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Abstract

We find a relation between the Fibonacci polynomials and arrangements
of n+3 points in the real projective n-space admitting an action of the cyclic
group of order n+ 3. We also describe explicitly the rational curve of degree
n passing through these n + 3 points, and determine the permutation of the
n+ 3 points induced by this curve.

Introduction

Arrangements of n + 2 points in general position in the real projective n-space
Pn = Pn(R) are unique up to projective transformations. Those of m := n + 3
points are projectively not unique, but they are combinatorially unique. We are
interested in arrangements of m points which admit an action of the cyclic group of
order m.

Let p1, . . . , pn+2 be n+2 points in Pn in general position. We add another point
pm, and require that the m points p1, . . . , pn+2, pm admit a projective transformation
σ inducing the cyclic permutation:

σ : p1 → p2 → · · · → pn+2 → pm → p1.

There always exit such pm and σ, and in fact there are several choices in general.
Our first theorem (Theorem 1 in §2) asserts that such choices exactly correspond
to the roots of the Fibonacci polynomial Fn(t) of degree [n/2] + 1. And moreover,
the resulting m points p1, . . . , pn+2, pm are in general position if and only if the
corresponding root is “primitive”, i.e., a root of the core Fibonacci polynomial fn(t),
which is an irreducible factor of Fn(t) of degree φ(m)/2. Here, φ(m) denotes Euler’s
function counting the number of positive integers less than m and co-prime to m.

On the other hand, for m points in Pn in general position, there is a unique
rational curve C of degree n passing through these points. When we view the curve
C as an image of P1(R), the natural order in R determines a cyclic permutation of
these points. For the points corresponding to a root of the core Fibonacci polynomial
as above, we can explicitly compute this permutation (Corollary 2 to Theorem 2 in
§3). More precisely, let −|1 + ζ|−2 be a root of fn(t), where ζ is a primitive m-th
root of unity (see §1 for the description of roots of fn(t)), and pm the m-th point
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associated to this root by Theorem 1. For each j (1 ≤ j ≤ m), denote by qj
the point in P1 such that C(qj) = pj. Without loss of generality, we may assume
q1 = ∞, q2 = 0, q1 = 1. Then we show in Theorem 2 that, there exits a linear
fractional transformation R from P1(R) to the unit circle in the complex plane,
preserving the natural orientation of P1(R) and the unit circle (counter clock-wise),
such that

R(q1) = ζ−1, R(q2) = 1, R(q3) = ζ, R(q4) = ζ2, . . . , R(qm) = ζm−2.

Since ζ is a primitive m-th root of unity, the m points

1, ζ, ζ2, . . . , ζm−2, ζm−1 = ζ−1

form vertices of a regular m-gon on the unit circle. From this, if we write ζ = ζ im
with ζm = e2π

√
−1/m and (i,m) = 1, we see that the cyclic permutation determined

by the curve C is the ‘i-skip mod m’, i.e., the permutation of {1, 2, . . . ,m} given by
{0 · i+1, 1 · i+1, . . . , (m− 1) · i+1}, where l denotes the residue of l mod m such
that 0 ≤ l ≤ m− 1.

After introducing the necessary properties of Fibonacci polynomials in §1, we
state and prove Theorem 1 in §2 and Theorem 2 in §3. In the final section §4, we
discuss fixed points of the transformation σ.

1 Fibonacci polynomials

In this section, we summarize properties of the polynomials Fk(t) and fk(t) that we
need in this paper.

Definition 1. The Fibonacci polynomials Fk(t) are defined as

F−2 = F−1 = 1, Fk = Fk−1 + tFk−2, k = 0, 1, 2, . . .

The degree of Fk is [k/2] + 1.

Remark 1. In the literature (e.g., [Ko]), the Fibonacci polynomial F̃k(t) is defined

by F̃0 = 0, F̃1 = 1, F̃k = tF̃k−1(t) + F̃k−2(t) (k ≥ 2). The relation to our Fk(t) is

Fk(t) =
√
t
k+2

F̃k+3(1/
√
t). From this, all properties described in the sequel should

in principle follow from known properties of F̃k(t). We nevertheless supply proofs
for the convenience of the reader.

For notational simplicity, put Gk = Fk−3 (k ≥ 1). Of course the Gk’s satisfy the
same recursion with G1 = G2 = 1.

Proposition 1. Gk(t) is a polynomial of degree [(k − 1)/2] and is explicitly given
as

Gk(t) =

[(k−1)/2]∑
i=0

(
k − 1− i

i

)
ti, k ≥ 1.

Also, Gk(t) admits the following expression:

Gk(t) =
αk − βk

√
1 + 4t

, (1)
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where

α =
1 +

√
1 + 4t

2
, β =

1−
√
1 + 4t

2
.

Proof. The first formula is easily proved by induction. The second can be shown
either by the generating function

∑∞
k=0Gk(t)X

k = 1/(1−X−tX2) = 1/(1−αX)(1−
βX) or by checking the right-hand side satisfies the same recurrence relation as
Gk(t).

We introduce a new polynomial (a priori, a rational function) gk(t). The core
Fibonacci polynomial fk(t) is defined as fk(t) = gk+3(t).

