1)Bn (easily derived from the distribution relation [1, Prop.
4.9 (7)] for the case k = 2), we see that this quantity is congruent modulo p to
(2− 2k)Bp−k/k, the result follows. When k is even, Bp−k = 0 for almost all p and

thus ζ
(2)
A (k) = 0.

We prove ii) in Example 2.4 after we present a general identity (7). □

The equality in ii) above may be viewed as an analogue of the “parity result”
([6, 13]) in the case of depth 2. In the next proposition we present a general
identity from which one can obtain (a kind of) a general parity result. To state the

proposition, we introduce the “star” variant ζ
(2),⋆
A (k1, . . . , kr) defined similarly as

ζ
(2)
A (k1, . . . , kr) but the summation is over 0 < m1 ≤ · · · ≤ mr < p/2 rather than
with the strict inequalities.
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Proposition 2.2. For any r ≥ 1 and ki ≥ 1, we have

(7) ζ
(2)
A (k1, . . . , kr) = (−1)r+k1+···+kr

r∑
i=0

(−1)iζA(ki, . . . , k1)ζ
(2),⋆
A (ki+1, . . . , kr).

Proof. We use (6) and the “antipode identity” (a consequence of the harmonic
algebra structure, see [3])

(8)

r∑
j=0

(−1)jζ
(2)
A (kj , . . . , k1)ζ

(2),⋆
A (kj+1, . . . , kr) = δr,0,

where δr,0 is 0 if r > 0 and 1 if r = 0. By using these and the reversal formula
ζA(ki, . . . , k1) = (−1)k1+···+kiζA(k1, . . . , ki), we start with the sum on the right and
proceed as

r∑
i=0

(−1)iζA(ki, . . . , k1)ζ
(2),⋆
A (ki+1, . . . , kr)

=

r∑
i=0

(−1)i+k1+···+kiζA(k1, . . . , ki)ζ
(2),⋆
A (ki+1, . . . , kr)

=

r∑
i=0

(−1)i+k1+···+ki

i∑
j=0

(−1)kj+1+···+kiζ
(2)
A (k1, . . . , kj)ζ

(2)
A (ki, . . . , kj+1)ζ

(2),⋆
A (ki+1, . . . , kr)

=

r∑
j=0

r∑
i=j

(−1)i+k1+···+kjζ
(2)
A (ki, . . . , kj+1)ζ

(2),⋆
A (ki+1, . . . , kr)ζ

(2)
A (k1, . . . , kj)

=(−1)r+k1+···+krζ
(2)
A (k1, . . . , kr).

□

Remark 2.3. If k1 + · · ·+ kr ̸≡ r mod 2, we obtain from (7)

ζ
(2)
A (k1, . . . , kr) + ζ

(2),⋆
A (k1, . . . , kr) = −

r∑
i=1

(−1)iζA(ki, . . . , k1)ζ
(2),⋆
A (ki+1, . . . , kr).

Noting ζ
(2)
A (k1, . . . , kr)+ζ

(2),⋆
A (k1, . . . , kr) = 2ζ

(2)
A (k1, . . . , kr)+

∑
ζ
(2)
A (lower depth),

we conclude that if the weight and the depth have a different parity, ζ
(2)
A (k1, . . . , kr)

is written as a sum of products of ζ
(2)
A ’s of lower depths and ζA(k1, . . . , kr). If we

view the depth of ζA(k1, . . . , kr) as r − 1 (this is reasonable in light of our “main
conjecture” in [8]), this gives a kind of parity result for finite multiple zeta values
of level 2, although it has the term ζA(k1, . . . , kr) of level one.

Example 2.4. i) When r = 2, the identity (7) becomes

ζ
(2)
A (k1, k2) = (−1)k1+k2

(
ζ
(2),⋆
A (k1, k2)− ζA(k1)ζ

(2),⋆
A (k2) + ζA(k2, k1)

)
,

and this is equal to

(−1)k1+k2
(
ζ
(2)
A (k1, k2) + ζ

(2)
A (k1 + k2) + ζA(k2, k1)

)
because ζA(k1) = 0 for any k1 (see [3, 14], also [7, 8]). If k1 + k2 is odd, we see
from this that

ζ
(2)
A (k1, k2) = −1

2

(
ζ
(2)
A (k1 + k2) + ζA(k2, k1)

)
.
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Then Proposition 2.1 ii) follows from Proposition 2.1 i) and a formula for ζA(k2, k1)
in [3, 14, 7, 8].

ii) The case r = 3 of (7) reads (we set k = k1 + k2 + k3 and use ζA(k1) = 0)

ζ
(2)
A (k1, k2, k3) = (−1)k−1

(
ζ
(2),⋆
A (k1, k2, k3) + ζA(k2, k1)ζ

(2),⋆
A (k3)− ζA(k3, k2, k1)

)
.

