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Abstract

Two kinds of linear relations of multiple zeta values, the derivation relations and the
reqularized double shuffle relations, are proved. Also presented is a conjectural formula
which implies that the derivation relations are contained in the regqularized double shuffle
relations. A “formal KZ associator” is defined and is discussed briefly.

1 Introduction

We shall study linear relations of multiple zeta values in an algebraic setup. Following
Hoffman [2], we let § = Q(z,y) be the non-commutative polynomial algebra over the
rationals in two indeterminates  and y, h* and §° its subalgebras Q + hy and Q + zhy
respectively. Let ¢ : h° — R be the Q-linear map which assigns each monomial (word)
Utz - - - U in B2 the multiple integral

dt, dt, dty '
/ / Ar(tr) Ae(t)  Au(t) (1),

1>t >8> >t >0

where A;(t) stands for ¢ or 1 — ¢ according as u; is z or y. We set | (1) = 1. Since the
word wyug - - - ug is in §°, we always have A;(t) = t and Api(t) = 1—t, hence the integral
converges. In different terms, E is the Q-linear map from §° to R characterized by
¢(1) =1 and {(gF1Tyzhely. .. gkoly) = C(ky, Ky, ... kn) for ki € N, by > 1, where

1
kiko,... kp) = 2
C( ne k") m1>m2>z---z>mn>0 mlflmgz v m,"";n ( )
m,-e

is the multiple zeta value (abbreviated to MZV). The weight k = k; + kg + -+ - + ky, of - -
C(k1, k2, . . ., kn) is the total degree of the corresponding monomial ghi-lygha=ly ... gha=ly
and the depth n the degree in y. The first index k; in the index set (k1 k2, . .., kn)
that. corresponds to a word in h° is necessarily greater than 1, which ensures the con-
vergence of the series in (2). The index set with this condition is referred later to as
“admissible”. The correspondence between the index set (ky, ks, . .., k) of a MZV (2)
and the integrand in (1) is given as follows. The dimension & of the integral is equal
to the weight k =k; + ko + .- -+ k. Ifi € {k1 by + K2y .. by + ko + -+ - + k), then
Ai(t) =1 —t¢ and A;(t) = t otherwise.

Having defined the map E, one of the fundamental problems in the theory of multiple
zeta values is stated as



Problem: What is Ker( ?

Producing elements of KerC amounts to finding linear relations among MZVs. In
this paper, we shall discuss two methods of supplying elements in Ker C , the derivation
relations and the regularized double shuffle relations, and their (conjectural) relation-
ship.

In §2 we state and prove the derivation relations (Theorem 4). In §3, after the
introduction of the regularization map, the regularized double shuffie relations (The-
orem 9) will be formulated and proved. The proof uses Don Zagier’s theorem on a
relation between two kinds of re-normalization of divergent multiple zeta values. In
§4, a reinterpretation of the regularization map in terms of certain derivations is given.
A conjecture on a relation between the derivation relations and the regularized double
shuffle relations will be stated in §5, with some results supporting the conjecture. In
the final section §6, we define a “formal KZ associator” and discuss its properties and
related problems.

Acknowledgement The authors would like to thank Don Zagier for helpful discus-
sions during the second author’s stay in March 2000 at the Max-Planck-Institut fiir
Mathematik in Bonn.

2 Derivation relations

Let Der(h) be the Lie algebra of derivations (with respect to the concatenation product,
Lie algebra structure being defined by (8, 8] := 09’ — 8’8 as usual) of §. Clearly, an
element of Der(f) is uniquely determined by the images of = and y.

Let 7 : h — b be the involutory anti-homomorphism which interchanges z and
y. The involution T preserves h°, and the standard duality theorem for MZVs is the
following.

Theorem 1 (Duality) For any wo € °, we have (1 — 7)(wo) € Ker(.
Inspired by (4], we define the following elements 8, € Der(h).

Definition 2 For n > 1, let 8, € Der(h) be defined by d,(z) = z(z + y)* 'y and
n(y) = "'x(x + y)n—

Obviously we have 8,(h°) C B°.
Lemma 3 [0, 8,] = 0,Ym,n > 1.

Proof. Since Op(z +y) = 0 for all m, it is enough to check that 8,8,(z) = 8,0m(z).



Also note that dn((z + y)*) =0 for all m and k. Using this,

OmOn(z) = Om(z(z+y)" Ty)
z(z +y)"y(z + )"y — 2(z + )" lz(z 4+ y)™ Yy
= zz+y)" z+y—z)(z+y)" Yy

—-z(z+y)" Mz +y—y)(z+y)™ y
= —z(z+y)" 2z +v)" Ty +z(z + )" y(z +y)™ Ny
= Op0m(z).

Theorem 4 For alln > 1 and wy € §°, we have 8, (wo) € Kerf.

The case when n = 1 is equivalent to Hoffman’s reformulation (4] of his previous
theorem [3]. We deduce the theorem from Ohno’s relation [7] (which simultaneously
generalize duality, sum formula, and Hoffman’s relations).

First, we introduce yet other derivations. For each integer m > 1, we define an
element Dy, € Der(h) by Dn(z) = 0 and Dp(y) = z™y. Note that D,.’s commute
with each other: [Dpm, Dy] = 0. Put Dy = 7Dp7. It is readily checked that D,, is
again a derivation which sends z to zy™ and y to 0, and [D,, D,] = 0.

