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Abstract. An elliptic curve E can be immersed in PN−1 as a curve of
degree N by means of the linear system of |NO|, where O is the origin
of E. Well-known classical results going back to Bianchi and Klein say
that if N is odd, this immersion is uniquely determined by specifying a
full-level N structure. In this paper we show that if N is even, unique-
ness of immersion is ensured by specifying a level structure associated
with a certain congruence subgroup between Γ(N) and Γ(2N). More-
over, we construct, over the complex number field, an immersion by
means of suitably chosen theta functions, and write down the quadratic
equations satisfied by them.

1. Introduction

An elliptic normal curve of degree N means an elliptic curve E together
with an immersion into a projective space E ↪→ PN−1 as a degree N curve
that is contained in no hyperplane. We assume N ≥ 4, and that the base
field K is a field of characteristic not dividing N . By the Riemann-Roch
theorem, any elliptic curve E over K can be realized as an elliptic normal
curve of degree N in PN−1 by means of a complete linear system |D| with
any effective divisor D of degree N . In particular, we may take D = NO,
where O is the origin of the group structure of E. Moreover, it is known
that the image of E in PN−1 is defined by a system of N(N−3)/2 quadratic
equations.

Classically, for the caseN = 5 over the complex number field C, Bianchi [1]
first wrote down defining equations of an elliptic curve in the following “nor-
mal form”:

Eφ :



x2
0 + φx2x3 − φ−1x1x4 = 0,

x2
1 + φx3x4 − φ−1x2x0 = 0,

x2
2 + φx4x0 − φ−1x3x1 = 0,

x2
3 + φx0x1 − φ−1x4x2 = 0,

x2
4 + φx1x2 − φ−1x0x3 = 0.

These five quadratic equations define an elliptic curve Eφ as a projective
curve of degree 5 in P4, and the translations by the 5-torsion points are re-
alized as linear transformations of the projective space. The curve Eφ may
be viewed as the universal elliptic curve over the modular curve parametriz-
ing triples (E,S, T ) where E is an elliptic curve and (S, T ) is a basis of E[5]
such that the Weil pairing e5(S, T ) is equal to a fixed primitive 5th root of
unity ζ5. The parameter φ = φ(τ) is a modular function associated with
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the congruence subgroup Γ(5). Klein [10] generalized Bianchi’s results to
obtain such a normal form of quadratic equations for general odd integers
N , and studied their relation to modular functions of level N . Later, Vélu
[13] studied the immersion of elliptic curves into PN−1 as elliptic normal
curves of degree N in terms of schemes. In the end, he constructed the
modular curve X(p) for odd prime number p as a subscheme in Pp−1 over
Spec Z[1/p], and the universal elliptic curve E(p) over X(p). (See also [3].)

In the case where N is even, Hurwitz [6] generalized Klein’s results to a
certain extent. In this case, however, it is not possible to obtain the universal
family associated with Γ(N). Hurwitz’s family is over the modular curve
associated with some congruence subgroup of level 2N or 4N depending on
N mod 4. In this paper we use the work of Vélu [13], and construct a slightly
different immersion from that of Hurwitz based on an analysis of the level
structures associated with congruence subgroups between Γ(N) and Γ(2N).
We obtain a canonical coordinate system compatible with the translations
by the N -torsion points and the universal elliptic curve associated with a
certain congruence subgroup.

Over C, we go one step further and realize the above immersion E →
PN−1 in terms of certain theta functions that become the coordinate func-
tions of the system described above, and write down the quadratic equations
satisfied by the image of E using the classical relations among theta func-
tions.

Let us describe our results in more detail. Let E be an elliptic curve
over a field of characteristic not dividing N , and consider the immersion
E → PN−1 using the complete linear system |NO|. For an N -torsion point
T ∈ E[N ], let us denote by τT the translation-by-T map P 7→ P + T . It is
easy to see that τT can be lifted to an automorphism of the ambient space
PN−1. By choosing a basis (S, T ) of E[N ], we can find a coordinate system
such that the translations τS and τT are realized as linear transformations
of the ambient space PN−1.

If N is odd, the choice of such a coordinate system is unique once we
fix a Γ(N) structure, that is, a basis (S, T ) of E[N ] such that eN (S, T ) is
equal to a fixed primitive Nth root of unity ζN (Proposition 4.4). Thus, we
obtain an immersion of the family of elliptic curves with Γ(N) structure to
a single PN−1, and by associating the origin of the elliptic curves, we obtain
a morphism from the modular curve X(N) to PN−1.

The situation is not the same if N is even. In this case, the coordinate
system mentioned above is not unique even if we specify a Γ(N) structure.

So, we define an intermediate subgroup Γ(N)(2N) between Γ(N) and Γ(2N)
(see Definition 4.10), and show that the coordinate system mentioned above

is determined uniquely once we fix a Γ(N)(2N) structure (Theorem 4.20).
As a consequence we obtain the universal elliptic curve over the modular
curve associated with Γ(N)(2N).

Furthermore, over C, we realize the immersion E ↪→ PN−1 using the theta

functions, denoted by θ
(N)
k (z, τ) for k = 0, . . . , N−1 (see Definition 5.3), that

serve as the coordinate functions of the coordinate system described above,
and we obtain quadratic equations of the image (Theorems 6.4 and 6.8) using
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the relations between the theta functions coming from Jacobi’s identity (6.4)
or (6.7), which is essentially the addition formula for the elliptic curve.

In §§7–9 we work out in detail the cases N = 4, 6, and 8. There, we
show the explicit equations of the modular curves and the universal curves
over them.

Since our theta functions and Hurwitz’s σ-functions [6] look quite differ-
ent, it is not easy to see the exact relationship between them. In Appen-
dix A, we describe the connections and differences between these two sets
of functions in detail.
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ported by JSPS KAKENHI Grant Numbers JP23540028, JP26400023, and
by the Chuo University Grant for Special Research. Part of this work was
done while Kuwata was visiting Boston University. We also thank the referee
for useful comments.

2. Preliminaries

From this section until §4 we fix a positive integer N greater than 3, and
suppose that the base field K is a field of characteristic not dividing N . Let
Ks be a separable closure of K, and let ΓK = Gal(Ks/K).

Let E be an elliptic curve defined over K. Denote by E(K) the group of
K-rational points of E, and E[N ] = {P ∈ E(Ks) | NP = O} the subgroup
of N -torsion points. Since we use the notation and results of Vélu [13]
extensively, we give a summary of parts of [13] necessary for later use.

2.1. The Weil pairing. We first fix some notation.

• K(E)× : the multiplicative group of the function field K(E) of E.
• DivK(E) : the group of K-rational divisors of E; i.e., the group of

formal Z-linear combination† D =
∑

P∈E(Ks)
nP {P} with nP ∈ Z,

such that nP = 0 for all but finitely many P ∈ E(Ks), and n σP = nP
for all σ ∈ ΓK = Gal(Ks/K).
• Div0

K(E) : the kernel of deg : DivK(E)→ Z.
• NulK(E) : the kernel of the homomorphism Sum : DivK(E) →
E(K) defined by

∑
P nP {P} 7→ Sum

P
nPP , where Sum means the

addition in E.
• PK(E) = Div0

K(E) ∩NulK(E).

We have an obvious homomorphism div : K(E)× → DivK(E) that sends
a function to its divisor, and the following is fundamental.

Theorem 2.1 (Abel-Jacobi). The following sequence is exact.

(2.1) 1 −→ K× −→ K(E)×
div−→ PK(E) −→ 0.

In this section and the next we assume E[N ] ⊂ E(K), so in particular, K
contains the Nth roots of unity. Let G ⊂ E[N ] be a cyclic group of order N .

†For a point P ∈ E(Ks), we denote by {P} the base of the formal sums associated
with P . Thus, the sum {P}+ {Q} is a formal sum, while the sum in {P +Q} means the
addition in the elliptic curve E.
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We consider (2.1) as an exact sequence of G-modules. Define an action of
G on various groups as follows:

• trivially on K×, Z, and E(K).
• by translation on K(E); i.e., if f ∈ K(E) and T ∈ G, define Tf(X) =
f(X − T ), where X is a generic point of E.
• by translation on DivK(E); i.e., if D =

∑
P nP {P} and T ∈ G,

define
TD =

∑
P

nP {P + T}.

Clearly, the action of G on DivK(E) induces actions on Div0
K(E) and PK(E).

The Weil pairing is obtained essentially as the connecting homomorphism δ
of the long exact sequence of the group cohomology induced from (2.1):

(2.2) K× −→ K(E)×
G div−→ PK(E)G

δ−→ H1(G,K×).

Theorem 2.2 (Weil pairing). (1) The homomorphism δ in (2.2) induces

a ΓK-isomorphism Ψ : G′ = E[N ]/G
'−→ Hom(G,µN ).

(2) For S′ ∈ G′ and T ∈ G, define eG(S′, T ) by

eG(S′, T ) = Ψ(S′)(T ).

Then eG is a ΓK compatible non degenerate bilinear form G′×G→
µN .

(3) For S′ ∈ G′, choose S ∈ E[N ] such that S mod G = S′, and define
DS = {S} − {O} ∈ Div0

Ks(E). Choose fS ∈ Ks(E)× such that

div fS =
∑
T∈G

TDS =
∑
T∈G

(
{S + T} − {T}

)
.

Then, we have

eG(S′, T ) = TfS/fS = fS(X − T )/fS(X).

Proof. Since G is a subgroup of E[N ](K) by assumption, it follows that
µN ∈ K×, and thus we have H1(G,K×) ' Hom(G,µN ). The proof is a
standard diagram chase. See Vélu [13, Ch. 1] for detail. �

The usual Weil pairing eN : E[N ] × E[N ] → µN is defined in a similar
manner. The relation between eG and eN is given by

eN (S, T ) = eG(φ(S), T ) for S ∈ E[N ], T ∈ G,

where φ is the isogeny E → E/G.

2.2. Central extension E[N ](D). A central extension of a group G is a
short exact sequence of groups 1→ A→ H → G→ 1 such that A is in the
center of the group H. Here, we consider central extensions of E[N ] by K×,
that is, short exact sequences of groups

1 −→ K× −→ H −→ E[N ] −→ 0.

(Note that the operation of K× is written multiplicatively, while that of
E[N ] is written additively.)

Given a divisor D ∈ DivK(E), we may construct such a central extension.
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Definition 2.3. Let D ∈ DivK(E) be a divisor of degree divisible by N .
Define

E[N ](D) = {(T, f) ∈ E[N ]×K(E)× | div f = TD −D},

with a group operation on E[N ](D) given by

(S, g)(T, f) = (S + T, g · Sf).

Indeed, we have a natural inclusion K× → E[N ](D) given by c 7→ (O, c),
and an exact sequence

1 −→ K× −→ E[N ](D) −→ E[N ] −→ 0.

From now on, we identify (O, c) ∈ E[N ](D) with c ∈ K× and consider K×

as a subgroup in E[N ](D) (to ease the notation).

Lemma 2.4. If two divisors D1 and D2 are linearly equivalent, then the
extensions E[N ](D1) and E[N ](D2) are isomorphic.

Proof. Straightforward. �

In general E[N ](D) is not commutative and contains elements of infinite
order. For (S, g), (T, f) ∈ E[N ](D), we denote the commutator and the Nth
power by

〈S, T 〉 = (S, g)(T, f)(S, g)−1(T, f)−1 = (g/Tg) · (Sf/f)(2.3)

v(T ) = (T, f)N = f · Tf · 2Tf · · · · · (N−1)Tf.(2.4)

Recall that we identify (O, c) with c. As this notation suggests, the facts
that both 〈S, T 〉 and v(T ) mod nth powers are independent of the choice of
f and g are shown by the following proposition and lemma of Vélu.

Proposition 2.5 (Vélu [13, Prop. 2.3]). Let D be a divisor of degree divis-
ible by N , and let S, T ∈ E[N ]. Then, 〈S, T 〉 is a bilinear form on E[N ]
with its value in µN , and

〈S, T 〉 = eN (T, S)
degD
N .

Lemma 2.6 (Vélu [13, Lemma 2.4]). Let D be a divisor of degree divisible

by N , and let T ∈ E[N ]. Then, v(T ) is in K×, and v(T ) mod K×
N

is
independent of the choice of f .

The case where D = N{O} is of particular interest. In this case, the
results depend on the parity of N . The following lemma by Vélu will be
needed in §4.2.

Lemma 2.7. Suppose (T, f) ∈ E[N ](N{O}), and T̃ ∈ E[2N ] is a point

such that 2T̃ = T . Then,

(1) (Vélu [13, Lemma 2.8]) v(T ) = (T, f)N = f(T̃ )N .
(2) (Vélu [13, Lemma 2.7]) If U2 ∈ E[2]− {O}, then

U2f(T̃ ) = (−1)Ne2(U2, NT̃ )f(T̃ ).
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3. Projective immersion associated with a cyclic subgroup

Let D ∈ DivK(E) be a divisor. If degD ≥ 3, it is well known that the
complete linear system |D| gives an immersion E ↪→ |D| in a projective
space. Here, we take a closer look at this fact. The following is a summary
of results of Vélu [13].

Definition 3.1. For D ∈ DivK(E) and nonnegative integer d, define

L d(D) = {h ∈ K(E)× | div h+ dD ≥ 0} ∪ {0}
L ∗(D) =

⊕
d≥0 L d(D),

S ∗(D) = Sym∗L 1(D).

Here, Sym∗ V means the symmetric algebra on a vector space V . By the
Riemann-Roch theorem, L d(D) is a K-vector space of dimension ddegD,
and the space L ∗(D) is equipped naturally with a structure of graded alge-
bra by the multiplication of functions. There is a canonical homomorphism
of graded algebras S ∗(D)→ L ∗(D), and let I ∗(D) be its kernel. We have
the exact sequence

(3.1) 0 −→ I ∗(D) −→ S ∗(D) −→ L ∗(D).

