A NOTE

MASANOBU KANEKO

1998. 6. 14.

CERTAIN DERIVATIONS

Following Hoffman [2], we let $\mathfrak{h} = \mathbb{Q}\langle x,y\rangle$ be the non-commutative polynomial algebra in two variables x and y, and \mathfrak{h}^0 its subalgebra $\mathbb{Q} \cdot 1 + x\mathfrak{h}y$. In \mathfrak{h} are defined three kinds of product, \cdot (concatenation), * (Hoffman's harmonic product), and \circ (shuffle product). Let $\widetilde{\zeta}:\mathfrak{h}^0\to\mathbb{R}$ be the \mathbb{Q} -linear "evaluation- by-iterated-integral" map $(x\leftrightarrow\frac{dt}{t},y\leftrightarrow\frac{dt}{1-t})$. The map $\widetilde{\zeta}$ is not only a \mathbb{Q} -linear map but also a \mathbb{Q} -algebra homomorphism w.r.t. both * and \circ . Fundamental problem is then

Problem. What is $Ker\widetilde{\zeta}$?

Let $\tau: \mathfrak{h}^0 \to \mathfrak{h}^0$ be the "dual" map, i.e., the map interchanges x and y and reverse the order of product. Now standard duality theorem for multiple zeta values states

Theorem (Duality).
$$(1-\tau)\mathfrak{h}^0 \subset Ker\widetilde{\zeta}$$
.

Inspired by [2], we define certain derivations on \mathfrak{h}^0 which conjecturally would produce a portion of elements of $Ker\widetilde{\zeta}$.

Definition. For $n \geq 1$, let ∂_n be the derivation on \mathfrak{h}^0 w.r.t. concatenation product defined by $\partial_n(x) = s_n$ and $\partial_n(y) = -s_n$ where s_n is the sum of all monomials in \mathfrak{h}^0 of degree n+1 $(s_1 = xy, s_2 = x^2y + xy^2, s_3 = x^3y + x^2y^2 + xyxy + xy^3$ and so on).

Hoffman's reformulation [2] of his previous theorem [1] can also be stated as

Theorem (Hoffman's relation). $\partial_1 \mathfrak{h}^0 \subset Ker\widetilde{\zeta}$.

A possible generalization of this would be

Conjecture.
$$\forall n \geq 1, \partial_n \mathfrak{h}^0 \subset Ker\widetilde{\zeta}$$
.

It seems that the relations produced by these derivations are equivalent (under the duality) to those given by Y. Ohno. I have checked this up to weight 12 by computer (i.e., $\partial_n \mathfrak{h}_m^0 \subset Ker\widetilde{\zeta}$ for $n+m \leq 12$ where \mathfrak{h}_m^0 is the degree m part of \mathfrak{h}^0). It is not hard to deduce the case n=2 from Ohno's relation:

Proposition. The conjecture is valid for n = 2.

Question. Is there any derivation ∂ other than ∂_n having the property $\partial \mathfrak{h}^0 \subset Ker\widetilde{\zeta}$?

Now, derivations on \mathfrak{h}^0 naturally form a Lie algebra (over \mathbb{Q}) by $[\partial, \partial'] := \partial \partial' - \partial' \partial$. Let \mathcal{D}_{ζ} denote the sub Lie algebra of homogeneous derivations satisfying $\partial \mathfrak{h}^0 \subset Ker\widetilde{\zeta}$ (we may call them "special derivations").

Question. What is \mathcal{D}_{ζ} ?

It seems $[\partial_m, \partial_n] = 0, \forall m, n \geq 1$. (I lazily haven't checked this.) What is the center of \mathcal{D}_{ζ} ?

ABOUT DOUBLE SHUFFLE RELATIONS

Definition. $(w_1, w_2) := w_1 \circ w_2 - w_1 * w_2 \ (w_1, w_2 \in \mathfrak{h}).$

Because of the formula $\widetilde{\zeta}(w_1 \circ w_2) = \widetilde{\zeta}(w_1 * w_2) = \widetilde{\zeta}(w_1)\widetilde{\zeta}(w_2)$ for any $w_1, w_2 \in \mathfrak{h}^0$, we have

Double shuffle relation. $\langle w_1, w_2 \rangle \in Ker\widetilde{\zeta}, \ \forall w_1, w_2 \in \mathfrak{h}^0.$

This is also valid when we replace w_1 by y (which does not belong to \mathfrak{h}^0), and in fact it gives again the Hoffman's relation.

Proposition. $\partial_1(w) = \langle y, w \rangle$, $\forall w \in \mathfrak{h}^0$. Hence $\langle y, w \rangle \in Ker\widetilde{\zeta}$, $\forall w \in \mathfrak{h}^0$.

The proof is a simple calculation.

Question. Is $Ker\widetilde{\zeta}$ generated (as \mathbb{Q} -vector space) by $\langle y, \mathfrak{h}^0 \rangle$, $\langle \mathfrak{h}^0, \mathfrak{h}^0 \rangle$ and $(1-\tau)\mathfrak{h}^0$?

I have no idea as to what extent the affirmative answer of this is convincing. I only have checked this up to weight 10 by computer. Perhaps I should remark that, up to weight 6, the relations $\langle y, \mathfrak{h}^0 \rangle$ and $\langle \mathfrak{h}^0, \mathfrak{h}^0 \rangle$ are enough to reduce dimensions to the conjectured ones, but from weight 7 on (to 10 at least), we need the duality.

Question. Let \mathfrak{h}_m^0 be the degree m part of \mathfrak{h}^0 . What is the dimension (number of independent relations) of $\langle \mathfrak{h}_m^0, \mathfrak{h}_n^0 \rangle$?

As far as I calculated, no reductions (other than obvious ones) occur within $\langle \mathfrak{h}_m^0, \mathfrak{h}_n^0 \rangle$.

REFERENCES

- 1. M. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), 275-290.
- 2. _____, The algebra of multiple harmonic series, J. of Algebra 194 (1997), 477-495.