We shall work in the completion § := Q({(z,y)) of h, the non-commutative formal -

power series algebra over Q. (Anti-)homomorphisms and derivations of b such as 7 or
On naturally extend to those of E, and we use the same letters to denote these extensions.
By an abuse of language, we say an element in b is in Ker ¢ if each of its homogeneous
components belongs to Ker(. Put D := 3>  2m and D:= 3" D Both D and

m=1 m
D are derivations of . Furthermore, if we put ¢ = exp(D) and & = 707 = exp(D),
then o and & are automorphisms of h (standard correspondence between derivation

and homomorphism). Ohno’s relation in this setting is stated as follows.
. Theorem 5 (Ohno) For any wg € b°, we have
(o — 7)(wo) € KerC.

Proof. Since D(z) = 0 and D(y) = (z + "’2—2 + ”3—3 +- )y = (- iog(l — 1))y, we have
D"(z) =0, D"(y) = (- log(1~z))™y and hence o(z) = z and o(y) = Y omeo 2 (—log(1—
)"y =(1-z)y=(1+z+2%+2%+---)y. From this, we have

o(zFlyzhly . ghemly) |

= 28714z 42?4+ yrt Qs 2?4y eg T (L b s b2t 4 )y

[ o]
= § : § : xk1+e1—1yxkz+ez—1y e xk"+e“_1y.

=0 e1+eg+--+en=l
;>0

By Ohno [7], we conclude (¢ — o7)(wo) € Ker { for any wp € b°. This in turn gives
(o —ToT)(wo) € Ker(, since we have (o7 — 7o7)(wp) € Ker{ by duality. [ |
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Remark Precisely speaking, Ohno’s theorem [7, Theorem 1] is equivalent to Theorem
5 plus duality.

Proof of Theorem 4.
Put 8 = Zn—l 22, This is a derivation of b We prove the following formula.

Proposition 6 We have
exp(8) =7 -0 L.

This relation shows that Theorem 4 is equivalent to Théorem 5, because from the
identities 0 = log(-0~') = log(1—(0—7)0~!) and 0—7 = (1~7-0~1)o = (1—exp(d))o
we have 9(h°) = (¢ — 7)(p°).

Proof. One of our original proofs is essentially reproduced in [5] from a somewhat
different viewpoint. Here we give another proof. We embed § into hr = R{(z, y))
Put z = z +y. Consider a one parameter family ¢* (¢ € R) of automorphism of hg
defined by ¢*(2) = 2z, ¢*(y) = (1 — 2)ty(1 — JﬁLy)'1 We have ¢° = 1 and

(1) ¢a¢t ¢s+t
(if) F¢l=o=2
(iii) gt =7- 0‘1‘.

For (i), put A = —log(1 — 2). We only need to show ¢°¢*(y) = ¢**+(y):

Sfat Sf—At 1_6—)“: -1
() = (e My(1- . y)™)
At 1—e™ | 1
= e ' (y)(1— &*(v))”
o 1—e l—e"\‘_ l—e2s
= e Me™My(1- W= —— ey (1 - ——y) )
1—e™2s 1—eX
= —Ns+t) _ —2s, \~1
y(1- Y )
1v_e"\(3+t)
—  p—A(s+t) _ -
e y(1 — )
= ¢t (y).

The left-hand side of (ii) is a derivation which sends z to 0. As for the i image of y, the
expansion

log(1 — 2)
z

$(y) = (L+log(l—2)t+---)y(l+ yt+---)1

=+ (log(1~ 2)y -y LDy 1 o



shows that

d log(1— 2 log(1 - 2 o= (z+y)t
E¢‘It=o(y)=log(1—z)y—y og(z )y=w g(z )y=—zz(—%y=a(y)'

n=1

We saw in the proof of Theorem 5 that o(z) = z and o(y) = (1—z)~'y. From this we see
that 0~'(z) = z and 07}(y) = (1 — z)y. In a similar manner we get 5(z) = z(1 — y)~1
and 7(y) = y. Hence, 707 (z) =z(1—-9)", -0} y) = 1 —z(1 —¢y) )y =
y—zy(l—y) ' and 7-071(z) = z(1 —y) ' +y —zy(1 —y)~! = z. On the other hand,
we have by definition ¢'(z) = z and ¢'(y) = (1 — 2)y(1 —y)~} = y — zy(1 — y)~1. This
proves (iii). '
Now, a one parameter family satisfying (i) and (ii) is nothing but exp(td), hence
the proposition follows from (iii), and therefore completes the proof of Theorem 4 1

3 Regularized double shuffle relations

Two commutative multiplications which correspond to the product of MZVs are defined
on the underlying vector space of h: one is the shuffle product m coming from the shuffle
product of iterated integrals (1), and the other is Hoffman'’s harmonic product * ([4])
coming from the shuffle-like multiplication of series (2). We denote by b, and Bpe,r the
respective commutative algebras. Also, the subspaces h! and h° are closed under each
of these multiplications and hence can be viewed as subalgebras which are denoted
by bes Dons Bher and BY,.. We know the structures of he, and hper as commutative
algebras (for B, see, e.g., [8, Theorem 6.1]), and [4] for Baar). In particular, we have
the isomorphism
bSh = bgh[a:? y]’

based on which is the following definition of the regularization. The right-hand side is
viewed as the polynomial algebra over b2, generated by z and y (every product being
the shuffle product).