Proposition 3.2. Let D be an effective divisor of degree N ≥ 4.

(1) (Vélu [13, Th. 3.3]) The exact sequence (3.1) extends to the following
exact sequence:

0 −→ I ∗(D) −→ S ∗(D) −→ L ∗(D) −→ 0.

(2) dim I 2(D) = N(N − 3)/2.
(3) (Vélu [13, Th. 3.9]) I ∗(D) is generated by I 2(D), i.e., I ∗(D) =

I 2(D) ·S ∗(D).
(4) The image of the map E ↪→ Proj S ∗(D) ' PN−1 is the scheme-

theoretic intersection of the quadrics that contain the image of E.

Proof. (1) The exactness at L ∗(D) is one of the equivalent definitions of
projective normality. For a proof see Vélu [13, Th. 3.3]. See also Hartshorne
[5, Ex. IV.4.2] and Mumford [11, p. 55]. The formula (2) follows immediately
from (1) as dim S 2(D) = N(N + 1)/2 and dim L 2(D) = 2N .

(3) See Vélu [13, Th. 3.9]. The assertion (4) is just a paraphrase of (3)
as the image of E is defined by an ideal generated by I 2(D). �

The central extension E[N ](D) has a representation on L ∗(D). More
precisely, Vélu showed the following.

Proposition 3.3 (Vélu [13, Prop. 2.13]). (1) For h ∈ L d(D) and (T, f) ∈
E[N ](D), the function Th · fd is in L d(D).

(2) Let τd(T, f) be the automorphism defined by h 7→ fd · Th of L d(D).
Then, τd : (T, f) 7→ τd(T, f) is a representation of E[N ](D) on
L d(D), and the representations τd extend to a representation τ of
E[N ](D) on the graded ring L ∗(D).

(3) If D is an effective divisor of degree ≥ 2 and d ≥ 1, the kernel of
the representation τd consists of the elements (O, f), where f is a
constant satisfying fd = 1. In particular, τ1 is faithful.
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Let C ⊂ E[N ] be a cyclic subgroup of order N . Suppose D is an effec-
tive divisor of degree N invariant under the translations by C. Then, we
may choose a particular coordinate system of PN−1 so that the immersion
E ↪→ |D| ' PN−1 is expressed in a simple way. To do so, we consider the
decomposition of L 1(D) into eigenspaces.

Definition 3.4. For any character χ ∈ Hom(C, µN ) and a positive integer d,
define

L d(D,χ) = {h ∈ L d(D) | Uh = χ(U) · h for all U in C}.

Since L d(D) is a finite dimensional vector space on which the cyclic group
C acts, it decomposes into eigenspaces. Thus, we have

L d(D) =
⊕

χL
d(D,χ), and L ∗(D) =

⊕
d,χL

d(D,χ).

Definition 3.5. Let C ⊂ E[N ] be a cyclic subgroup of order N . For any
S ∈ E[N ], define the character χS ∈ Hom(C, µN ) by

χS(U) = eN (S,U) for all U ∈ C.

Proposition 3.6. Let C ⊂ E[N ] be a cyclic subgroup of order N , and D
an effective divisor of degree N invariant under the translations by C.

(1) The space L 1(D,χ) is 1-dimensional.
(2) If (S, fS) ∈ E[N ](D), then fS is a basis of L 1(D,χS).
(3) The map τd(S, fS) : L d(D,χ) → L d(D,χχdS) is an isomorphism

for all d ≥ 0.

Proof. Let (S, fS) be an element of E[N ](D). Since div fS+D = SD ≥ 0, fS
is in L 1(D). Since UD −D = 0 for U ∈ C, we have (U, 1) ∈ E[N ](D). By
(2.3), we have 〈U, S〉 = UfS/fS , and by Proposition 2.5, we have 〈U, S〉 =
eN (S,U) = χS(U). Thus, we have UfS = χS(U)fS , which shows fS ∈
L 1(D,χS).

If h ∈ L d(D,χ), then

U(Sh · fdS) = U+Sh · (UfS)d = χ(U) · Sh · (UfS)d = χ(U)χS(U)d(Sh · fdS).

This implies the automorphism τd(S, fS) maps L d(D,χ) onto L d(D,χχdS),

and (3) is proved. As a consequence, τd permutes the spaces L d(D,χ)
transitively as long as d is relatively prime to N , and in that case the spaces
L d(D,χ) have the same dimension independent of χ. In particular, this is
the case for L 1(D,χ).

By the Riemann-Roch theorem, dim L 1(D) = degD = N . On the other
hand

dim L 1(D) =
∑
χ

dim L 1(D,χ) = # Hom(C, µN ) · dim L 1(D,χ0)

= N dim L 1(D,χ0),

where χ0 is the trivial character. Thus, we conclude that dim L 1(D,χ) = 1
for any χ, which proves (1). Since any nonzero function in a one dimensional
space is its basis, fS is a basis of L 1(D,χS). �
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4. Canonical coordinate system

In this section we consider the projective immersion E ↪→
∣∣N{O}∣∣ '

PN−1. We show that, by fixing a certain level structure on E, we can choose
a unique coordinate system with prescribed properties. The situation differs
depending on the parity of N . The odd case is well known, but we include
it here for the comparison with the even case.

4.1. Odd case. Throughout this paragraph we assume N is an odd integer
≥ 3. This section serves as a prototype for the even case, and all the material
in this section is written in Vélu [13]. See also Fisher [3], [4] for geometric
treatment.

Let (S, T ) be a pair of points in E[N ], and
(
a b
c d

)
in M2(Z). Consider the

right action of
(
a b
c d

)
on (S, T ) defined by

(S, T )

(
a b
c d

)
= (aS + cT, bS + dT ).

Recall that if the pair (S, T ) is a basis of E[N ] satisfying eN (S, T ) = ζ, then
the pair (S′, T ′) = (aS+cT, bS+dT ) is once again a basis of E[N ] satisfying
eN (S′, T ′) = ζ if and only if

(
a b
c d

)
∈ SL2(Z). The kernel of this action is

given by

Γ(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ (a b
c d

)
≡
(

1 0
0 1

)
mod N

}
,

which is the principal congruence subgroup of level N in SL2(Z).

Definition 4.1 (Γ(N) structure). Fix a primitive Nth root of unity ζ. A
Γ(N)-structure on an elliptic curve E is a pair of N -torsion points (S, T )
satisfying eN (S, T ) = ζ.

From now on we fix a primitive Nth root of unity ζ in Ks, and a Γ(N)-
structure (S, T ). Define the divisor DT by

DT =
N−1∑
n=0

{nT}.

Clearly, DT is invariant under the translation by the cyclic group C = 〈T 〉.
Since SumN−1

n=0 nT = O, DT is linearly equivalent to N{O}. Choose

fS,T such that div fS,T = SDT − DT . Since (S, fS,T )N ≡ 1 mod K×
N

by
Lemma 2.7 (1), by multiplying fS,T by a suitable constant if necessary, we

may assume (S, fS,T )N = 1.

Definition 4.2. Let fS,T be as above. Define functions X0, X1, . . . , XN−1 ∈
K(E) indexed by the elements k ∈ Z/NZ by

X0 = 1, Xk = τ1(S, fS,T )Xk−1 = SXk−1 · fS,T (k = 1, . . . , N − 1),

where τ1(S, fS,T ) is the automorphism of L (D) defined in Proposition 3.3.

Lemma 4.3. (1) Xk is well-defined, i.e., τ1(S, fS,T )XN−1 = X0.

(2) divXk = kSDT −DT for k ∈ Z/NZ.
(3) The action of (T, 1) ∈ E[N ](DT ) is given by

τ1(T, 1)Xk = TXk = eN (S, T )kXk.
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(4) Xk is a basis of L 1(DT , χ
k
S) for k ∈ Z/NZ.

(5) Xk(−P ) = X−k(P ) for any P ∈ E.

Proof. The assertion (1) follows from the fact that (S, fS,T )N = 1. By

definition we have Xk = SXk−1 · fS,T , and then the assertion (2) follows by
induction on k. By Proposition 2.5, we have 〈T, S〉 = eN (S, T ) = χS(T ),
and thus

τ1(T, 1)X1 = τ1(T, 1)τ1(S, fS,T )X0 = χS(T )τ1(S, fS,T )τ1(T, 1)X0 = χS(T )X1.

The assertion (3) then follows by induction on k, and (4) follows immedi-
ately from (3) and Proposition 3.6 (2). To prove (5), it suffices to remark
[−1](kSDT ) = −kSDT . This implies that the functions Xk ◦ [−1] and X−k
has the same divisor and thus X−k = ckXk ◦ [−1] for some constants ck. It
is clear that c0 = 1. Since we have τ1(S, fS,T ) ◦ [−1] ◦ τ1(S, fS,T ) = [−1], we
can prove ck = 1 by induction on k. �

Interpreting the above proposition geometrically, we have

Proposition 4.4. Let E be an elliptic curve, and E ↪→ PN−1 be an im-
mersion as an elliptic normal curve of odd degree N via the complete linear
system |N{O}|. Choose a primitive N th root of unity ζ and a Γ(N)-structure
(S, T ). Then, there exists a unique coordinate system of PN−1 such that the
translation maps τS, τT , and the multiplication-by-(−1) map [−1] are given
by the following elements MS, MT and M[−1] in PGLN (K(ζ)), respectively.

(4.1)

MS =


0 · · · 0 1
1 0

1
. . .

...
1

1 0

 , MT =


1
ζ
ζ2

. . .

ζN−1

 ,

M[−1] =


1 0 · · · 0
0 1

1
...

...
1

0 1


Remark 4.5. When we use the square bracket [ ] for matrix, we mean it is
a class in PGL or PSL.

Proposition 4.6. The notation being as above, we have the following.

I 2(DT ) =
⊕

k∈Z/NZI 2(DT , χ
k
S),

I 2(DT , χ
k
S) = I 2(DT ) ∩ 〈XiXj | i+ j ≡ k mod N〉,

dim I 2(DT , χ
k
S) = (N − 3)/2, dim I 2(DT ) = N(N − 3)/2.

Proof. These assertions are the contents of §3.2 of [13] expressed in our
notation. Since N is odd, there is only one χ′ such that χ′2 = χ for any
character χ ∈ Hom(C, µn). Thus we have dim I 2(DT , χ

k
S) = (N − 3)/2 by

Corollaire 3.6 of [13]. �
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4.2. Even case. We now assume thatN is a positive even integer. A critical
difference between this case and the last is that we have SumN−1

n=0 nT =

T2 6= O if N is even, and thus DT =
∑N−1

n=0 {nT} is not linearly equivalent

to N{O}. To define a divisor linearly equivalent to N{O}, we use a T̃ ∈
E[2N ] such that 2T̃ = T .

First we fix a primitive Nth root of unity ζ and a Γ(N)-structure (S, T ),
then we consider Γ(2N)-structures on E in relation to this fixed Γ(N)-

structure. To do so, we first choose a primitive 2Nth root of unity ζ̃ such
that ζ̃2 = ζ.

Definition 4.7. Suppose (S, T ) is a Γ(N)-structure on E with eN (S, T ) =

ζ = ζ̃2.

(1) We say that a Γ(2N)-structure (S̃, T̃ ) on E is above (S, T ) if

2S̃ = S, 2T̃ = T, and e2N (S̃, T̃ ) = ζ̃.

(2) We say that two Γ(2N)-structures (S̃, T̃ ) and (S̃′, T̃ ′) are similar if

(S̃′, T̃ ′) equals either

(S̃, T̃ ) or (S̃, T̃ )

(
1 +N 0

0 1 +N

)
.

We write (S̃′, T̃ ′) ∼ (S̃, T̃ ).

Notation 4.8. For simplicty, we denote by U2 the 2-torsion point N
2 U ∈ E[2]

for any U ∈ E[N ].

Note that if (S, T ) is a Γ(N)-structure, then (S2, T2) is a basis of E[2],

and e2(S2, T2) = eN (S, T )N/2 = ζN/2 = −1.

Lemma 4.9. For a given Γ(N)-structure (S, T ), there are eight Γ(2N)-

structures (S̃, T̃ ) above (S, T ). Up to similarity, these eight are classified

into four classes. If (S̃, T̃ ) is one of them, then the following four represent
the four different classes:

(S̃, T̃ ), (S̃, T̃ )

(
1 N
0 1

)
, (S̃, T̃ )

(
1 0
N 1

)
, (S̃, T̃ )

(
1 N
N 1

)
,

or, using Notation 4.8,

(S̃, T̃ ), (S̃, T̃ + S2), (S̃ + T2, T̃ ), (S̃ + T2, T̃ + S2).

Proof. There are sixteen pairs (S̃, T̃ ) satisfying 2S̃ = S and 2T̃ = T .

Choose one pair (S̃, T̃ ). Replacing S̃ by S̃ + S2 if necessary, we may as-

sume e2N (S̃, T̃ ) = ζ̃. Thus, we obtain at least one Γ(2N)-structure above

(S, T ). All the sixteen pairs (S̃′, T̃ ′) satisfying 2S̃′ = S and 2T̃ ′ = T are

(S̃′, T̃ ′) = (S̃, T̃ ) + (S2, T2)

(
ε1 ε3
ε2 ε4

)
, εj = 0, or 1 (j = 1, . . . , 4).

Now, using properties of the Weil pairing, we have

e2N (S̃′, T̃ ′) = e2N (S̃ + ε1S2 + ε2T2, T̃ + ε3S2 + ε4T2)

= e2N (S̃, T̃ )e2N (S̃, T2)ε4e2N (S2, T̃ )ε1 = (−1)ε1+ε4e2N (S̃, T̃ ).
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Thus, e2N (S̃′, T̃ ′) = ζ̃ if and only if ε1 = ε4. In other words, there are eight

pairs of (S̃, T̃ ) above (S, T ). Since (S̃′, T̃ ′) ∼ (S̃, T̃ ) if and only if ε1 = ε4
and ε2 = ε3 = 0 by definition, we see that there are four different classes up
to similarity according to (ε2, ε3) = (0, 0), (1, 0), (0, 1), or (1, 1). �

In view of Lemma 4.9, we define a subgroup between Γ(N) and Γ(2N) as
follows.