If k is even, we have, by writing ζ
(2),⋆
A (k1, k2, k3) as a sum of ζ

(2)
A in a usual way,

ζ
(2)
A (k1, k2, k3)

=
1

2

(
ζA(k1, k2, k3)− ζ

(2)
A (k1 + k2, k3)− ζ

(2)
A (k1, k2 + k3) + ζA(k1, k2)ζ

(2)
A (k3)

)
.

3. Sum formulas

In this section, we present various sum formulas. First, we establish formulas for

S(k, r) :=
∑

k1+···+kr=k

ζ
(2)
A (k1, . . . , kr) and S1(k, r) :=

∑
k1+···+kr=k

∀ki≥2

ζ
(2)
A (k1, . . . , kr),

writing them as linear combinations of conjectural basis elements given in Cojec-
tures 1.5 and 1.9 respectively. Set

B(k, r) :=
∑

k1+···+kr=k
∀ki:odd≥1

ζ
(2)
A (k1, . . . , kr) and B1(k, r) :=

∑
k1+···+kr=k
∀ki:odd≥3

ζ
(2)
A (k1, . . . , kr).

Theorem 3.1. For 1 ≤ r ≤ k, we have
i)

S(k, r) = (−1)k+r
∑

1≤i≤r
i≡k mod 2

( k−i
2

r − i

)
B(k, i)

and
ii)

S1(k, r) = (−1)k+r
∑

1≤i≤r
i≡k mod 2

( k−3i
2

r − i

)
B1(k, i).

The following is the key lemma to prove Theorem 3.1. We consider the Q-vector
space spanned by formal symbols [k] for each index k, equipped with the algebra
structure given by the harmonic (stuffle) product ∗. For example, [(2)] ∗ [(3)] =
[(2, 3)] + [(3, 2)] + [(5)]. This is isomorphic to Hoffman’s harmonic algebra h1 ([2]).
For more details, we refer [2, 7].

Lemma 3.2. For 1 ≤ r ≤ k and 0 ≤ a ≤ r, set

g(k, r, a) :=
∑

k1+···+kr=k
# of even ki = a

[(k1, . . . , kr)] and g1(k, r, a) :=
∑

k1+···+kr=k
# of even ki = a

∀ki≥2

[(k1, . . . , kr)].

Then we have
i)

k−r−a
2∑

i=1

[(2i)] ∗ g(k − 2i, r, a) =
k − r − a

2
g(k, r, a) + (a+ 1)g(k, r + 1, a+ 1)

and
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ii)

k−3r+a
2∑

i=1

[(2i)] ∗ g1(k − 2i, r, a) =
k − 3r + a

2
g1(k, r, a) + (a+ 1)g1(k, r + 1, a+ 1).

Proof. i) If we compute the harmonic product [(2i)] ∗ g(k − 2i, r, a), each resulting
term has weight k, depth either r or r+1 and the number of even entries a or a+1
respectively, i.e., a term appearing in either g(k, r, a) or g(k, r + 1, a + 1). For a
given [(k1, . . . , kr)] in g(k, r, a), the number of possible combinations of i and a term
in g(k− 2i, r, a) which give [(k1, . . . , kr)] in their harmonic product is (k− r− a)/2
because the depth r and the number a of even entries are the same, so the choice
is the entry kj in [(k1, . . . , kr)] which is larger than 2 and the amount 2i such that
(k1, . . . , kj − 2i, . . . , kr)] is still an index (kj − 2i > 0). Such a pair (kj , i) is unique,
and the total number is (k − (r − a)− 2a)/2 = (k − r − a)/2 (there are r − a odd
entries and a even entries in (k1, . . . , kr), and k − (r − a) − 2a is the ‘excess’ for
possible subtraction of 2i). The term [(k1, . . . , kr)] in g(k, r + 1, a+ 1) comes from
[(2i)] ∗ g(k− 2i, r, a) by inserting 2i to a term in g(k− 2i, r, a), and so the choice is
a+ 1.

The formula ii) is proved similarly, just by noting the condition that all entries
are greater than or equal to 2. □

Proof of Theorem 3.1. i) From Proposition 2.1 i) and i) of the above lemma, one
concludes

k − r − a

2
S(k, r, a) + (a+ 1)S(k, r + 1, a+ 1) = 0

because ζ
(2)
A obeys the harmonic product rule. From this, and noting S(k, r, 0) =

B(k, r), we have

S(k, r, a) =

(
−k − r − a+ 2

2a

)
S(k, r − 1, a− 1)

=

(
−k − r − a+ 2

2a

)(
−k − r − a+ 4

2(a− 1)

)
S(k, r − 2, a− 2)

= . . .