Definition 7 We define a Q-linear map reg : h — b, the regularization map, by
reg(w) = the constant term of the expression of w as an element of B3 [z,y]. Clearly,
when viewed as a map from by, to b%,, the reg is an algebra homomorphism:

reg(wim ws) = reg(wy)mreg(wy) (wy, wy € h).
The reg restricts to the identity map on §P°.
We can describe more explicitly the images of words under reg as follows.

Proposition 8 (i) For each word w € §, write w = y™wez™ with m,n > 0 and
wo € h° (m, n, and wy are uniquely determined by w). Then we have

reg(w) = Z (=1)"*ytmy™ wez™ Im 7. (3)

0gism
0<ji<n



(ii) The formula (3) takes simpler form for special words,

reg(z") = reg(y™) =0 form,n2>1,
reg(y™z®) = (=1)""lz?y™  form,n > 1,
reg(y™wo) = (-1)™z(y™mw)) form >0, wo=zw, € h°
reg(woz”) = (—1)*(wpmz™)y forn >0, wo = woy € h°.

(iii) For a word w = y™woz™, m,n > 0, wo € §°, we have

w= Z reg(y™ woz™ my'm 7. (4)
0<i<m
0<ign

This gives the expression of w as an element of % [z, y].

- Proof. For w = y™wpz™, denote the rlght-ha.nd side of (3) by reg (w) We show that
reg'(w) € h° and the formula (4) for reg’;

w= Z reg’' (y™ " woz™ )my*m 27 (5)

0<ism
0<j<n

Then, by definition, we conclude that reg(w) = reg’(w) and so (i) and (iii) is proved.
In the course of calculation, (ii) is also proved.

Put v; = 37 o(—1)y™ *woz™ Ima? so that reg'(w) = Yilo(—1)'y'mv;. We first
compute v; by using the inductive structure of the shuffle product. The case wp =1
(w = y™z™) will be treated separately, so put wo = Twgy.

n—1
v = y"wez” + Z(—l)jym’iwoa:"‘jmzj +(=1)"y™ wom =™
j=1
n-1
= Y™ ez + Z —1)7 ((ym"'wo:r" Ima? Dz + (Y™ woz™ 7 'm 27)x)
j=1
+H(=1)M (™ wom e )z + (™ swpm z™)y)
n n-1
= Y (-1 (™ wor" ma? e + Y (1Y (1™ wos™ T mad)z
Jj=1 ' j=0

+(=1)"(y"™ " zwpmz")y
= ()" zwoma")y.

Thus, v; € h* and so reg’(w) = Y iro(—1)*y'mv; € h'. The above computation also
proves (after we conclude reg = reg’) the formula for reg(wpz™) in (ii) (set m =0 and
Twe — wo). By a similar calculation of Y iq(—1)'y‘my™ *woz™ 7, we can show that
reg’(w) € zh as well as the formula for reg(y™wo). We therefore conclude reg’(w) € §°.

Now we prove the formula (5). By definition,

reg/ (y™ woz" ) = Z (=1)*yFmy™ g™ m 2,
0<kEm—1
0%!Sn—j



Putting i+ k =s,j + 1 =t, we have

Z reg (y™ ‘woz™ ™ my'm 2’
0<ism
0<5%n

= Z Z (—1)*+Hykm g™z gt | myima?
0<ism 0<kEm—i
03720 \ 0%ISn-j

— Z Z (_1)k+l,ykm ym—swoxn—tm 2o ys—km zt

0<s<m 0<k<Ls
0<tsn 0<5I<t

= Z I (1) (Z) v'm (’;) my™ ezt

0<s<m 0<k<s
0<t<n 0<ILt

5 (S ()« (Sror()e) e

Since (3 z—o(—1)*())y*) m (Xi_o(—1)'()=t) =0ifs > 0ort > 0,and=1ifs =t =0,

we have

E reg (v wor ) my'm 27 = y"woz" = w.
0<i<m
0Si%n

Thus we have established reg = reg’.
If w = z", we see by definition that reg(z") = reg'(z") = 3°7_o(— 1)z Ima? =
S i=o(=1Y ( ):r: = 0. Similarly we have reg(y™) = reg’(y™) = 0. For reg(y™z"), we
first calculate Y 7" o(—1)'y'my™ 'z, If j = n, then > 1" ((—1)ig'my™* = S (-1)}(T)y™ =
0. For j < n,

m
Z(_l)iyimym—ixn-j
=0
) m-—1
— ymxn—y+Z(_l)syimym—ixn—j+(_l)mymmxn—j
i=1
m~1
= y"" I+ Y (1) my™ ) +y(ymy™ )
i=l .
HADP ™ ™) + 2(y )
m-—1
= Z( —1)y my™ ) + Y (1 (™) + (<) sy

i=1 i=0
= (-)™z(y™mz"I1).



Hence,

reg(y™s") = ) (-1Yo'm (Z(—l)"y‘my”‘“z""')

j=0 i=0
n-1
= Z(—l)jxjm ((—l)mx(ymmxn—j_l))
j=0
n-1
= (=)™ (-1Yelmz(y™mz" 7).