Definition 4.10. Define the subgroup Γ(N)(2N) of Γ(N) by

Γ(N)(2N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ a ≡ d ≡ 1 mod N, b ≡ c ≡ 0 mod 2N

}
.

It is easy to see that we have

Γ(N) B Γ(N)(2N) B Γ(2N).

Since N is assumed even, we have

Γ(N)/Γ(N)(2N) =

〈(
1 N
0 1

)
,

(
1 0
N 1

)〉
' Z/2Z× Z/2Z,

Γ(N)(2N)/Γ(2N) =

〈(
1 +N 0

0 1 +N

)〉
' Z/2Z.

Remark 4.11. (1) If N is odd, Γ(N)(2N) coincide with Γ(2N), and [Γ(N) :

Γ(N)(2N)] = [Γ(N) : Γ(2N)] = 6.

(2) The group Γ(N)(2N) coincides with the transformation group appears
in Hurwitz [6] in the case of N ≡ 0 mod 4. If N ≡ 2 mod 4, the group in [6]
is a different group. For comparison between our immersion and that of
Hurwitz, see Appendix A.

Definition 4.12 (Γ(N)(2N)-structure). Fix a primitive Nth root of unity ζ,

and choose ζ̃ such that ζ̃2 = ζ. Let (S, T ) be a Γ(N)-structure. By

a Γ(N)(2N)-structure above the given Γ(N)-structure (S, T ) we mean an

equivalence class of Γ(2N)-structure (S̃, T̃ ) above (S, T ) modulo similarity.

Remark 4.13. Sometimes a Γ(N)-structure is defined as a symplectic iso-
morphism Z/NZ × µN → E[N ], where the anti-symmetric pairing 〈 , 〉 on
Z/NZ× µN is defined by

〈(a1, ζ1), (a2, ζ2)〉 = ζa1
2 /ζa2

1 , ai ∈ Z/NZ, ζi ∈ µN (i = 1, 2).

Define a map d : Z/2NZ× µ2N → Z/NZ× µN by

d : (a mod 2N, ζb) 7→ (a mod N, ζ2b).

Then a Γ(N)(2N)-structure above a Γ(N)-structure is nothing but a pair of
symplectic isomorphisms φN : Z/NZ × µN → E[N ] and φ2N : Z/2NZ ×
µ2N → E[2N ] that makes the following diagram commutative:

Z/2NZ× µ2N E[2N ]

Z/NZ× µN E[N ]

φ2N

d [2]

φN



12 MASANOBU KANEKO AND MASATO KUWATA

We now fix a Γ(N)(2N)-structure (S̃, T̃ ) above (S, T ). Define

DT̃ =

N−1∑
n=0

{
T̃ + nT

}
.

Lemma 4.14. (1) There is a function ϕT̃ such that divϕT̃ = DT̃ −
N{O}. As a consequence, the divisor DT̃ is linearly equivalent to
N{O}.

(2) If T̃ ′ = T̃ + T2, then we have DT̃ ′ = DT̃ .

Proof. (1) Since SumE DT̃ = NT̃ + 1
2N(N − 1)T = O, the assertion follows

immediately from Abel’s Theorem (Theorem 2.1). The assertion (2) follows
immediately from the definition. �

Remark 4.15. We may still use DT =
∑N−1

n=1 {nT} to obtain an immersion
to PN−1 even though SumE DT 6= O.

Lemma 4.16. Let (S̃, T̃ ) be a Γ(N)(2N)-structure above (S, T ). Choose a
function FT̃ such that divFT̃ = DT̃−N{0}. Then, there is a unique function
fS̃,T̃ satisfying the condition

(4.2) div fS̃,T̃ = SDT̃ −DT̃ , fS̃,T̃ (S̃) = SFT̃ (S̃)/FT̃ (S̃).

Moreover (S, fS̃,T̃ ) ∈ E[N ](DT̃ ) satisfies the following.

(1) (S, fS̃,T̃ )N = 1.

(2) T2fS̃,T̃ (S̃) = −fS̃,T̃ (S̃).

Proof. Choose an element (S, ϕ) ∈ E[N ](N{O}) such that ϕ(S̃) = 1, and
define fS̃,T̃ = ϕ SFT̃ /FT̃ . Then, fS̃,T̃ satisfies the condition (4.2). Since

fS̃,T̃ does not depend on the choice of FT̃ , fS̃,T̃ is uniquely determined.

By Lemma 2.7 (1), we have (S, fS̃,T̃ )N =
(
S, ϕ SFT̃ /FT̃

)N
= (S, ϕ)N =

ϕ(S̃)N=1, which proves (1). The assertion (2) is an immediate consequence
of Lemma 2.7 (2). �

Definition 4.17. Let fS̃,T̃ be the function defined in Lemma 4.16. Define

X
(S̃,T̃ )
k ∈ L (DT̃ ) indexed by k ∈ Z/NZ by

X
(S̃,T̃ )
0 = 1, X

(S̃,T̃ )
k = τ1(S, fS̃,T̃ )X

(S̃,T̃ )
k−1 (k = 1, . . . , N − 1).

Lemma 4.18. (1) X
(S̃,T̃ )
k is well-defined, i.e., τ1(S, fS̃,T̃ )X

(S̃,T̃ )
N−1 = X

(S̃,T̃ )
0 .

(2) divX
(S̃,T̃ )
k = kSDT̃ −DT̃ for k ∈ Z/NZ.

(3) The action of (T, 1) ∈ E[N ](DT̃ ) is given by

τ1(T, 1)X
(S̃,T̃ )
k = χkS(T )X

(S̃,T̃ )
k = eN (S, T )kX

(S̃,T̃ )
k .

(4) X
(S̃,T̃ )
k is a basis of L 1(DT̃ , χ

k
S) for k ∈ Z/NZ.

(5) X
(S̃,T̃ )
k (−P ) = X

(S̃,T̃ )
−k (P ) for any P ∈ E and k ∈ Z/NZ.

Proof. The proof is the same as Lemma 4.3. �
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Lemma 4.19. (1) X
(S̃,T̃ )
k is unchanged if (S̃, T̃ ) is replaced by (S̃ +

S2, T̃ + T2), i.e.,

X
(S̃+S2,T̃+T2)
k = X

(S̃,T̃ )
k , k = 0, . . . , N − 1.

In other words, the function X
(S̃,T̃ )
k is uniquely determined by the

Γ(N)(2N)-structure above (S, T ),

(2) If (S̃, T̃ ) is replaced by (S̃ + T2, T̃ ), then

X
(S̃+T2,T̃ )
k = (−1)kX

(S̃,T̃ )
k , k = 0, . . . , N − 1.

(3) If (S̃, T̃ ) is replaced by (S̃, T̃ + S2), then

X
(S̃,T̃+S2)
k = X

(S̃,T̃ )
N/2+k/X

(S̃,T̃ )
N/2 , k = 0, . . . , N − 1.

Proof. (1) It suffices to show that the function fS̃,T̃ appearing in Lemma 4.16

is unchanged. First, we have DT̃+T2
= DT̃ by Lemma 4.14 (2). Accord-

ing to the proof of Lemma 4.16, fS̃+S2,T̃
is defined by choosing (S, ϕ′) ∈

E[N ](N{O}) such that ϕ′(S̃+S2) = 1 and letting fS̃+S2
= ϕ′ SFT̃ /FT̃ . But,

by Lemma 2.7 (2), ϕ′(S̃ + S2) = ϕ′(S̃). This means we may use the same ϕ
as the one we used to define fS̃,T̃ , and thus fS̃+S2,T̃

= fS̃,T̃ .

(2) By Lemma 2.7 (2), we have T2fS̃,T̃ (S̃) = e2(T2, S2)fS̃,T̃ (S̃) = −fS̃,T̃ (S̃).

So, the function f = −T2fS̃,T̃ satisfies div f = S+T2DT̃ −
T2DT̃ = SDT̃ −DT̃ ,

and f(S̃ + T2) = fS̃,T̃ (S̃) = SFT̃ (S̃)/FT̃ (S̃). This implies that −T2fS̃,T̃ is

nothing but the function fS̃+T2,T̃
. The assertion follows from this immedi-

ately.

(3) Let FT̃ be a function satisfying divFT̃ = DT̃−N{0}. Since divX
(S̃,T̃ )
N/2 =

S2DT̃ − DT̃ = DT̃+S2
− DT̃ , we have divFT̃X

(S̃,T̃ )
N/2 = DT̃+S2

− N{0}. So,

fS̃,T̃+S2
is defined by fS̃,T̃+S2

= f1 · S(FT̃X
(S̃,T̃ )
N/2 )/(FT̃X

(S̃,T̃ )
N/2 ) where f1 is a

function satisfying div f1 = N{S} −N{O} and f1(S̃) = 1. Then, we have

fS̃,T̃+S2
= f1·SFT̃ /FT̃ ·

SX
(S̃,T̃ )
N/2 /X

(S̃,T̃ )
N/2 = fS̃,T̃

SX
(S̃,T̃ )
N/2 /X

(S̃,T̃ )
N/2 = X

(S̃,T̃ )
N/2+1/X

(S̃,T̃ )
N/2 .

This implies

X
(S̃,T̃+S2)
1 = fS̃,T̃+S2

= X
(S̃,T̃ )
N/2+1/X

(S̃,T̃ )
N/2 ,

and the assertion (2) follows by induction on k. �

Theorem 4.20. Let E be an elliptic curve, and E ↪→ PN−1 an immersion
as an elliptic normal curve of even degree N via the complete linear system
|N{O}|. Choose a primitive N th root of unity ζ, and then choose ζ̃ such that

ζ̃2 = ζ. Let (S̃, T̃ ) be a Γ(N)(2N)-structure above a Γ(N)-structure (S, T ).

Then, (S̃, T̃ ) determines a unique coordinate system of PN−1 such that the
translation maps τS, τT , and the multiplication-by-(−1) map [−1] are given
by the matrices MT , MS and M[−1] in (4.1), respectively.

For a given Γ(N)-structure (S, T ), there are four different choices of such
coordinate systems related by the change of coordinates of PN−1 given by
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the transition matrices generated by the following two:

M
N/2
S =

 O IN/2

IN/2 O

 , M
N/2
T =


1 0
0 −1 O

. . .
O 1 0

0 −1

 ,
Proof. The existence of such a coordinate system follows from Lemma 4.18,
and the uniqueness follows from Lemma 4.19 (1). The last part is a conse-
quence of Lemma 4.19 (2) and (3). �

When the choice of (S̃, T̃ ) is understood, we write X
(S̃,T̃ )
k = Xk for sim-

plicity.

Proposition 4.21. The notation being as above, we have the following.

I 2(DT̃ ) =
⊕

k∈Z/NZI 2(DT̃ , χ
k
S),

I 2(DT̃ , χ
k
S) = I 2(DT̃ ) ∩ 〈XiXj | i+ j ≡ k mod N〉,

dim I 2(DT̃ , χ
k
S) =

{
(N − 2)/2 if k ≡ 0 mod 2,

(N − 4)/2 if k ≡ 1 mod 2,

dim I 2(DT̃ ) = N(N − 3)/2.

Proof. The contents of §3.2 of [13] are still valid even if N is even. In this
case there are two χ′ ∈ Hom(C, µn) such that χ′2 = χkS if k ≡ 0 mod 2, and

there is no such χ′ if k ≡ 1 mod 2. This shows dim I 2(DT̃ , χ
k
S) equals as

stated by Corollaire 3.6 of [13]. �

In order to find a basis of I 2(DT̃ ), it suffices to find a basis of I 2(DT̃ , χ0)

and I 2(DT̃ , χS), which we will do for the case K = C, using theta func-
tions.

5. Theta functions

From now on, we assume that the base field is the field of complex num-
bers C. We construct functions X0, X1, . . . , XN−1 defined and described in
§4 using theta functions. Then, we find quadratic relations among them
from the classical relations among theta functions.

Definition 5.1. For a pair of real numbers (p, q), we define the theta func-
tion θ(p,q)(z, τ) with characteristic (p, q) by

θ(p,q)(z, τ) :=
∑
n∈Z

e
(

1
2(n+ p)2τ + (n+ p)(z + q)

)
,

where z ∈ C and τ ∈ H = {τ ∈ C | Im τ > 0}, and e(x) = e2πix.

This conforms with the definition in Mumford [12, Ch. I. §3]. We have
the following fundamental formulas.

Proposition 5.2. Suppose p, q, r, s ∈ R, and l,m ∈ Z. Then, we have

(1) θ(p,q)(z + s, τ) = θ(p,q+s)(z, τ).

(2) θ(p,q)(z + rτ, τ) = e(−1
2r

2τ − rz − rq)θ(p+r,q)(z, τ).
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(3) θ(p+l,q+m)(z, τ) = e(pm) θ(p,q)(z, τ).

Let N be a positive integer. Although we are interested mainly in the
case where N is even, we do not restrict ourselves to even N until §5.4.

Definition 5.3. Let N be a positive integer. For an integer or a half-
integer k, define

θ
(N)
k (z, τ) := θ( 1

2
− k
N
,N

2
)(Nz,Nτ)

=
∑
n∈Z

e
(

1
2N
(
n− k

N + 1
2

)2
τ +N

(
n− k

N + 1
2

)(
z + 1

2

))
.

It is easy to verify that θ
(N)
k+N (z, τ) = θ

(N)
k (z, τ), and thus θ

(N)
k (z, τ) de-

pends only on the class k mod N .