=

(
−k − r − a+ 2

2a

)(
−k − r − a+ 4

2(a− 1)

)
· · ·
(
−k − r − a+ 2a

2

)
S(k, r − a, 0)

= (−1)a
(k−r+a

2

a

)
B(k, r − a).

Summing up, we obtain i). The proof of ii) is the same and is omitted. □

In an attempt to find a sum formula which is more close in form to the classical
one (cf. [16, Ch. 5]), we discovered experimentally several strange formulas, some
we could prove and the other conjectural. Since we feel there still are much to
be discovered and our understanding is not mature yet, we mention only several of
them, postponing the detailed study in a future publication [9] by the second-named
author.
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Theorem 3.3. For 1 ≤ r ≤ k and a fixed i, we have∑
k1+···+kr=k

ki:odd and ∀kj :even (j ̸=i)

ζ
(2)
A (k1, . . . , kr) = c ζ

(2)
A (k) for some rational constant c.

Proof. A special case

ζ
(2)
A (2, . . . 2︸ ︷︷ ︸

i−1

, 1, 2, . . . , 2︸ ︷︷ ︸
r−i

) =
(−1)r−1

22r−2

(
2r − 1

2i− 1

)
ζ
(2)
A (2r − 1)

is proved in [11, Th. 5.4], and we may use this and the harmonic product to establish
the theorem. We are not able to obtain a general closed formula of the constant
c. □

The result [11, Th. 5.3] is also a special case and there the constant is explicit.
The above theorem looks similar to the classical sum formula for multiple zeta
values. There are several variants like restricted sum formulas or weighted sum
formulas (see for instance [16]). But the next formulas looks rather strange and
seems similar to none of these. We introduce one notation.

Definition 3.4. For an index (k1, . . . , kr) of weight k = k1 + · · ·+ kr, put

C(k1, . . . , kr) :=

r−1∑
j=1

(−1)k1+···+kj

(
k

k1 + · · ·+ kj

)
.

Let Σn be the set of permutations of {1, . . . , n} (the symmetric group of order
n). The following is a theorem for the usual (level one) finite multiple zeta values.

Theorem 3.5. For a non-empty index (k1, . . . , kr) of depth r and weight k, we
have ∑

σ∈Σr

(
r + 1− 2σ−1(r)

)
ζA(kσ(1), . . . , kσ(r))

= (−1)r 2
∑

τ∈Σr−1

C(kτ(1), . . . , kτ(r−1), kr) · Z(k).

And the next is a level-two counterpart.

Theorem 3.6. For a non-empty index (k1, . . . , kr) of depth r and weight k with ki
even for all 1 ≤ i ≤ r − 1 and kr odd, we have∑

σ∈Σr

(
r + 1− 2σ−1(r)

)
ζ
(2)
A (kσ(1), . . . , kσ(r))

= (−1)r
∑

τ∈Σr−1

C(kτ(1), . . . , kτ(r−1), kr) · Z(k).

The proofs of both theorems rely on the following lemma.

Lemma 3.7. For an index (k1, . . . , kr), set

R(k1, . . . , kr) =
∑
σ∈Σr

(r + 1− 2σ−1(r))[(kσ(1), . . . , kσ(r))].
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Then, we have the identity

r−1∑
i=1

[(ki)] ∗R(k1, . . . , ǩi, . . . , kr)

= (r − 2)R(k1, . . . , kr) +
∑

1≤i≤r−1

R(k1, . . . , ǩi, . . . , kr−1, ki + kr)

+ 2
∑

1≤i<j≤r−1

R(ki + kj , k1, . . . , ǩi, . . . , ǩj . . . , kr−1, kr),

where ǩi means ki is deleted.

The proof of the lemma is done basically by comparing coefficients of terms
on both sides, though this is a bit tedious. And the proofs of theorems are by
induction on depths, starting point being explicit formulas in the case of depth
2 (Proposition 2.1 for level 2 and [3, 14], [7, Ex. 7.4] for level 1). The detailed
discussion will be given in [9].

We end this paper by a conjecture, which may be viewed as a variant of the
weighted sum formula but also strange in form.

Conjecture 3.8. For r ≥ 1 and a (0 ≤ a ≤ r), one has∑
∀ki∈{1,2}

#{i|ki=2}=a

(
(−1)#{i|i:odd,ki=2}2a − 1

)
ζ
(2)
A (k1, . . . , kr) = 0. (The weight is r + a.)
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