7=0
If n =1, this is equal to (—1)™zy™. Assume n > 2. We further compute the last sum
by expanding the shuffle products;

n—1
Z(—l)jxjm z(y™mz™ 1)

j=0
= aly™aa™) + (-1 (s maly ") + sl )
=1
n—1
= Z( 1Y z(2' mz(y™mz™ I 1))+:z:Z( 1Yy mgim ™Il
Jj=1 j=0
n-1 . ) n—1 . n—1
= Y (el mamasY) (S (-Diyrasinatit =y 3 (1§ (% )am = 0)
=1 j=0 Jj=0
n-2
= —-xZ( 1Yo mz(y™mz™ ).
j=0

Repeating this, we have

n-1 n-2
S (- ama(ymaam ) = -z (-1faima(ymus?)
j=0 =0
n-3
= (1% (-1)zImz(y™mz )
=0
= ( 1)11.—1 Ny M
Thus we have proved reg(y™z®) = (—1)™+"~"1g"y™, |

We now state the regularized double shuffle relations.
Theorem 9 For any w e'bl and any wo € h°, we have
reg(w * wo — wmwp) € Ker .
When w € b° this reduces to the usual double shuffle relations

W * Wp — wmwg € Ker(.
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Conjecture Regularized double shuffle relations supply all linear relations of MZVs:

(reg(w * wo — wmwo)|w € b, wy € §%)q = Ker (.

Remark We checked by computer that these relations are enough to reduce the
dimension of MZVs to the conjectural value ([9]) up to weight 12.

For the proof of the theorem we introduce certain extensions of fto both h, and
blliar‘

Proposition 10 There erist Q-algebra homomorphisms into the polynomial algebra
R[T]

2h61‘ : bllzar - R[T]

which are uniquely characterized by the properties that they extend E : h0 = R (ie
Zsh(wo) = Zhar(wo) = ((wo) for wo € b®) and that Zea(y) =T, Zher(y) = T.

Proof. This is clear from the isomorphisms b;, = b3, [y] and b}, = b),.[y] (8] and [4]) -
and the fact that the { is an algebra homomorphism for both shuffle and harmonic
products. |

The key to prove Theorem 9 is the following theorem due to Zagier.
Theorem 11 (Zagier) There ezists an R-linear map p : R[T]} — R|[T] such that
2sh =po 2har-

Specifically, each p(T*) is given by the ge}zeratz'ng series

O l o0

u C(n
> T = exp(T) - xp(Y (-1 L),
=0 : n=2

Thus the coefficients of the polynomial p(T*) = T* + O(T*"2) for each | belong to the
Q-algebra generated by Riemann zeta values, and the coefficient of T*~* is of weight k.

Proof. We reproduce here Zagier’s proof with his permission. The idea is to compare
the asymptotic behaviors of

1
as M — oo
Z kl kz
M>my>mad>-«>mn>0 ml m2 v mﬁn
m;E€EZ
and
diy dip dte
o as r — 1,

Aj(t) As(t)  Axlte)

L >t > >t >0



where k = k; +ky+---+k, and Ai(t) =1-tifi e {]Cl,k?]_+k2,...,k1+k2+"'+kn}
and A;(t) =t otherwise.
For that purpose, put

1
(ks bz, Ka) 1= > Ty ——

M>m;>me>->mp>0 mym

for M > 0 and an index set k = (k1, ka, ... , kn) (we allow k; = 1). If k is admissible,
ie., ky > 1, ¢m(k) converges to {(k) as M — oco. We note that we can write the
product (ar(k)¢am (k') as a linear combination of (4r(k")’s by the same rule (based on
which the harmonic product on b is defined) as in the case of original infinite series of
multiple zeta values. For instance, we have

S (R)Caa (K') = Cra (b, K) + Cua (K, ) + Ca (K + K).

With this fact and the classical formula
(1) =1 + L RRRE o M+ log M +~+ O(A_l/f) (Y= Euler’s constant), (6)

we see inductively that for any index set k there uniquely exists a polynomial oy (T') €
R[T] such that

Jim M (Crr(k) — ouc(log M +)) =0 (7)

for some § > 0 (6 depends on k). Under the correspondence k = (ky, ks, ... ,kn) <
w = gh-lygka—ly... gka=1y of index sets and words in b?, this ou(7T’) is nothing but
Zm (w). Furthermore, we can show by induction on the number of first consecutive
1’s in the index set that, for k = (1,1,...,1,k’) with kK’ admissible,

8
TS
ax(T) =¢ (k')—'- + (terms of lower degree)

and that the coefficient of T* in ay (T') is a Q-linear combination of multiple zeta values
of weight k — i (k = weight of k).

Example By (6), 1(T) = T. From this and {3 (1){m(1) = ZCM(I 1) + (m(2), we
obtain a;,(T) = T?/2 — ((2)/2.
Next, for k = (k1, ke,... ,kn) and 0 < z < 1, put

dt; ditp o diy
Al(tl) Az(tg) Ak(tk)’

Lik(a:) =
Z>t >ta> >t >0
where A;(t) are determined as above. Step-by-step integration shows that

™

Liy(z) = Z m T

my >ma > >Mn >0 n

10



The product Lix(z)Liy(z) is a linear combination of Lé(x)’s via the shuffle product
identity. Starting with Li;(z) = —log(1 — z), similar inductive argument shows that,
for each index set k, there uniquely exists a polynomial f(T") € R[T] such that

lim(1 — %)™ (Li(2) — B (~log(1 — 2))) = 0
for some & > 0, and that Bi(T) = Zn(w) if k corresponds to w.