5.1. Basic properties of θ
(N)
k (z, τ) as a function of z. First, we fix a

positive integer N and a point τ ∈ H.

Proposition 5.4. For any positive integer N ∈ N, and any integer or
half-integer k ∈ 1

2Z, the following relations hold.

(1) θ
(N)
k (z + 1, τ) = (−1)N+2k θ

(N)
k (z, τ).

(2) θ
(N)
k (z + τ, τ) = (−1)Ne

(
−N

2 τ −Nz
)
θ

(N)
k (z, τ).

(3) θ
(N)
k

(
z + 1

N , τ
)

= −e
(
− k
N

)
θ

(N)
k (z, τ).

(4) θ
(N)
k

(
z + τ

N , τ
)

= −e
(
− τ

2N − z
)
θ

(N)
k−1(z, τ).

(5) θ
(N)
k

(
z + τ

2N , τ
)

= e
(
− τ

8N −
z
2 −

1
4

)
θ

(N)

k− 1
2

(z, τ).

(6) θ
(N)
k (−z, τ) = (−1)N+2kθ

(N)
−k (z, τ).

Proof. These formulas follow easily from the definition and Proposition 5.2.
See also [12] for details. �

We denote θ
(N)
k (z, τ) simply by θk(z) if no confusion arises.

Lemma 5.5. Let Z
(N)
k be the set of zeros of θk(z).

(1) If N is odd, then we have Z
(N)
k =

{
m
N + k

N τ + nτ
∣∣ m, n ∈ Z

}
.

0 1

τ

N : odd

τ
N
k

τ
N
1

N
1

θk(z)

θ1(z)

θ0(z)
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(2) If N is even, then Z
(N)
k =

{
1

2N + m
N + k

N τ + nτ
∣∣ m, n ∈ Z

}
.

0 1

τ

τ
N
k

τ
N
1

N
1

θk(z)

θ1(z)

θ0(z)

N : even

Proof. These follow easily from the fact that the set of zeros of θ(p,q)(z, τ)

is given by {(l + 1
2 − p)τ + (m+ 1

2 − q) | l,m ∈ Z}. �

Lemma 5.6. θ0(z), θ1(z), . . . , θN−1(z) are linearly independent over C.

Proof. This is easily seen by looking at the series expansions of θi(z)’s. �

Definition 5.7. For τ ∈ H, let Λτ = 〈1, τ〉 be the lattice in C spanned by 1
and τ , and let Eτ = C/Λτ be the elliptic curve with modulus τ . For N ∈ N,

define points S, T ∈ Eτ [N ], and S̃, T̃ ∈ Eτ [2N ] by

S = τ
N mod Λτ , T = 1

N mod Λτ ,

S̃ = τ
2N mod Λτ , T̃ = 1

2N mod Λτ .

Lemma 5.8. Let ζN = e
(

1
N ) = e2πi/N and ζ̃N = ζ2N = e

(
1

2N ) = e2πi/2N .

Then (S, T ) is a level N structure with eN (S, T ) = ζN and (S̃, T̃ ) is a level

2N structure above (S, T ) with ζ̃2
N = ζN .

Proof. Define a function f(z) on C by

f(z) =
θ1(z)

θ0(z)
if N is odd, f(z) =

θ1

(
z − 1

2N

)
θ0

(
z − 1

2N

) if N is even.

Then, the divisor of f is given by

div f =
N−1∑
j=0

({
τ
N + j

N

}
−
{ j
N

})
.

Thus, by Theorem 2.2 and Proposition 5.4 (3), we have

eN (S, T ) = eN
(
τ
N mod Λτ ,

1
N mod Λτ

)
=

Tf(z)

f(z)
=
f
(
z − 1

N

)
f(z)

= ζN .

By the same token we have e2N (S̃, T̃ ) = ζ2N = ζ̃N , which implies (S̃, T̃ ) is
above (S, T ). �



ELLIPTIC NORMAL CURVES OF EVEN DEGREE AND THETA FUNCTIONS 17

5.2. Projective immersion via theta functions.

Theorem 5.9. Let Eτ = C/Λτ be the elliptic curve with modulus τ ∈ H,

and let S, T , S̃, and T̃ be as in Definition 5.7. Define functions Xk(z) on
C indexed by k ∈ Z/NZ by

(5.1) Xk(z) =
θk(z)

θ0(z)
=
θ

(N)
k (z, τ)

θ
(N)
0 (z, τ)

k ∈ Z/NZ.

Then Xk(z) satisfy the following.

(1) Xk is a function on Eτ .
(2) TXk = χkS(T )Xk = ζkNXk.
(3) SXk = Xk+1 · (θ0/θ1).
(4) Xk(−z) = X−k(z) for any z ∈ Eτ .
(5) If N is odd, then

(i) divXk = kSDT −DT , where DT =
∑N−1

k=0 {kT}.
(ii) X0, . . . , XN−1 form a basis of L 1(DT ).

(6) If N is even, then

(i) divXk = kSDT̃ −DT̃ , where DT̃ =
∑N−1

k=0 {T̃ + kT}.
(ii) X0, . . . , XN−1 form a basis of L 1(DT̃ ).

Proof. We see that Xk are doubly periodic function with period 1 and τ
by Proposition 5.4 (1) and (2). The assertions (2), (3) and (4) follow from
Proposition 5.4 (3), (4) and (6), respectively. The assertions (5)(i) and (6)(i)
follow from Lemma 5.5. From Lemma 5.6, the Xk’s are linearly independent.
Thus, if N is odd, the functions X0, X1, . . . , XN−1 form a basis of L 1(DT ),
and if N is even, they form a basis of L 1(DT̃ ). �

Theorem 5.10. Let N ∈ N and τ ∈ H, and let Λτ = 〈1, τ〉 be the lattice in
C spanned by 1 and τ .

(1) The map z 7−→
(
θ0(z), θ1(z), . . . , θN−1(z)

)
∈ CN induces an immer-

sion Θτ of the elliptic curve Eτ = C/Λτ into the projective space
PN−1:

Θτ : Eτ = C/Λτ −→ PN−1

z 7−→
(
θ0(z) : θ1(z) : · · · : θN−1(z)

)
.

(2) The image EΘτ = Θτ (Eτ ) is a curve of degree N defined as the
intersection of N(N − 3)/2 quadrics in PN−1.

(3) Let S, T , S̃, and S̃ be as in Definition 5.7. The translations of EΘτ

by Θτ (S) and Θτ (T ) can be extended to automorphisms of PN−1,
and expressed by the matrices MS and MT in (4.1), respectively. The
map [−1] on EΘτ is also extended to an automorphism of PN−1, and
express by the matrix M[−1] in (4.1).

Proof. The assertion (1) is a consequence of Theorem 5.9. The intersection
between EΘτ and the hyperplane X0 = 0 in PN−1 consists of N points since
the number of the zeros of θ0(0) equals N by Lemma 5.5. This means EΘτ is
a curve of degree N . If N is odd, the coordinate system of EΘτ ∈ PN−1 given
by Θτ is exactly the one described in Proposition 4.4 with Γ(N)-structure
(Θτ (S),Θτ (T )). If N is even, it is exactly the one described in Theorem 4.20

with Γ(N)(2N) structure (Θτ (S̃),Θτ (T̃ )) above (Θτ (S),Θτ (T )). Thus, the
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formulas for the translations by S and T , and the inversion [−1] are as in
(4.1), and the number of defining quadratic equations equals N(N − 3)/2
by Proposition 4.6 or 4.21 depending on the parity of N . �

In §6, we present explicit descriptions of the N(N − 3)/2 quadrics in (2)
(Theorems 6.4 and 6.8).

5.3. Transformation formula for θ
(N)
k (z, τ). We now consider θ

(N)
k (z, τ)

as a function of τ . The matrix
(
a b
c d

)
∈ SL2(Z) acts on the upper half plane

by τ 7→ aτ+b
cτ+d . We would like to know how this SL2(Z) action affects the

immersion Θτ : Eτ → PN−1.
The following transformation formula for the theta function is classical

and fundamental.

Lemma 5.11 (cf. Igusa [7, p.85]). Let M =
(
a b
c d

)
be in SL2(Z). Then we

have
(5.2)

θ(p,q)

( z

cτ + d
,
aτ + b

cτ + d

)
= κ(M)e(φM (p, q))e

(
cz2

2(cz+d)

)√
cτ + d θ(p′,q′)(z, τ),

where κ(M) is an eighth root of unity that depends on neither τ nor (p, q),

φM (p, q) = −1
2

(
abp2 + 2bcpq + cdq2 − bd(ap+ cq)

)
,

(p′, q′) =
(
ap+ cq − 1

2ac, bp+ dq − 1
2bd
)
,

and
√
cτ + d is the principal value.

Lemma 5.12. Let M =
(
a b
c d

)
be in Γ(2N). Then we have

θ
(N)
k

( z

cτ + d
,
aτ + b

cτ + d

)
= κ′(M)e

(
cNz2

2(cz+d)

)√
cτ + d θ

(N)
k (z, τ),

where κ′(M) is an eighth root of unity that depends on neither τ nor k.

Proof. Since θ
(N)
k

(
z

cτ+d ,
aτ+b
cτ+d

)
= θ( 1

2
− k
N
,N

2
)

(
Nz

(c/N)(Nτ)+d ,
a(Nτ)+bN

(c/N)(Nτ)+d

)
, we ap-

ply Lemma 5.11 with M ′ =
(

a bN
c/N d

)
, and (p, q) = (1

2 −
k
N ,

N
2 ). Then, by

Proposition 5.2, we have

θ
(N)
k

( z

cτ + d
,
aτ + b

cτ + d

)
= κ(M ′)e

(
φM ′(

1
2−

k
N ,

N
2 )
)
e
(
(1

2−
k
N )(q′−N

2 )
)
e
(

cz2

2(cz+d)

)√
cτ + d θ

(N)
k (z, τ).

We then see that κ(M ′)e
(
φM ′(

1
2 −

k
N ,

N
2 )
)
e
(
(1

2 −
k
N )(q′ − N

2 )
)

is an eighth

root of unity that does not depend on k as long as
(
a b
c d

)
is in Γ(2N). �

Proposition 5.13. The following transformation formulas hold.

(1) θ
(N)
k (z, τ + 1) = c e

(
−k(N−k)

2N

)
θ

(N)
k (z, τ),

(2) θ
(N)
k

(z
τ
,−1

τ

)
= c′ e

(
z
2

)√
τ
N

N−1∑
j=0

ζ−kjN θ
(N)
j (z, τ).

Here, c and c′ are constants independent of k, and ζN = e( 1
N ).
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Proof. (1) Since θ
(N)
k (z, τ + 1) = θ( 1

2
− k
N
,N

2
)(Nz,Nτ +N), we use the trans-

formation formula (5.2) with M =
(

1 N
0 1

)
. Then we have

θ
(N)
k (z, τ + 1) = θ( 1

2
− k
N
,N

2
)(Nz,Nτ +N)

= κ(M)e
(
N
2 (1

4 −
k2

N2 )
)
θ( 1

2
− k
N
,N

2
−k)(Nz,Nτ)

= κ(M)e
(
N
2 (1

4 −
k2

N2 )
)
e
(
−(1

2 −
k
N )k

)
θ( 1

2
− k
N
,N

2
)(Nz,Nτ)

= κ(M)e
(
N
8 −

k(N−k)
2N

)
θ

(N)
k (z, τ)

= c e
(
−k(N−k)

2N

)
θ

(N)
k (z, τ).

(2) Since θ
(N)
k ( zτ ,−

1
τ ) = θ( 1

2
− k
N
,N

2
)(

z
τ/N ,−

1
τ/N ), we let τ ′ = τ/N and we

use the transformation formula (5.2) with M =
(

0 −1
1 0

)
. Then, we have

φM (p, q) = N
4 −

k
2 and (p′, q′) =

(
N
2 ,−

1
2 + k

N

)
, and

θ
(N)
k

(z
τ
,
−1

τ

)
= θ( 1

2
− k
N
,N

2
)

( z
τ ′
,
−1

τ ′

)
= κ(M)e

(
N
4 −

k
2

)
e( z

2

2τ ′ )
√
τ ′ θ(N

2
,− 1

2
+ k
N

)(z, τ
′).

We compute the series of θ(N
2
,− 1

2
+ k
N

)(z, τ
′) by splitting it into N parts:

θ(N
2
,− 1

2
+ k
N

)(z, τ
′) =

∑
n∈Z

e
(

1
2

(
n+ N

2

)2 τ
N +

(
n+ N

2

)(
z − 1

2 + k
N

))

=
N−1∑
j=0

( ∑
n+j≡0 mod N

e
(

1
2

(
n+ N

2

)2 τ
N +

(
n+ N

2

)(
z − 1

2 + k
N

)))
.

Since n+ j ≡ 0 mod N if and only if n = Nm− j for some m ∈ Z, we have∑
n+j≡0 mod N

e
(

1
2

(
n+ N

2

)2 τ
N +

(
n+ N

2

)(
z − 1

2 + k
N

))
=
∑
m∈Z

e
(

1
2

(
(Nm− j) + N

2

)2 τ
N +

(
(Nm− j) + N

2

)(
z − 1

2 + k
N

))
=
∑
m∈Z

e
(

1
2N
(
m− j

N + 1
2

)2
τ +N

(
m− j

N + 1
2

)(
z + 1

2

)
+
(
Nm− j + N

2

)
( kN − 1

))
=
∑
m∈Z

e
(

1
2N
(
m− j

N + 1
2

)2
τ +N

(
m− j

N + 1
2

)(
z + 1

2

))
e(− jk

N + k−N
2 )

= e(k−N2 )ζ−jkN θ
(N)
j (z, τ)

Therefore,

θ
(N)
k

(z
τ
,
−1

τ

)
= κ(M)e

(
N
4 −

k
2

)
e(Nz

2

2τ )
√

τ
N θ(N

2
,− 1

2
+ k
N

)(z, τ
′)

= κ(M)e
(
−N

4

)
e
(
Nz2

2τ

)√
τ
N

N−1∑
j=0

ζ−kjN θ
(N)
j (z, τ). �



20 MASANOBU KANEKO AND MASATO KUWATA

Corollary 5.14. The action τ 7→ τ + 1 induces the change of coordinates
of PN−1 given by the following transition matrices:

PA =



1 0 · · · 0 · · · 0

0 ζ
−1(N−1)
2N · · · 0 · · · 0

...
...