Example SinceLiy .  1(z)= Li(z)°/s!, 8y, . .. 1(T) =T?/s!. By Lia(z)Lii(z) =
b b )

Liva(z) + 2Lig.(z), we have B1a(T) = ¢(2)T — 2¢(2,1).

We now prove Theorem 11, which asserts the existence of an R-linear map p :
R[T] — R[T] such that Bi(T) = p(ox(T)). First, '

Liy (.'17) Z

my>ma>-->mp>0 ml

B ——

k
m=1 m>mz>--->m>0m l'm'2 n—1

™

kz .m -ﬁ“

=Y (bmt1(k) — m(K)) 2™

m=1

=Y m(l) (@™ —2™)

m=1
=(@"'-1)) (alk)z™,
m=1
empty sum as ¢, (k) being regarded as 0. Putting = e~¢, we have
o0
Lix(e™®) = (£ = 1) Y _ (m(k)e™™.
] m=1
By (7), there exist positive constants ¢ and & such that
|G (k) — cu(logm +7)] < em™

for all m > 1. Since the function z~%¢~** for z > 0 is positive and monotone decreasmg,
we have

o0
0< Z mem / g7 %% dz = *IT(1 - §).
m=1 0
From this and e — 1 = £ + O(g?), we obtain
lim &~ 5/2(ef — 1) Z m%e~™ = (.

m=1

11



Thus

e—0
m=1 m=1

lim =%/ ((e‘ -1) i Cm(k)e ™™ — (e = 1) i ax(logm + 'y)e"m) =0

or

m=1

o
. _.6/2 . —€y __ € __ —Em —_
ll_r»no € (sz(e ) —(ef=1) E ax(logm + v)e ) 0.

Since 1 —z = & + O(e?) and —log(l — z) = —loge + O(e) (e — 0, = = e™¢), the last
equality and the definition of Bi(T") implies :

> o]
. _ e cem | _
21_13% (ﬂk( loge) — (e ]L)mz=1 ax(logm + v)e” ) 0. (8)
Lemma 12 For any integer [ > 0, we have

°° 1 (0 s

Z(log m)le™™ = - Z () r9(1)(~loge) 7 +0(1) ase — 0.

€4~ \J

m=1 . j=0
Proof. By the Euler-Maclaurin formula,
el o0
Z(log m)le™™ = / (logz)e **dz + O(1), ase — 0.
m==1 0

Changing the variable z to z/e, we obtain

(>} 1 oQ
/ (log z)'e~**dz = - / (logz — loge)e %dx
0 0

l o0
_1 Z (l) (—loge)t? / (log z)’ e *dz.
€= 0

Since
) ) ) d J
/ (logz)e ™ dx = / (—) ! e “dx
0 0 ds o=l
d J
- (@))
s=1

=r9(1),

we proved Lemma. |
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Now put A(T) := ¥/, ( )TU)(1)T*. Then, by the lemma and ef—1 = e+ O(e?),
we have

li_rg) ((es -1) i:l(log m)le™™ — P(—log s)) = 0. 9)

If we write () = S5 ai(T — )", then an(logm +v) = Y/, ai(logm)' and from
(8) and (9) we obtain

lim (ﬂk(— loge) — Y arPi(—log 6)) =0.

1=0

Therefore, the polynomial Gix(T') is obtained from oy (T) by wntmg it as a polynomla.l

in T'—+ and replacing (T —v)* by B(T). Since T* = (T—y+7)' = E,_o ( )y 3 (T =),

this amounts to replacing T* by Eg_o ( ')4*~9 P;(T'). Thus we have shown that if we

define the R-linear map p by p(T") = E,—o ( )y'-IPi(T), we get Bi(T) = p(ow(T)).
A generating function of p(T") is given as follows.

oo
> T =33 () rmy

=0 l

= = g
(> o] um
=em ZO Bn(T)—
_ eSS (M o) gy
—ery Y <j)1‘ w7
m=0 J=0
(Tu)™ 7 o,
= eTu (.7) 1 —_
,;,,Zo (m— J)' M7
= eeT*T(1 + u).
The classical formula I'(1 + u) = exp(—yu + > o0 ,(—1)" QS:—‘)-u") yields
n
ST = emeexp(Y (-1 S
=0 n=2
This completes the proof of the theorem. |

Example p(T) = T, p(T?) = T? +((2), o(T%) = T° + 3¢(2)T — 2¢(3), p(T*) =
T4 — 6¢(2)T2 — 8¢(3)T + 6¢(4) + 3¢(2)2.
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Remark The inverse p* of p is given by

ip"(T‘ 1;—: = exp(T'u) exp (— Z(—l)"%u") .

=0

ou(T) is obtained from Bi(T) by T* — p*(T*).

Proof of Theorem 9. For w € h* and wp € §°, we prove a strongef statement that

Z,h(w * wo — wmwp) = 0. (10)

The constant term of Zy,(w) is {(reg(w)) and hence the theorem follows from this.
By Zagier’s theorem, we have

gsh(w) - P(Zhar('w)) =0

. Multiplying {| (wo)(= Zh(wo) = Zhar (wo), using the R-linearity of p and the fact that
both 23}; and ihar are algebra homomorphisms with respect to m and * respectively,
we obtain N .

Zsp(womw) — p(Zper(wo * w)) = 0.

Using again Zagier’s theorem that p(Zhar (wo * w)) = Zey(wo *w), we have proved (10).
|

On h!, we can consider a “harmonic regularization” based on the isomorphism
i, = b3,.[y]. Let reg,,, : h* — h° be the Q-linear map defined by reg,,.(w) = the
constant term of w expressed as an element of b3, [y]. The map reg,,, is an algebra
homomorphism with respect to the harmonic product * :

feghar('w1 * wz) = reghar('wl\) * reghar(w2) (wh wq € bl)~

Proposition 13 For w = y™wq with m > 0, wo € h°, we have

m

reghr (y™wo) = > (~ 1)*’1, g™
=0
and

*i

w= E regq- (¥ m'w)*

0<i<m
where Y™ =y *y*---xy.
S ——
i

Proof. Omitted.

Let ¢; be homogeneous of degree 7 with

exPhar(Z l)r z Z ¢H

r=1 i=0

14



where expy,, is an exponential in Hha,, the completion of hrer. Zagier’s theorem is then
formulated as

Zon(w) = Znar( Y 1eg@per(y™ wo) * ¢:) (w=1y"wo € b', m >0, wo € b°).

0<is<m

4 Alternative Description of Regularization

The regularization map defined in the previous section can be described, at least on
b, in terms of certain derivations.

Definition 14 Define four derivations 85, 8, Or, 0 € Der(h) by

. T —xY L z—0
yr— =t M oy —zy -

and 6, = 18,7, 0, = TO,T, where T is the involution on § defined in §2.

Theorem 15 (i) For w = y™wo withm > 0, wo € h°, we have
1
reg(1) = - 67(ue).
(ii) For w = woz™ withn >0, wo € §°, we have
' 1—n
reg(w) = a‘ss (wo)-

Remark Put z; = z*"ly for ¢ > 1. It is easily computed that 05(z) = —izip
(a.nd 0s(z:) = —z21 — E,-—z 2jZi+1-j, 5;,(2,) = —Zigl — 242, 6,,(2,) = —(i — 1)ziy1 —
3 =2 z,z,.,.l_J) Thus the formula in (ii) is nothing but a description of the regulariza-
tion given in [1] and (i) is its “dual”.

Proposition 16 For any w € h, we have
ds(w) = yw — ymtb and Op(w) = yw —y * w.
Proof. By the definition of the shuffle product m, it is clear that
ym (w1wz) = (ymwy)we + w1 (ymws) — wiyws

for any wy, w2 € h. From this we see that the map w — yw — ymw defines a derivation
on b and hence is equal to d; because the images of z and y coincide.
As for 05, we can show the analogous identity

y * (wwe) = (y * w1)ws + w1 (y * we) — wryws

for any w;, ws € h and the same arguments lead to the conclusion. |
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Lemma 17 For m,n > 1, we have

%5;"(100) = (-)™(y™mwo — y(y™ 'm wO))

and

57 (o) = (=1 (wom3” — (wom™)z).

Proof. We prove the first identity by induction on m. The proof is completely similar
for the other one. The case m = 1 is the above proposition. Assuming the equality for
m, we compute by using Proposition 16

%«s:‘*l(wo) =8, ((-1)™ (y™mwo — y(y™ 'mwo)))

(1™ {y (y"mwo — y(y™ 'mwo)) — ym (y™mwo — y(y™ ‘mwo)) }

(D)™ {y(y™mwo) — ¥*(y™ 'mwo) — (m + L)y mwo + y?(y™ 'mwo) + y(ymy™ mwo)) }
(~1)™ {(m + Dy(y™mwn) — (m+ 1)y™ mwo)

(-1)™*(m +1) (y" mwo — y(y™mwo)) .

It

Hence we have

ma‘?’“(w(» = (_1)m+1 (ym+1m wo — y(ymm 'wo))

and the lemma, is proved. |

Proof of Theorem. By linearity, it suffices to prove the theorem for a word wo. If
wo = 1, the theorem is obvious since reg(y™) = 0 for m > 1 from Proposition 8 (ii).
Put wo = zwp, wh € h*. Then, since y™mwy — Yy(¥y™ 'mwo) = z(y™mw)), (i) follows
from the lemma and Proposition 8 (ii). Proof of (ii) is omitted since it is proved
similarly. 1

Experiments in small degrees suggests that the derivation 9, introduced in §2 may
be written in terms of newly introduced derivations. We propose the following conjec-
ture.

Conjecture The derivation O, is contained for alln > 1 in the Lie subalgebra of
Der(h) generated by 65, 0n, 05 and Op.

Here are some relations among thé derivations.
Proposition 18 (i) & + 8, = &5 + x.
(ii) 8y = 0n — 0s.
(iii) 8, = [On, On)-
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(iv) 85 = 1 ([6n, [61,n]] — [On, O2] — [0k, B2]).
(v) 84 =1} [6n, [01,(01,84]]] — & [Gh» [On, (81, Bal]] + £ [B1, [B2, Onl] + 3(0s, 0] + 1(8s, 81}

Proof. Since both sides of each equation are elements in Der(}), it is enough to check
that the images of  and y coincide. This is a routine computation. |

5 Relation to Derivation Relations

In this section, we present a conjectural formula which shows that the derivation rela-
tions is a consequence of the regularized double shuffle relations. We give some results
in favor of the conjecture. In particular, the “sum formula” is a consequence of the
regularized double shuffie relations.