. . .
...

...

0 0 · · · ζ−k(N−k)
2N · · · 0

...
...

...
. . .

...

0 0 · · · 0 · · · ζ−(N−1)·1
2N


= Diag(ζ

k(N−k)
2N )0≤k≤N−1.

Similarly, τ 7→ −1/τ induces the change of coordinates given by:

PB =



1 1 1 · · · 1

1 ζ−1
N ζ−2

N · · · ζ
−(N−1)
N

1 ζ−2
N ζ−4

N · · · ζ
−2(N−1)
N

...
...

...
. . .

...

1 ζ
−(N−1)
N ζ

−2(N−1)
N · · · ζ

−(N−1)2

N

 =
(
ζ−kjN

)
0≤k,j≤N−1

.

Here, we mean by the transition matrix from the old coordinates (X0 : X1 :
· · · : XN−1) to the new one (X ′0 : X ′1 : · · · : X ′N−1) the matrix P that satisfies
t(X ′0, X

′
1, . . . , X

′
N−1) = P t(X0, X1, . . . , XN−1).

Proof. Follows immediately from Proposition 5.13. �

From this Corollary, we obtain the representation

ρ : SL2(Z)→ PGLN (C)

determined by

ρ( 1 1
0 1 ) = PA and ρ

(
0 −1
1 0

)
= PB.

For this representation, we have the following.

Theorem 5.15. Let PA and PB be the matrices in Corollary 5.14, and let
MS, MT and M[−1] be matrices in (4.1).

(1) The representation ρ factors through SL2(Z)/Γ(N) if N is odd, and

SL2(Z)/Γ(N)(2N) if N is even.
(2) We have the relations

ρ
(
a b
c d

)
Mm
T M

n
S ρ
(
a b
c d

)−1 ≡Mam+bn
T M cm+dn

S , m, n ∈ Z/NZ,

ρ
(
a b
c d

)
M[−1] ρ

(
a b
c d

)−1 ≡M[−1],

where ≡ means two matrices are equivalent in PGLN (C).

Proof. (1) By Lemma 5.12, we see that ker ρ contains Γ(2N). If N is odd,

then Γ(N)/Γ(N)(2N) = Γ(N)/Γ(2N) ' S3 (the symmetric group of degree
3) is generated by

(
1 N
0 1

)
and

(
1 0
N 1

)
. Since ρ( 1 0

1 1 ) = P−1
B P−1

A PB, we have

ρ
(

1 N
0 1

)
≡ ρ
(

1 0
N 1

)
≡ IN by straightforward calculations using Corollary 5.14.

Hence we conclude that ker ρ contains Γ(N).
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If N is even, however, we have ρ
(

1 N
0 1

)
≡M

N
2
T and ρ

(
1 0
N 1

)
≡M

N
2
S , where

M
N
2
T and M

N
2
S are matrices appearing in Theorem 4.20. By a simple calcu-

lation, we have(
1 N
0 1

)(
1 0

N − 1 1

)(
1 N
0 1

)(
1 0
1 1

)
≡
(

1 +N 0
0 1 +N

)
mod 2N,

if N is even. Again, by straightforward calculations, we have

PNA (P−1
B P−1

A PB)N−1PNA (P−1
B P−1

A PB) ≡ IN .

This proves ρ
(

1+N 0
0 1+N

)
≡ IN , and we see that ker ρ contains Γ(N)(2N).

(2) By direct calculations, we have

PA MT P
−1
A ≡MT , PA MS P

−1
A ≡MSMT ,

PB MT P
−1
B ≡MS , PB MS P

−1
B ≡M−1

T ,

Since MTMS ≡ MSMT in PGLN (C), we obtain the first relation in the
statement. As for the second relation, it suffices to verify PA M[−1] P

−1
A ≡

M[−1] and PB M[−1] P
−1
B ≡M[−1], which can be done easily.

�

5.4. Modular curves. In this paragraph we assumeN is even. Let Y (N)(2N) =

Γ(N)(2N)\H be the modular curve associated with Γ(N)(2N). Let E(N)(2N)

be the universal elliptic curve over Y (N)(2N), that is, the fibration E(N)(2N)→
Y (N)(2N) such that the fiber at τ ∈ Y (N)(2N) is the elliptic curve Eτ =
C/Λτ . By Theorem 5.10, we have an immersion

Θ : E(N)(2N) ↪−→ PN−1 × Y (N)(2N)
(z mod Λτ , τ) 7−→ (Θτ (z), τ).

Let o be the 0-section Y (N)(2N) → E(N)(2N). We obtain a morphism

α : Y (N)(2N)→ PN−1 by the following diagram

E(N)(2N) PN−1 × Y (N)(2N)

Y (N)(2N) PN−1.

Θ

π1o

α

where π1 : PN−1×Y (N)(2N)→ PN−1 is the projection onto the first factor.

By taking its closure we also obtain X(N)(2N) = Y (N)(2N) → PN−1. In

terms of coordinates, the morphism α is given by τ 7→ (a
(N)
0 (τ), . . . , a

(N)
N−1(τ)),

where a
(N)
k (τ) is the “Theta Null Werte” defined by

a
(N)
k (τ) := θ

(N)
k (0, τ) = θ( 1

2
− k
N
,N

2
)(0, Nτ) (k ∈ Z).

We will see later in §6 that the image in PN−1 satisfies a set of quartic
equations. It is in general a difficult question whether these equations define
X(N)(2N). We will discuss this question in each of examples N = 4, 6, and
8 later.



22 MASANOBU KANEKO AND MASATO KUWATA

By using theta transformation formula (Lemma 5.11), we can describe

the transformation properties of a
(N)
k (τ) under the action of the group

Γ(N)/Γ(N)(2N). By Proposition 5.4 (6), we have

a
(N)
k (τ) = (−1)Na

(N)
−k (τ) = a

(N)
N−k(τ).

(Remember that N is even.) This implies that the image of α is of the form

(5.3) (a0(τ) : a1(τ) : · · · : aN
2
−1(τ) : aN

2
(τ) : aN

2
−1(τ) : · · · : a1(τ)).

In other words, it is contained in the linear subspace H in PN−1 defined
by the equations Xk = XN−k, k = 1, . . . , N2 − 1. The linear space H is
stable under the representation ρ : SL2(Z) → PGLN (C) in Theorem 5.15.

Moreover, since ρ(−I2) = M[−1] acts trivially on H, and ker ρ ⊃ Γ(N)(2N),
ρ induces a representation

ρ̄ : SL2(Z)/Γ(N)(2N)→ PGLN
2

+1(C).

Define the coordinates (X̄0 : X̄1 : · · · : X̄N
2

) of H by

X̄0 = X0,

X̄1 = X1 +XN−1,

. . .

X̄N
2
−1 = XN

2
−1 +XN

2
+1,

X̄N
2

= XN
2
.

Then, ρ̄ is given by

ρ̄

(
0 −1
1 0

)
=


1 1 1 · · · 1

2 ζ + ζ−1 ζ2 + ζ−2 · · · −2

2 ζ2 + ζ−2 ζ4 + ζ−4 · · · −2
...

...
...

. . .
...

1 −1 1 · · · (−1)
N
2

 ,

ρ̄

(
1 1
0 1

)
=


1

ζ̃1(N−1)

ζ̃2(N−2)

. . .

ζ̃N
2/4

 .
In particular, we have

ρ̄

(
1 N
0 1

)
=


1
−1

1
. . .

(−1)
N
2

 , ρ̄

(
1 0
N 1

)
=


1

1
...

1
1

 .
Thus, we have the following.

Proposition 5.16. Let N be an even positive integer. Write a
(N)
k (τ) = ak

for short. Then, the ratio (a0 : a1 : · · · : aN
2

) is invariant under the action

of Γ(N)(2N). Moreover, the following holds.
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(1) The action τ 7→
(

1 N
0 1

)
τ = τ +N induces the action

(a0 : a1 : · · · : ak : · · · : aN
2

) 7→ (a0 : −a1 : · · · : (−1)kak : · · · : (−1)
N
2 aN

2
).

(2) The action τ 7→
(

1 0
N 1

)
τ = τ

Nτ+1 induces the action

(a0 : a1 : · · · : ak : · · · : aN
2

) 7→ (aN
2

: aN
2
−1 : · · · : aN

2
−k : · · · : a0).

6. Quadratic equations satisfied by theta functions

Let E be an elliptic curve over a field K contained in C. If we immerse
E via the complete linear system |N{OE}| for some integer N , there exists
a coordinate system (X0 : X1 : · · · : XN−1) ∈ PN−1 described in Proposi-
tion 4.4 or Theorem 4.20. Then, by a suitable choice of τ ∈ H, we have a

map C/Λτ → E ⊂ PN−1 given by Xk = θ
(N)
k (z, τ). In order to describe

N(N − 3)/2 quadratic equations satisfied by E explicitly, we would like to

find relations satisfied among θ
(N)
k (z, τ). It turns out that the situation is

quite different depending on the parity of N .
We use the method of Jacobi [8], which is completely elementary and

algebraic (i.e., no function theory is used).

Definition 6.1. Jacobi’s basic theta functions ϑi(z) (i = 0, 1, 2, 3) are de-
fined by the following formulas:

ϑ0(z) = θ(0, 1
2

)(z, τ) =
∑
n∈Z

e
(

1
2n

2τ + n(z + 1
2)
)
,

ϑ1(z) = θ( 1
2
, 1
2

)(z, τ) =
∑
n∈Z

e
(

1
2(n+ 1

2)2τ + (n+ 1
2)(z + 1

2)
)
,

ϑ2(z) = θ( 1
2
,0)(z, τ) =

∑
n∈Z

e
(

1
2(n+ 1

2)2τ + (n+ 1
2)z
)
,

ϑ3(z) = θ(0,0)(z, τ) =
∑
n∈Z

e
(

1
2n

2τ + nz
)
.

Note that our definition differs slightly from Jacobi’s original notation by
some rescaling and sign. Although we should write ϑi(z, τ) instead of ϑi(z),
we omit τ for simplicity.

The function ϑ1(z) is an odd function and the others are even functions:

(6.1)
ϑ0(−z) = ϑ0(z), ϑ1(−z) = −ϑ1(z),
ϑ2(−z) = ϑ2(z), ϑ3(−z) = ϑ3(z).

The following formulas are immediate from the definition.

(6.2)
ϑ0(z + 1

2) = ϑ3(z), ϑ1(z + 1
2) = −ϑ2(z),

ϑ2(z + 1
2) = ϑ1(z), ϑ3(z + 1

2) = ϑ0(z).

The starting point is the identity (A)-(1) in Jacobi [8, p.507].



24 MASANOBU KANEKO AND MASATO KUWATA

For independent variables w, x, y, z, define variables w′, x′, y′, z′ by
(6.3)

w′ = 1
2(w + x+ y + z),

x′ = 1
2(w + x− y − z),

y′ = 1
2(w − x+ y − z),

z′ = 1
2(w − x− y + z),

or


w′

x′

y′

z′

 =
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1



w
x
y
z

 .

Denote by A the 4 × 4 matrix (including the factor 1/2) in the second
equation of (6.3). Then, we have A ∈ O(4), A2 = I, and detA = −1. This
shows that the transformation given by (6.3) induces an involution on the
set

{(w, x, y, z) ∈ Z4 | w ≡ x ≡ y ≡ z (mod 2)}
and preserving the norm w2 + x2 + y2 + z2.

Proposition 6.2. Let w, x, y, z be independent variables, and let w′, x′, y′, z′

be the variables defined by (6.3). Then, the following identity holds:

(6.4)
ϑ3(w)ϑ3(x)ϑ3(y)ϑ3(z) + ϑ2(w)ϑ2(x)ϑ2(y)ϑ2(z)

= ϑ3(w′)ϑ3(x′)ϑ3(y′)ϑ3(z′) + ϑ2(w′)ϑ2(x′)ϑ2(y′)ϑ2(z′),

Proof. Jacobi’s identity (6.4) follows from the properties of (6.3). The reader
is encouraged to consult the beautiful, original article of Jacobi [8]. �

Theorem 6.3. Let w, x, y, z be independent variables. As in Propo-
sition 6.2, define w′, x′, y′, z′ by (6.3). Furthermore, define variables
w′′, x′′, y′′, z′′ by

(6.5) t(w′′, x′′, y′′, z′′) = A t(w, x, y,−z).
Then, the following three-term identity holds:

(6.6) ϑ1(w)ϑ1(x)ϑ1(y)ϑ1(z)

+ ϑ0(w′)ϑ0(x′)ϑ0(y′)ϑ0(z′)

− ϑ0(w′′)ϑ0(x′′)ϑ0(y′′)ϑ0(z′′) = 0.

Proof. Replacing w by w + 1 in (6.4) and using (6.2), we obtain

(6.7) ϑ3(w)ϑ3(x)ϑ3(y)ϑ3(z)− ϑ2(w)ϑ2(x)ϑ2(y)ϑ2(z)

= ϑ0(w′)ϑ0(x′)ϑ0(y′)ϑ0(z′) + ϑ1(w′)ϑ1(x′)ϑ1(y′)ϑ1(z′).