Definition 19 For each integer m > 1, define a Q-linear map 0m : ) — b by
Om(w) := (—1)"reg(y™ * w — y™mw) (w € ).
Set 6 = 1 (the identity map).

By Theorem 9, we have 0n,(wp) € Ker( for wo € §°. This is the “regularized
double shuffle relation with {(1,1,...,1)”. Note that ,,(w) = (—1)™reg(y™ *w), since

M
reg(y™mw) = reg(y™)mreg(w) = 0 by Proposition 8 (ii).

The following theorem shows that the sum formula for MZVs, which states that
the sum of all MZVs of fixed weight and depth is equal to the Riemann zeta value of
that weight, can be deduced from the regularized double shuffle relations.

Theorem 20 Denote by S(k,m) the sum of all monomials in h° of weight k and depth
m. For any k and m withk > m+1 > 2, we have

O (zF™"1y) = S(k,m + 1) — S(k,m).

This shows that the sum of all multiple zeta values of fixed weight and depth is inde-
pendent of depth, hence is equal to the Riemann zeta value.

Proof. The harmonic product ym*x""n;ly, which corresponds to {(1,1,...,1)¢(k—m),

is easily computed as

m~—1

,y Icm—-y Zyzkm—l m+1—1+2y_1kmmy
i=0 j=0

By Proposition 8 (ii),

k-m-1

reg(y™ *z" " "'y)

17



— Z( 1): ymxk—m—2 m+1—t)+ Z y J— -m—lym—j)
=0 j=0

m
— xk—m—lym-f-l +Z(_1)tx yml'k m- 2ym-1)y+(yz lmxk - 2y1u+1—1)y}

m—1
+z k-m m+Z( -1 32{(y k™ lym— —])y+(y1— 1 ph-m-1 m—J)y}
ij=1
m—1
= Z( 1)1 ymx" m-—2ym-z )y + Z( 1)'+1:1:(y m:ck'm'zym“’)y
=0 =0
m—1 m—2
+ Z( —1Yz(yimzt-mly m—1 —'J)y + Z( 1)_7+1x(y,7mxk—m—1 m—1 _,)y
j=0 J'—O

= (-1)"z(y"mzF ")y + (-1 ey tmr .

We therefore have

k—m—l)

Hm( mk-m—ly) k-m-z)

z(y™mz y—z(y™ mz
= S(k,m+1)—- S(k,m).

()

|
The sum formula is a special case of Ohno's theorem. Through an attempt of
understanding Ohno’s theorem in the light of double shuffle relations, we were led to

the following conjecture. Put I)° Q+ :z:by

Conjecture On §°,

BXP(Z —) = Z O
n=1 m=0

Put A = exp(} o2, &) and © = Y o 0. We can 1 at least show that the A and
© agree on the monomials which correspond to the Riemann zeta values, including

y(= ¢(1)).

Proposition 21
A(zFy) = ©(z*y), Vk > 0.

Proof. First we prove A(y) = ©(y). We know from Proposition 6 (and its proof) that
A(y) =y — zy(1 —y)~. Since for m > 1

Om(y) = (-1)"reg(y™ *y)

= (~Dreg((m+1)y™" + > y'zy™)
. =0
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m-1

(-1)™ > (1) 'z(y'my™)

Il

m=—01
= m o7
= (U=

m
= —xy ,

O@y) =) bm(y) =y—zy(l—y)™"

m=0

Next assume k > 1. As was shown in the proof of Theorem 20,

Om(z*y) = z(y™mz* )y — 2(y™  mzb)y

for m, k > 1. Hence
8(z*y) = z((1 — v) " 'mz* )y — 2((1 — y) 'mzF)y.

On the other hand, since A is a homomorphism with respect to the concatenation
product and we know that A(y) =y —zy(1—y)™, Alz) = Az +y—-y)=z+y—
(y —zy(1 —y)™) = z(1 — y)!, we have o

Alty) =z -y) "zl —y) "z —y) "y - syl - ¥
- .

In view of the lemma below, this is equal to ©(zFy).
Lemma 22 Fork >0,

-y 'ma = -y) Tzl -y 1 —y) " -z~ y)~.
k

Proof.

oo o o
Z Yy mzt Z Z ylzyz .. . gyien

m=0 m=0 31,92,sig4120
iy tigtee gy =m

= E y'lmyum .o xy"’k‘*'l
illiZI"'lik+1 20

= -y el—p) el -g) s —y)

Y amm

k
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Remark (i) Besides the conjecture, we also checked by computer that, up to weight
13, the linear relations obtained by Zagier’s theorem are equivalent to those obtained
by the derivation relations. However, we could not find an exact formula connecting
the two relations.

(ii) If the conjecture is true, then 0p,’s commute with each other because of Lemma
3. But we could not prove this.

(iii) It seems that © and A do not coincide on the whole § (although ©(z) = A(z)
and O(y) = A(y)). For example, ©(y?) # ©(y)? whereas A(y?) = A(y)? since A is an
automorphism on . How should we understand this?

6 Formal KZ associator

We shall define and study an element z}?(X ,Y) in hop{(X,Y’)), the non-commutative
formal power series algebra over the shuffle algebra bs,. Here, X and Y are non-
commuting indeterminates, commute with elements in b, and the multiplication of
coefficients in bgp is the shuffle product m.

We denote by {z,y}" (resp. {X,Y}") the set of all words (including empty word
regarded as 1) in z and y (resp. X and Y). For w € {z,y}", let cap(w) € {X,Y}"
be the corresponding “capitalization” of w. For example, cap(zy) = XY, cap(z2y°z) =
X?2Y3X, etc. We set cap(l) = 1. _

We recall briefly the definition of Drinfeld’s KZ associator [2]. For more detail, see

e.g., [6, Ch. XIX].
Consider the linear differential equation
i) = (X 4 X
G'(#) = (= +—)G(2) (1)

and its unique solutions Go(z) and G1(z) such that
Go(z) ~ 2% (z = 0) and Gi(z) ~ (1—2)¥ (z—1).
The Drinfeld KZ associator ®xz(X,Y) is an element in R{(X,Y’)) defined by
Brz(X,Y) = G1(2)"1Go(2).

Definition 23 The formal KZ associator ®(X,Y) is an element in ha1,((X,Y)) defined

by
@(X: Y) = exPsh(—yY) ’ z wW - expsh(_xx)r
we{z,y}*

we{Xx,Y}*
W=cap(w)

where expy,(—yY) = Y00 (-1)"y™= "Ly, y™* = ymym - - - my and similarly for expy, (—zX).
n
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Remark Since (ymym -+ -my)/i! = ¢!, (gmZm ---mz)/j! = z7, this can also be

\—.,_-/
i j
written as o o
B(X,Y) =Y ()Y Y wW-) (—1)zi X,
i= we(z,y}* j=0
we(x,Y}*
W =cap(w)

Proposition 24 (i) The coefficient of W = cap(w) of B(X,Y) is given by reg(w);

BXY)= Y res(wW,

we(z,y}*
we{x,Y}*
W =cap(w)

so we have N
CP(Xx Y) € bgh«XwY))

(ii) Let ¢ be the mapAbg,, (X,Y)) = R{{X,Y)) which is obtained by extending the
evaluation map ¢ : h° — R coefficient-wise. Then we have

(B(X,Y)) = Bxz(X,-Y).
Proof. (i) is immediate from the definition of a(X ,Y'), the above remark, and Propo-
sition 8 (i).
(ii) For a real number a such that 0 < a < 1, let G4(2z) be the unique solution of
(11) such that G,(a) = 1. Then ([6, Lemma XIX.6.3])
@Kz(x, —Y) = Bn}) ayGa(l — a)ax.
From this, we have

)*.

¥ = lim(—2 )Y Gu(1 — a)(2
Puz(X,-Y) = Iim(;—2)"Ga(1 — a) (7

Each factor on the right has an expression as an iterated integrals as follows. First,
Yy _ a Y
(=) = expllog(1—)Y)

l—a dt
exp(— / T—Y)

SR

=0

R ; dt; dts dt; ;
- Z(_l)( / / 1—t, 11t 1—t,~)y

i=0 —a>t1>i>>ti>a

a
l1—a
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and

= exp(log(; )X )

R /‘“dt

- S ([T x

=0

=Z<—1)*( [ zt_l@...zt_i)x,._
n t1 to t;

i=0 —a>ty >ta>>t>a

For each word w = ujug - - - ux € {z,y}", let Q(w) be the differential form Ad&) Af(?z) A:ﬁ’t‘k)

where A;(t) is t or 1 —t according as u; is = or y, and denote by [ al * Q(w) the multiple
integral

Qw).
1=a>t1 >8> >t >a

The above formulés can then be written as

Y oS- 1)'( )y

=0

=0

As for G,(1 — a), we have by [6, Ch. XIX (6.8)]

Gi-a)=1+ 3 (:—an(w))w

we (z,y}"\(1}
we(X,Y}*
W=cap(w)

The assertion (ii) then follows from the shuffle product of iterated integrals and Propo-
sition 8 (i), since reg(w) € h° so that we can let a — 0 and obtain

lim a¥Ga(1 - a)a* = (B(x,Y)).

Remark Zagier’s theorem as formulated in the last paragraph of §3 may also be
stated as a relation of two formal “associator-like” objects. Namely, let

BL(X,Y) =expu(—3Y)- S wW € h%((X,Y))

w€{=zy}*nhl
: W=cap(w)
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and
Bhor(X,Y) = exppor(—9Y) - Y wW € b, ((X,Y)).

we{z,y}"nphl
W=cap(w)

Here, expper(—4Y) = X neo(—1)"y" XL, Then, we have

E(EI; (X Y)) = (exphar (Z( 1)1‘ yyr) ha.r(X Y))

r=2

Questions (i) Let a be the subspace of h° generated by all regularized double shuffle
relations reg(w * wo — wmwy), Yw € b, Vwy € §°. Does a form an ideal of §%,? If
50, put basn = b%,/a. Does the image of ®(X,—Y) in han((X,Y)) satisfy 2,3 and 5
cycle relations of KZ associator? The image in (h% /Ker O)((X,Y’)) is identified with
@y z(X,Y) and does indeed satisfy 2,3 and 5 cycle relations.

(if) Conversely, let b be the minimal ideal of b2, such that the image of the formal
associator ®(X ,—Y) in (b 0./6)({X,Y)) satisfies 2,3 and 5 cycle relations. Does b
coincide with Ker C , or the space of regularized double shuffle relations?
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