Adding (6.4) and (6.7), we obtain

2ϑ3(w)ϑ3(x)ϑ3(y)ϑ3(z)

= ϑ3(w′)ϑ3(x′)ϑ3(y′)ϑ3(z′) + ϑ2(w′)ϑ2(x′)ϑ2(y′)ϑ2(z′)

+ ϑ0(w′)ϑ0(x′)ϑ0(y′)ϑ0(z′) + ϑ1(w′)ϑ1(x′)ϑ1(y′)ϑ1(z′).

Replace w, x, y, z by w + 1
2 , x + 1

2 , y + 1
2 , z + 1

2 in this identity. Then w′

becomes w′ + 1, and x′, y′, z′ unchanged. By (6.2) we obtain

(6.8) 2ϑ0(w)ϑ0(x)ϑ0(y)ϑ0(z)

= ϑ0(w′)ϑ0(x′)ϑ0(y′)ϑ0(z′)− ϑ1(w′)ϑ1(x′)ϑ1(y′)ϑ1(z′)

− ϑ2(w′)ϑ2(x′)ϑ2(y′)ϑ2(z′) + ϑ3(w′)ϑ3(x′)ϑ3(y′)ϑ3(z′).
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Since the relation between w, x, y, z and w′, x′, y′, z′ are symmetric, we
have

(6.9) 2ϑ0(w′)ϑ0(x′)ϑ0(y′)ϑ0(z′)

= ϑ0(w)ϑ0(x)ϑ0(y)ϑ0(z)− ϑ1(w)ϑ1(x)ϑ1(y)ϑ1(z)

− ϑ2(w)ϑ2(x)ϑ2(y)ϑ2(z) + ϑ3(w)ϑ3(x)ϑ3(y)ϑ3(z),

By the definition of the transformation (6.5), the identity (6.9) can be trans-
lated to

(6.10) 2ϑ0(w′′)ϑ0(x′′)ϑ0(y′′)ϑ0(z′′)

= ϑ0(w)ϑ0(x)ϑ0(y)ϑ0(−z)− ϑ1(w)ϑ1(x)ϑ1(y)ϑ1(−z)
− ϑ2(w)ϑ2(x)ϑ2(y)ϑ2(−z) + ϑ3(w)ϑ3(x)ϑ3(y)ϑ3(−z).

Now, calculating (6.9) − (6.10), and using (6.1), we obtain the relation
(6.6). �

6.1. Odd case. Assume N is odd.
From our definition of θ

(N)
k (z, τ) and Proposition 5.2, we have the relations

θ
(N)
0 (z, τ) = (−1)

N−1
2 ϑ1(Nz,Nτ) and θ

(N)
N
2

(z, τ) = ϑ0(Nz,Nτ).

Dropping the superscript “(N)”, (6.6) is translated to

(6.11) θ0(w)θ0(x)θ0(y)θ0(z)

+ θN
2

(w′)θN
2

(x′)θN
2

(y′)θN
2

(z′)− θN
2

(w′′)θN
2

(x′′)θN
2

(y′′)θN
2

(z′′) = 0.

We use this equation to obtain our quadratic equations.

Theorem 6.4. Suppose N is an odd integer. Let EΘτ be the image of Θτ in
Theorem 5.10. Let V = H0(PN−1, IEΘτ

(2)), and Vk = V ∩〈XiXj | i+j ≡ k
mod N〉, where Xi (i = 0, . . . , N − 1) are the coordinate functions of PN−1

in Proposition 4.4. Let ai = θ
(N)
i (0, τ). Then,

(1) The vector space Vk is isomorphic to V0 for all k = 0, . . . , N − 1 by
the map XiXj 7→ Xi+k/2Xj+k/2, where indices are taken as elements
of Z/NZ.

(2) The quadratic forms
(6.12)
aj+1aN−jX

2
0 − aN−1

2
−jaN+1

2
+jXN+1

2
XN−1

2
+ aN−1

2
aN+1

2
XN−1

2
−jXN+1

2
+j

with j = 1, . . . , N−3
2 form a basis of the vector space V0.

Proof. (1) Since N is odd, 2 is invertible in Z/NZ and thus k/2 in the
indices makes sense. The isomorphism is nothing but the translation map

τ
k/2
S in Proposition 4.4.

(2) First, we show that if we replace Xi by θ
(N)
i (z, τ), the quadratic forms

in (6.12) vanishes. In (6.11), let

(w, x, y, z) = (z, z, jτN ,−
(j+1)τ
N

)
.

Then, we have

(w′, x′, y′, z′) =
(
z − τ

2N , z + τ
2N ,

(2j+1)τ
2N ,− (2j+1)τ

2N

)
,



26 MASANOBU KANEKO AND MASATO KUWATA

(w′′, x′′, y′′, z′′) =
(
z + (2j+1)τ

2N , z − (2j+1)τ
2N ,− τ

2N ,
τ

2N

)
.

Then, use Proposition 5.4 (4) to see that (6.12) is satisfied by Xi = θ
(N)
i (z, τ)

and ai = θ
(N)
i (0, τ). Recall that ak depends only on k mod N , and we

have a0 = 0 and ak = −aN−k. Thus, we may restrict the range of j to
1 ≤ j ≤ (N − 3)/2. (j = (N − 1)/2 gives the trivial relation.)

Next we show that these (N − 3)/2 quadratic forms are independent.
Indeed, the coefficients of the terms XN−1

2
−jXN+1

2
+j for 1 ≤ j ≤ (N − 3)/2

are all equal to aN−1
2
aN+1

2
, which is nonzero, and the terms X2

0 , XN+1
2
XN−1

2

are different from XN−1
2
−jXN+1

2
+j for 1 ≤ j ≤ (N − 3)/2. Therefore, these

(N − 3)/2 quadratic forms are independent. Since dimV0 = (N − 3)/2 by
Propositions 4.6, these (N − 3)/2 quadratic forms are basis of V0. �

Remark 6.5. By specializing Xi at z = 0 in (6.12), or sending Xi 7→ ai, we
obtain quartic relations in aj ’s. These quartic equations are satisfied by the
image of the morphism α : Y (N)→ PN−1 in §5.4.

We briefly describe below the classical examples N = 5 and 7.

Example 6.6. When N = 5, (6.12) yields (5 − 3)/2 = 1 quadratic form,
which is

a1a2X
2
0 − a2

1X2X3 + a2
2X1X4.

V = H0(PN−1, IEΘτ
(2)) is generated by this form and its various permuta-

tions by MS in Proposition 4.4. If we define φ(τ) by

φ(τ) = −a1(τ)

a2(τ)
= q

1
5 − q

6
5 + q

11
5 − q

21
5 + q

26
5 − q

31
5 + · · · (q = e(τ) = e2πiτ ),

we have the equations

X2
i + φ(τ)Xi+2Xi−2 −

1

φ(τ)
Xi+1Xi−1 = 0 (i = 0, . . . , 4).

This set of equations is the well-known Bianchi normal form [1].

Example 6.7. When N = 7, quadratic forms (6.12) give two equations

a1a2X
2
0 − a2

2X3X4 + a2
3X2X5 = 0,

a2a3X
2
0 − a2

1X3X4 + a2
3X1X6 = 0.

By the specialization z = 0 in Xi after a suitable shift using Proposi-
tion 5.4 (4), that is, sending Xi 7→ ai+j for some j, we obtain the unique
relation

a3
1a2 = a3

2a3 + a1a
3
3.

This is the renowned Klein’s quartic, which is a model of the modular curve
X(7) of genus 3.

6.2. Even case. Next suppose N is even. Again we start with Jacobi’s
(6.4), which in terms of our theta’s is written as
(6.13)

θN
2

(w)θN
2

(x)θN
2

(y)θN
2

(z) + θ0(w)θ0(x)θ0(y)θ0(z)

= θN
2

(w′)θN
2

(x′)θN
2

(y′)θN
2

(z′) + θ0(w′)θ0(x′)θ0(y′)θ0(z′).
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We can deduce our quadratic relations directly from this with the following
specializations. For an integer j, consider the four substitutions

(w, x, y, z) =
(
z,− jτ

N ,−
jτ
N , z

)
,
(
−2jτ

N , 0, z, z
)
,(

z − τ
N ,−

jτ
N ,−

(j+1)τ
N , z

)
,
(
− (2j+1)τ

N , 0, z, z − τ
N

)
,

which, respectively, yield

(w′, x′, y′, z′) =
(
z − jτ

N , 0, 0, z + jτ
N

)
,
(
z − jτ

N ,−z −
jτ
N ,−

jτ
N ,−

jτ
N

)
,(

z − (j+1)τ
N , 0,− τ

N , z + jτ
N

)
,
(
z − (j+1)τ

N ,−z − jτ
N ,−

jτ
N ,−

(j+1)τ
N ,

)
.

Applying these to (6.13) and using Proposition 5.4, we obtain the following
set of equations.

 a2
j X

2
0 + a2

N
2

+j
X2

N
2

= a2
0XjXN−j + a2

N
2

XN
2

+jXN
2
−j ,

a0a2j X
2
0 + aN

2
aN

2
+2j X

2
N
2

= a2
j XjXN−j + a2

N
2

+j
XN

2
+jXN

2
−j ,

(6.14)



ajaj+1X0X1 + aN
2

+jaN
2

+j+1XN
2
XN

2
+1

= a0a1 Xj+1XN−j + aN
2
aN

2
+1XN

2
+j+1XN

2
−j ,

a0a2j+1X0X1 + aN
2
aN

2
+2j+1XN

2
XN

2
+1

= ajaj+1Xj+1XN−j + aN
2

+jaN
2

+j+1XN
2

+j+1XN
2
−j .

(6.15)

Here, as before, the indices are considered modulo N . As in the odd case,
let V = H0(PN−1, IEΘτ

(2)), and Vk = V ∩ 〈XiXj | i + j ≡ k mod N〉.
Equations (6.14) (resp. (6.15)) give quadratic forms in the space V0 (resp.
V1). Because of the relation aj = aN−j , it is easy to see that we may restrict

ourselves to the case 0 ≤ j ≤ N
2 . Furthermore, letting j = 0 or N

2 in (6.14)

gives trivial relations, and (6.15) becomes also trivial for j = N
2 −1. Finally,

the second equation of (6.14) (resp. (6.15)) is unchanged if we replace j by
N
2 − j (resp. N

2 − j − 1).

Theorem 6.8. Suppose N is an even integer. Let EΘτ be the image of Θτ in
Theorem 5.10. Let V = H0(PN−1, IEΘτ

(2)), and Vk = V ∩〈XiXj | i+j ≡ k
mod N〉, where Xi (i = 0, . . . , N − 1) are the coordinate functions of PN−1

in Definition 4.17. Then,

(1) The vector space V2k is isomorphic to V0, and V2k+1 is isomorphic
to V1 for all k = 0, . . . , N2 − 1 by the map XiXj 7→ Xi+kXj+k, where
indices are taken as elements of Z/NZ.

(2) The quadratic forms

(6.16) a2
j X

2
0 + a2

N
2

+j
X2

N
2

− a2
0XjXN−j − a2

N
2

XN
2

+jXN
2
−j
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with j = 1, . . . , N2 − 1 form a basis of the vector space V0, and the
quadratic forms

(6.17)
ajaj+1X0X1 + aN

2
+jaN

2
+j+1XN

2
XN

2
+1

− a0a1 Xj+1XN−j − aN
2
aN

2
+1XN

2
+j+1XN

2
−j

with j = 1, . . . , N2 − 2 form a basis of the vector space V1.

Proof. (1) The isomorphism is nothing but the translation map τkS in Propo-
sition 4.4.

(2) By (6.14) and (6.15), we see that the quadratic forms in (6.16) and
(6.17) belong to V0 and V1 respectively. Looking at the indices of XkXl, the
only possible dependency occurring between the quadratic forms in (6.16)
are between the ones j = j0 and j = N

2 − j0. But then the determinant
of the two by two matrix of coefficients of Xj0X−j0 and XN

2
+j0

XN
2
−j0 is

a4
0 − a4

N
2

, and it is non-zero, as is seen by looking at its Fourier series. So,

these N
2 − 1 forms are linearly independent. The same argument applies for

the quadratic forms in (6.17), and the N
2 −2 forms are linearly independent.

Since dimV = N(N − 3)/2, we have dimV0 + dimV1 = N − 3 by (1). This
implies that the N − 3 independent forms in (6.16) and (6.17) form a basis
of V0 and V1 respectively. �

Remark 6.9. As before, by specializing Xi at z = 0 in (6.12), we obtain
quartic relations in aj ’s. These quartic equations are satisfied by the image

of the morphism α : Y (N)(2N) → PN−1 in §5.4. We will study these
equations in the examples in the following sections.

7. Level 4

In this section we consider the case N = 4. As is well known, the congru-
ence subgroups Γ(4) and Γ(8) are of genus 0 and 5, respectively, and accord-

ing to the database [2], Γ(4)(8) is of genus 3. (In the notation of [2], Γ(4)(8)
is denoted by “8B3”.) Theorem 6.8 shows that V = H0(P3, IEΘτ

(2)) =⊕3
i=0 Vi is given by

V0 = 〈a2
1(X2

0 +X2
2 )− (a2

0 + a2
2)X1X3〉,

V1 = V3 = {0}.
V2 = 〈a2

1(X2
1 +X2

3 )− (a2
0 + a2

2)X0X2〉,

Thus, the following two equations define the universal elliptic curve E(4)(8)

over X(4)(8).

(7.1) E(4)(8) :

{
a2

1(X2
0 +X2

2 ) = (a2
0 + a2

2)X1X3,

(a2
0 + a2

2)X0X2 = a2
1(X2

1 +X2
3 ).

Letting z = 0, in other words, replacing Xi by ai, we obtain two equations
satisfied by ai’s. However, considering the fact a1 = a3, we obtain only one
nontrivial relation

(7.2) a0a2(a2
0 + a2

2) = 2a4
1.
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This equation defines a nonsingular curve in P2, and it is a curve of genus 3.
On the other hand, as we mentioned above, the genus of X(4)(8) equals 3.

Thus, the plane curve defined by (7.2) is nothing but X(4)(8).

Proposition 7.1. The curve E(4)(8) is isomorphic to

(7.3) Y 2 = X
(
X − (a0 − a2)4

)(
X − (a0 + a2)4

)
.

The points in X(4)(8) at which the fiber of E(4)(8) degenerates into a Néron
polygon of four sides are

(a0 : a1 : a2) = (0 : 0 : 1), (1 : 0 : 0), (±ζ2
8 : 0 : 1), (1 : ζk8 : 1) (k = 0, . . . , 7),

where ζ8 is a primitive eighth root of unity.

Proof. From two quadrics (7.1), eliminate X1 to obtain a quartic equation.
Then, using the rational point (X0 : X1 : X2 : X3) = (a0 : a1 : a2 : a1), we
obtain the Weierstrass equation (7.3) after some simplifications. The change
of coordinates is given by

(7.4)


X = (a2

0 − a2
2)2 (a2

1X0X2 + a0a2X1X3)

(a2
1X0X2 − a0a2X1X3)

,

Y = 4a2
1(a2

0 − a2
2)2 (X1 +X3)(X0 +X2)(a0a2X0X2 − a2

1X1X3)

(X1 −X3)(X0 −X2)(a2
1X0X2 − a0a2X1X3)

.

The locus of degenerate fibers are where the right hand side of (7.3) has a
multiple root. �

The action of SL2(Z)/Γ(4)(8) on E(4)(8) and X(4)(8) are as follows:

ρ
(

0 −1
1 0

)
=


1 1 1 1
1 ζ2

8 −1 −ζ2
8

1 −1 1 −1
1 −ζ2

8 −1 ζ2
8

 , ρ ( 1 1
0 1 ) =


1 0 0 0
0 ζ3

8 0 0
0 0 −1 0
0 0 0 ζ3

8

 ,
ρ̄
(

0 −1
1 0

)
=

 1 2 1
1 0 −1
1 −2 1

 , ρ̄ ( 1 1
0 1 ) =

 1 0 0
0 ζ3

8 0
0 0 −1

 .
In particular, we have

ρ ( 1 4
0 1 ) : (X0 : X1 : X2 : X3) 7→ (X0 : −X1 : X2 : −X3),

ρ ( 1 0
4 1 ) : (X0 : X1 : X2 : X3) 7→ (X2 : X3 : X0 : X1),

ρ̄ ( 1 4
0 1 ) : (a0 : a1 : a2) 7→ (a0 : −a1 : a2),

ρ̄ ( 1 0
4 1 ) : (a0 : a1 : a2) 7→ (a2 : a1 : a0).

Let G = Γ(4)/Γ(4)(8) = 〈( 1 4
0 1 ) Γ(4)(8), ( 1 0

4 1 ) Γ(4)(8)〉 ' Z/2Z × Z/2Z. In
order to obtain a model of the universal elliptic curve E(4)→ X(4), we take

the quotient of E(4)(8) → X(4)(8) by the action of G. To do so, we first
dehomogenize the equations (7.1) and (7.2) by letting

x0 =
X0

X3
, x1 =

X1

X3
, x2 =

X2

X3
, α0 =

a0

a1
, α2 =

a2

a1
,
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and consider the function field K(α0, α2, x0, x1, x2). Then, these variables
satisfy the following relations:

α0α2(α2
0 + α2

2) = 2,(7.5) {
α0α2(x2

0 + x2
2) = 2x1,

2x0x2 = α0α2(x2
1 + 1).

(7.6)

Let σ1 = ( 1 4
0 1 ) Γ(4)(8) and σ2 = ( 1 0

4 1 ) Γ(4)(8) be the generators of G. Then,
they act as follows:

σ1 : (α0, α2, x0, x1, x2) 7→ (−α0,−α2,−x0, x1,−x2),

σ2 : (α0, α2, x0, x1, x2) 7→
(
α2, α0,

x2

x1
,

1

x1
,
x0

x1

)
.

It is easy to see that K(α0, α2)G = K(α0α2, α
2
0 + α2

2). Considering (7.5),
we see that K(α0, α2)G = K(λ) with λ = α0α2. This shows that X(4) '
P1
λ. Further calculations show that the fixed field K(α0, α2, x0, x1, x2)G is

generated by

λ = α0α2, ξ0 =
x0x2

x1
, ξ1 = x1 +

1

x1
, ξ2 =

(x1 + 1)(x0 + x2)

(x1 − 1)(x0 − x2)
.

Now, (7.4) can be written in terms of λ, ξ0 and ξ1:

X =
4(1− λ4)

λ2

(ξ0 + λ)

(ξ0 − λ)
, Y =

16(1− λ4)

λ2

ξ2(1− λξ0)

(ξ0 − λ)
.

If we let X ′ = λ2X/4 and Y ′ = λ2Y/8, then equation (7.3) becomes

E(4) : Y ′2 = X ′
(
X ′ − (λ2 − 1)2

)(
X ′ − (λ2 + 1)2

)
.

The representaion % : SL2(Z/4Z)→ Aut(E(4)) is given by

%
(

0 −1
1 0

)
: (λ,X ′, Y ′) 7→

(
−λ+ 1

λ+ 1
,−4(X ′ + (λ2 + 1)2)

(λ+ 1)4
,− 8ζ2

8Y
′

(λ+ 1)6

)
,

% ( 1 1
0 1 ) : (λ,X ′, Y ′) 7→ (−ζ2

8λ,X
′, Y ′).

Note that we have

λ(τ) =
a0(τ)a2(τ)

a1(τ)2
= 2

(
η(τ)η(4τ)2

η(2τ)3

)2

= 2q
1
4 − 4q

5
4 + 10q

9
4 − 20q

13
4 + 36q

17
4 + · · · (q = e2πiτ ),

where η(τ) is the Dedekind eta function.

8. Level 6

Next, we consider the case N = 6. The congruence subgroups Γ(6) and
Γ(12) are of genus 1 and 25, respectively, and according to the database [2],

Γ(6)(12) is denoted by “12B13”, and of genus 13. The basis of Vk obtained
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by Theorem 6.8 is as follows:
(8.1)
V0 = 〈a2

1X
2
0 + a2

2X
2
3 − a2

0X1X5 − a2
3X2X4, a

2
2X

2
0 + a2

1X
2
3 − a2

3X1X5 − a2
0X2X4〉,

V2 = 〈a2
1X

2
1 + a2

2X
2
4 − a2

0X2X0 − a2
3X3X5, a

2
2X

2
0 + a2

1X
2
3 − a2

3X2X0 − a2
0X3X5〉,

V4 = 〈a2
1X

2
2 + a2

2X
2
5 − a2

0X3X1 − a2
3X2X4, a

2
2X

2
0 + a2

1X
2
5 − a2

3X3X1 − a2
0X4X0〉,

V1 = 〈a1a2(X0X1 +X3X4)− (a0a1 + a2a3)X2X5〉,
V3 = 〈a1a2(X1X2 +X4X5)− (a0a1 + a2a3)X3X0〉,
V5 = 〈a1a2(X2X3 +X5X0)− (a0a1 + a2a3)X4X1〉.

By replacing Xi by ai, we obtain quartic relations among ai’s. Noting that
a5 = a1 and a4 = a2, we obtain only two relations:

(8.2)

{
a4

1 + a4
2 = a3

0a2 + a1a
3
3,

a0a3 (a0a1 + a2a3) = 2 a2
1a

2
2.

The curve in P3 defined by (8.2) turns out to be reducible. Computations
using Groebner basis reveal that there are five irreducible components; four
of them are lines

a1 = a2 = 0, a0 − a2 = a1 − a3 = 0,

a0 − ωa2 = ωa1 − a3 = 0, a0 − ω2a2 = ω2a1 − a3 = 0,

where ω is a primitive third root of unity, and the other component is an
irreducible curve of genus 13. Since the congruence subgroup Γ(6)(12) is of
genus 13, the last irreducible component given by

a2(a4
1 − a4

2)a6
0 − (a8

1 − a8
2)a3

0 + 8a3
2a

4
1(a3

0a2 − a4
1) = 0

is the modular curve X(6)(12) associated with the group Γ(6)(12).

The action of SL2(Z)/Γ(6)(12) on X(4)(8) is as follows:

ρ̄
(

0 −1
1 0

)
=


1 2 2 1
1 1 −1 −1
1 −1 −1 1
1 −2 2 −1

 , ρ̄ ( 1 1
0 1 ) =


1 0 0 0
0 ζ5

12 0 0
0 0 ζ8

12 0
0 0 0 ζ9

12

 .
In particular, we have

ρ̄ ( 1 6
0 1 ) : (a0 : a1 : a2 : a3) 7→ (a0 : −a1 : a2 : −a3),

ρ̄ ( 1 0
6 1 ) : (a0 : a1 : a2 : a3) 7→ (a3 : a2 : a1 : a0).

Let us find a model ofX(6) by taking the quotient ofX(6)(12) by Γ(6)/Γ(6)(12) =
〈ρ̄ ( 1 6

0 1 ) , ρ̄ ( 1 0
6 1 )〉 ' Z/2Z × Z/2Z. Dehomogenizing the coordinates by

α1 = a1/a0, α2 = a2/a0, α3 = a3/a0, the equation (8.2) becomes

(8.3)

{
α4

1 + α4
2 = α2 + α1α

3
3,

α3(α1 + α2α3) = 2α2
1α

2
2.

Let σ1 and σ2 denote the automorphisms induced on the function field
k(α1, α2, α3) by ρ̄ ( 1 6

0 1 ) and ρ̄ ( 1 0
6 1 ), respectively. We have

σ1 : (α1, α2, α3) 7→ (−α1, α2,−α3), σ2 : (α1, α2, α3) 7→
(α2

α3
,
α1

α3
,

1

α3

)
.
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The fixed subfields by σ1 and σ2 are

k(α1, α2, α3)σ1 = k
(
α1α3,

α1

α3
, α2

)
,

k(α1, α2, α3)σ2 =
(
α1 +

α2

α3
, α2 +

α1

α3
, α3 +

1

α3

)
.

Finally, define

(8.4) β1 =
α1α2

α3
, β2 = α1α3 +

α2

α2
3

.

Clearly, β1 and β2 are fixed by G = 〈σ1, σ2〉. It is easy to show that the
fixed field by the group G is given by

k(α1, α2, α3)G = k(β1, β2).

Eliminating α1, α2, α3 from (8.3) and (8.4) by some calculations based on
Groebner basis, we find that if we let

X = 2β1, Y =
2β2

1(4β3
1 − 1)

β2
,

they satisfy

Y 2 = X3 + 1,

which is well-known model of the modular curve X(6). Furthermore, we
have

β1 =
X

2
, β2 =

X2(X3 − 2)

4Y
,

and thus k(β1, β2) = k(X,Y ).
On the curve Y 2 = X3 + 1, the actions of ρ̄

(
0 1
−1 0

)
and ρ̄ ( 1 1

0 1 ) are given
by

ρ̄
(

0 1
−1 0

)
: (X,Y ) 7→ (2,−3)− (X,Y ),

ρ̄ ( 1 1
0 1 ) : (X,Y ) 7→ [−ω](X,Y ) = (ωX,−Y ),

where the operation “−” in the first map is the group operation of Y 2 =
X3 + 1, and the map [ω] is the complex multiplication of Y 2 = X3 + 1. In

terms of ai(τ) = θ
(N)
i (0, τ), X and Y are expressed as follows:

X =
2a1(τ)a2(τ)

a0(τ)a3(τ)
, Y =

a0(τ)2a1(τ)2 − a2(τ)2a3(τ)2

a0(τ)2a2(τ)2 − a1(τ)2a3(τ)2
.

Incidentally, X and Y , which are modular functions on Γ(6), can also be
written by using the Dedekind eta function as follows:

X =
η(2τ)η(3τ)3

η(τ)η(6τ)3
= q−

1
3 + q

2
3 + q

5
3 − q

8
3 − q

11
3 + q

17
3 + 2 q

20
3 − · · · ,

Y =
η(2τ)4η(3τ)2

η(τ)2η(6τ)4
= q−

1
2 + 2q

1
2 + q

3
2 − 2q

7
2 − 2q

9
2 + 2q

11
2 + 4q

13
2 + · · · ,

where q = e2πiτ . The function Y has a simpler expression in terms of

ai(τ) = θ
(6)
i (0, τ) as

Y =
a0( τ3 )a3( τ3 )

a0(τ)a3(τ)
.
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At the end of this section, we note the connection to the “Hesse cubic”,
that is the elliptic normal curve of degree 3. Let

3µ = X2 − 2

X
=
Y 2 − 3

X

= q−
2
3 + 5q

4
3 − 7q

10
3 + 3q

16
3 + 15q

22
3 − 32q

28
3 + 9q

34
3 + · · · .

We can check that µ(τ/2) is a modular function for the group Γ(3), and we
have the relation

X3
0 +X3

2 +X3
4 = 3µ(τ)X0X2X4.

Actually, our theta functions θ
(3)
k (z, τ) (k = 0, 1, 2) for N = 3 can be

obtained from those for N = 6 (k = 0, 2, 4) by changing the variables
z → z/2 − 1/4, τ → τ/2, and thus the above equation gives the Hesse
cubic family of elliptic curves with level 3 structure. We refer the reader
to [9] for the derivation of the Hesse cubic in the same line of the current
paper.

9. Level 8

In the case N = 8, the basis of V0 and V1 obtained by Theorem 6.8 is as
follows:

(9.1)

V0 = 〈 a2
1X

2
0 + a2

3X
2
4 − a2

0X1X7 − a2
4X3X5,

a2
2X

2
0 + a2

2X
2
4 − (a2

0 + a2
4)X2X6,

a2
3X

2
0 + a2

1X
2
4 − a2

4X1X7 − a2
0X3X5 〉,

V1 = 〈 a1a2X0X1 − a0a1X2X7 − a3a4X3X6 + a2a3X4X5,
a2a3X0X1 − a3a4X2X7 − a0a1X3X6 + a1a2X4X5 〉.

The bases of V2k and V2k+1 are obtained by replacing Xi by Xi+k in V0 and
V1 respectively. By letting z = jτ/N , j = 0, 1, . . . , in (9.1), we obtain the
following relations among ai:

(9.2)



a0a4(a2
0 + a2

4) = 2a4
2,

a0a4(a2
1 + a2

3) = 2a1a3a
2
2,

a0a2a4(a0 + a4) = 2a2
1a

2
3,

a3
2(a0 + a4) = a1a3(a2

1 + a2
3),

a1a3(a2
0 + a2

4) = a2
2(a2

1 + a2
3),

a2(a3
0 + a3

4) = a4
1 + a4

3.

The curve in P4 defined by (9.2) turns out to be an irreducible curve of

genus 41, and this is a model of X(8)(16).
Dehomogenize (9.2) by letting α0 = a0/a2, α1 = a1/a2, α3 = a3/a2,

α4 = a4/a2. By some calculations of Groebner basis, it turns out that in
the function field k(α0, α1, α3, α4), the following three equations are enough
to generate the ideal generated by the above six equations:
(9.3)
α0α4(α2

0 +α2
4) = 2, α0 +α4 = α1α3(α2

1 +α2
3), α1α3(α2

0 +α2
4) = α2

1 +α2
3.
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Let σ1 and σ2 denote the automorphisms of k(α0, α1, α3, α4) induced by
ρ̄ ( 1 8

0 1 ) and ρ̄ ( 1 0
8 1 ), respectively. We have

σ1 : (α0, α1, α3, α4) 7→ (α0,−α1,−α3, α4),

σ2 : (α0, α1, α3, α4) 7→ (α4, α3, α1, α0).

It is easy to see that α and β commute, and thus the group of automorphism
〈α, β〉 induced by α and β is isomorphic to (Z/2Z)2. The fixed subfields by
α and β are

k(α0, α1, α3, α4)σ1 = k
(
α0, α1α3,

α1

α3
, α4

)
,

k(α0, α1, α3, α4)σ2 = k

(
α0 + α4, α1 + α3, (α1 − α3)(α0 − α4),

α1 − α3

α0 − α4

)
.

Finally, define

β0 = α0 + α4, β1 = α1α3, β3 =
α1

α3
+
α3

α1
, β4 =

α1α3(α0 − α4)

(α1 + α3)(α1 − α3)
.

Then, β0, β1, β3, and β4 are all fixed by G = 〈σ1, σ2〉. It is easy to show
that the fixed field by the group G is given by

k(α0, α1, α3, α4)G = k(β0, β1, β3, β4).

Further calculations show that the relations (9.3) translates to the relations

β0 = β1β3, β3 =
1

β2
4

, β4
1 = 4β6

4 + β2
4 .

This implies that

k(α0, α1, α3, α4)G = k(β1, β4), with β4
1 = 4β6

4 + β2
4

The genus of the curve defined by β4
1 = 4β6

4 + β2
4 is 5, which coincides with

the genus of X(8). Thus, we conclude that an affine model of X(8) is given
by

X(8) : β2
4(1 + 4β2

4) = β4
1 .

Recall that an equation of X(4)(8) is given by a
(4)
0 a

(4)
2

(
(a

(4)
0 )2 + (a

(4)
2 )2

)
=

2(a
(4)
1 )4 (see (7.2)). We have a two-to-one map

X(8)→ X(4)(8); (β1, β4) 7→
(
a

(4)
0 : a

(4)
2 : a

(4)
4

)
= (1 : β1 : 2β2

4).

The modular functions β1 and β4 on Γ(8) can be written in terms of the
Dedekind eta function as follows:

β1 =
η(2τ)4η(8τ)2

η(τ)η(4τ)5
= q

1
8 + q

9
8 − 2q

17
8 − q

25
8 + 4q

33
8 + 2q

41
8 − 7q

49
8 − · · · , ,

β4 = −η(2τ)η(8τ)2

η(4τ)3
= q

1
4 − q

9
4 + 2q

17
4 − 3q

25
4 + 4q

33
4 − 6q

41
4 + 9q

49
4 − · · · .

They also have neat expressions in terms of our theta series:

β1 =
a2( τ2 )a2(2τ)

a2(τ)2
, β4 =

a2(2τ)

a2(τ)
.
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Appendix A. Hurwitz’s immersion

Here, we describe the connections and differences between Hurwitz’s σ-
functions and our theta functions in detail.

Hurwitz [6] uses the Weierstrass σ-function to construct an immersion
of an elliptic curve into projective space. The σ-function is defined with
respect to a fundamental pair of periods ω1, ω2 ∈ C. Replacing ω2 by −ω2

if necessary, we may assume Imω2/ω1 > 0. So, if we define τ = ω2/ω1, τ is
a point in the upper half plane H.

Let Λ be the lattice Λ = {mω1 +nω2 | m,n ∈ Z}, and Λ∗ denotes the set
of nonzero elements of Λ. The Weierstrass sigma function σ(u) associated
with Λ ⊂ C is defined by

σ(u) = u
∏
w∈Λ∗

(
1− u

w

)
e
u
w

+ 1
2

( u
w

)2
,

The function σ is a quasiperiodic holomorphic function having a simple zero
at each of the points in Λ. Here, “quasiperiodic” means that σ(u) satisfies
the identities σ(u + ωk) = exp

(
ηk
(
u+ ωk

2

)
+ πi

)
σ(u) (k = 1, 2), where η1,

η2 satisfies the identity η1ω2−η2ω1 = 2πi. We sometimes write σ(u | ω1, ω2)
instead of σ(u) to make clear that it depends on ω1 and ω2.

A “shift” of σ by aω1 + bω2 is defined by

(A.1) σa,b(u | ω1, ω2)

= exp
(

(aη1 + bη2)
(
u− aω1+bω2

2

))
· σ(u− aω1 − bω2 | ω1, ω2).

Clearly, σa,b(u) has simple zeros at u ≡ aω1 + bω2 mod Λ.
Let N be an integer, and consider the overlattice ΛN =

〈
ω1
N , ω2

〉
⊃ Λ.

Hurwitz defines, for any integer k

Xk(u) = µk · exp(−G1u
2) · σε,ε+ k

N

(
u
∣∣ ω1
N , ω2

)
,

where ε = 0 if N odd, and ε = 1
2 if N even. The quantity G1 is given by the

formula G1 = Nη̄1−Nη1

2ω1
= η̄2−Nη2

2ω2
, where η̄1 and η̄2 denote the values that

η1 and η2 take when ω1 is replaced by ω1/N . Finally, Hurwitz defines µk

by µk = e−
πi
2N k · e−

5πi
4 · µ if N even, and (−1)k · µ if N odd, where µ is an

arbitrary constant.
The function Xk(u) has N simple zeros within the fundamental domain

{rω1 + sω2 | 0 ≤ r, s < 1} of Λ. They are

(A.2)
m
N ω1 + k

N ω2, m = 0, 1, . . . , N − 1, if N is odd,(
1

2N + m
N

)
ω1 +

(
1
2 + k

N

)
ω2, m = 0, 1, . . . , N − 1, if N is even.

Hurwitz then shows, among other things, the following relation for λ1, λ2 ∈
Z.

Xk

(
u+ λ1ω1+λ2ω2

N

)
= (−1)N(λ1+λ2) · exp

(
−2πi

(
kλ1
N + λ1λ2

2N

))
× exp

(
(λ1η1 + λ2η2)

(
u+ λ1ω1+λ2ω2

2N

))
·Xk−λ2(u)

In particular, if λ1 = 0 and λ2 = k, we have

(A.3) Xk(u) = (−1)Nk · exp
(
kη2

(
u− kω2

2N

))
·X0

(
u− kω2

N

)
.
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On the other hand, we can show using Proposition 5.4 (4) that our func-
tion θk(z) = θ( 1

2
− k
N
,N

2
)(Nz,Nτ) satisfies

(A.4) θk(z) = (−1)k · exp
(
−2πik

(
z − kτ

2N

))
· θ0

(
z − kτ

N

)
.

Using (A.3) and (A.4), we can deduce the relation between Xk(u) and θk(z)
for any k once we establish the relation between Hurwitz’s X0(u) and θ0(z).

Define ϕε,ε(u) by

ϕε,ε(u) = exp
(
−Nη̄1

2ω1
u2
)
· σε,ε

(
u
∣∣ ω1
N , ω2

)
.

Then, we have X0(u) = µ0 ·exp
(
Nη1

2ω1
u2
)
·ϕε,ε(u). We then compute ϕε,ε(u+

ω1/N) and ϕε,ε(u+ ω2) using the formula (A.1),

ϕε,ε
(
u+ ω1

N

)
= − exp(−2πiε) · ϕε,ε(u),

ϕε,ε
(
u+ ω2

)
= − exp

(
−2πi

(
Nu
ω1

+ Nω2
2ω1

)
+ 2πiε

)
· ϕε,ε(u).

Let τ = ω2/ω1 and u = ω1z, and define Φε1,ε2(z) = ϕε,ε(ω1z). Then, we have

(A.5)
Φε,ε

(
z + 1

N

)
= − exp(−2πiε) · Φε,ε(z),

Φε,ε(z + τ) = − exp
(
−2πi

(
Nz + Nτ

2

)
+ 2πiε

)
· Φε,ε(z).

A.1. Odd case. By Proposition 5.4 (2) and (3), θ0(z) satisfies

θ0

(
z + 1

N

)
= −θ0(z),

θ0(z + τ) = − exp
(
−2πi

(
Nz + Nτ

2

))
· θ0(z),

which is exactly the same transformation rules (A.5) for ε = 0. Thus, if N
is odd, the ratio Φ0,0(z)/θ0(z) is a doubly periodic function of periods 1/N
and τ . Since the function Φ0,0(z)/θ0(z) has at most one simple pole in the
fundamental domain, it must be a constant C. The constant C is obtained
by L’Hôpital’s rule as follows

C = lim
z→0

Φ0,0(z)

θ0(z)
=

ω1σ
′
0,0(0)

Nθ′
( 1

2
,N

2
)
(0, Nτ)

=
ω1

Nθ′
( 1

2
,N

2
)
(0, Nτ)

.

Thus, if N is odd, then X0(ω1z) = C · µ0 · exp
(
Nη1ω1

2 z2
)
· θ0(z). The ratio

of Xk(u) and θk(z) can be calculated using (A.3) and Proposition 5.4 (4),

Xk(ω1z)

θk(z)
=

exp
(
kη2

(
ω1z − kω2

2N

))
exp
(
−2πik

(
z − kτ

2N

)) · X0

(
ω1z − kω2

N

)
θ0

(
z − kτ

N

) = C ·µ0 · exp
(
Nη1ω1

2 z2
)
.

This shows that two immersions by Xk(u) and θk(z) coincide with each
other.
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A.2. Even case. If N is even, the zeros of Hurwitz’s X0(u) and the zeros
of θ0(u/ω1) are off by 1

2ω2, and so the two immersions differ. We thus try

to modify the definition of θ
(N)
k to shift the zeros. It turns out that if we

define an immersion using the function

θ∗k(z) = (−1)kθ( k
N
, 1
2

)(Nz,Nτ)

instead of θk(z) = θ( 1
2
− k
N
,N

2
)(Nz,Nτ), the immersion coincides with that of

Hurwitz’s. To see this, compare X0(u) and θ∗0(z). In this case Φ 1
2
, 1
2
(z) =

ϕ 1
2
, 1
2
(ω1z) satisfy

Φ 1
2
, 1
2

(
z + 1

N

)
= − exp(πi) · Φ 1

2
, 1
2
(z) = Φ 1

2
, 1
2
(z),

Φ 1
2
, 1
2
(z + τ) = exp

(
−2πi

(
Nz + Nτ

2

))
· Φ 1

2
, 1
2
(z).

On the other hand, by Proposition 5.2, we can show

θ∗0
(
z + 1

N

)
= θ(0,N

2
)(Nz + 1, Nτ) = θ∗0(z),

θ∗0(z + τ) = θ(0,N
2

)

(
Nz +Nτ,Nτ

)
= exp

(
−2πi

(
Nz + Nτ

2

))
· θ∗0(z).

These identities imply that if N is even, the ratio Φ(z)/θ∗0(z) is a doubly
periodic function of periods 1/N and τ . Since this function has at most one
simple pole in the fundamental domaine, it must be a constant C∗. Thus,
if N is even, then X0(ω1z) = C∗ · µ0 · exp

(Nη1ω1

2 z2
)
· θ∗0(z).

By Proposition 6.2 (2) with values p = 0, q = N/2, r = −k/N , we can

show θ∗k(z) = exp
(
−2πik

(
z − kτ

2N

))
· θ∗0
(
z − kτ

N

)
. Therefore, the ratio of the

two functions becomes

Xk(ω1z)

θ∗k(z)
=

exp
(
kη2

(
ω1z − kω2

2N

))
exp
(
−2πik

(
z − kτ

2N

)) ·X0

(
ω1z − kω2

N

)
θ∗0
(
z − kτ

N

) = C∗ ·µ0 ·exp
(
Nη1ω1

2 z2
)
.

This implies that two immersions by Xk(u) and θ∗k(z) coincide with each
other.

Alternatively, we may modify Hurwitz’s definition to make it coincides
with ours. To do so, we use σ 1

2
,0

(
u
∣∣ ω1
N , ω2

)
, which has the same set of

simple zeros with θ
(N)
0 (z, τ).
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