Definition 2. Put
gk(t) =

∏
d|k

Gd(t)
µ(k/d), k ≥ 1,

where d runs over all positive divisors of k, and µ is the Möbius function1. Note
that g1 = g2 = 1.

Proposition 2. 1) For k ≥ 3, gk(t) is a polynomial of degree φ(k)/2, and is irre-
ducible over Q.

2) The irreducible decomposition of Gk(t) over Q is given by

Gk(t) =
∏
2<d|k

gd(t).

In terms of Fk(t) and fk(t), this can be written as

Fk(t) =
∏

2<d|k+3

fd−3(t).

3) The gk(t) is expressed as

gk(t) = βφ(k)Φk(α/β),

where
Φk(t) =

∏
d|k

(td − 1)µ(k/d)

is the k-th cyclotomic polynomial.

Proof. By (1), we have

gk =
∏
d|k

Gd(t)
µ(k/d) =

∏
d|k

{
αd − βd

√
1 + 4t

}µ(k/d)

=

(
1√

1 + 4t

)∑
d|k µ(k/d) ∏

d|k

(
αd − βd

)µ(k/d)
=

∏
d|k

(
αd − βd

)µ(k/d)
= β

∑
d|k dµ(k/d)∏

d|k

{(
α

β

)d

− 1

}µ(k/d)

= βφ(k)Φk(α/β).
1µ(n) = 0 if n has a square factor and µ(n) = (−1)ν if n is a product of ν distinct primes.

µ(1) = 1.
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Here, we have used the well-known identities
∑

d|k µ(k/d) = 0 and
∑

d|k dµ(k/d) =

φ(k). This proves 3). Since the cyclotomic polynomial Φk is of degree φ(k), gk(t)
is a polynomial in α and β of total degree φ(k), which is symmetric in α and β

because of the expression gk =
∏

d|k
(
αd − βd

)µ(k/d)
as above and (−1)

∑
d|k µ(k/d) = 1.

Therefore, gk(t) is a polynomial in t, of degree at most φ(k)/2 because α + β = 1
and αβ = −t. The formula in 2) follows from the definition of gk(t) and the Möbius
inversion formula. To prove the irreducibility of gk(t) and find the exact degree, we
look at the roots of gk(t). By the formula in 3), we have

gk(t) = βφ(k)
∏

ζ: primitive k-th root of unity

(α/β − ζ).

Because Gk(0) = 1 for all k, we have gk(0) = 1 and so β cannot be zero (β = 0 ⇔
t = 0). Hence,

gk(t) = 0 ⇔ 1 +
√
1 + 4t

1−
√
1 + 4t

= ζ : primitive k-th root of unity

⇔ t =
1

4

{(
1− ζ

1 + ζ

)2

− 1

}
= − 1

ζ + ζ−1 + 2
= − 1

|1 + ζ|2
.

Assume k ≥ 3, and write ζ = e2πl
√
−1/k with an integer l, so that ζ + ζ−1 =

2 cos(2lπ/k). Since ζ and ζ−1 give the same root, and ζ is primitive, we see that
exactly φ(k)/2 values

t = − 1

2 cos 2lπ
k

+ 2
= − 1

4 cos2 lπ
k

, (l, k) = 1, 1 ≤ l ≤
[
k − 1

2

]
give distinct roots of gk(t). Hence gk(t) is of degree φ(k)/2 (remember we have
shown the degree is at most φ(k)/2), and has distinct roots. Since its splitting field
is Q(cos(2π/k)) = Q(ζ + ζ−1), which is the maximal real subfield of degree φ(k)/2
of the cyclotomic field Q(ζ), we conclude that the polynomial gk is irreducible over
Q.

Corollary 1. The roots of gk(t) are given by

− 1

|1 + ζ ik|2
= − 1

4 cos2 iπ
k

, (i, k) = 1, 1 ≤ i ≤
[
k − 1

2

]
.

Here, ζk = e2π
√
−1/k. In particular, all roots are negative real numbers, and if k ̸= k′,

roots of gk(t) and gk′(t) never coincide.
The roots of Gk(t) are given by

− 1

|1 + ζ ik|2
= − 1

4 cos2 iπ
k

, 1 ≤ i ≤
[
k − 1

2

]
.

Examples: Factorizations of the first several Fibonacci polynomials are as follows:

F0 = f0, F1 = f1, F2 = f2, F3 = f0f3,
F4 = f4, F5 = f1f5, F6 = f0f6, F7 = f2f7,
F8 = f8, F9 = f0f1f3f9, F10 = f10, F11 = f4f11,
F12 = f0f2f12, F13 = f1f5f13, F14 = f14, F15 = f0f3f6f15,
F16 = f16, F17 = f1f2f7f17, F18 = f0f4f18, F19 = f8f19,
F20 = f20, F21 = f0f1f3f5f9f21, F22 = f2f22, F23 = f10f23, . . . ,
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whereas the ‘core Fibonacci polynomials’ are given by

f0 = t+ 1, f1 = 2t+ 1,
f2 = t2 + 3t+ 1, f3 = 3t+ 1,
f4 = t3 + 6t2 + 5t+ 1, f5 = 2t2 + 4t+ 1,
f6 = t3 + 9t2 + 6t+ 1, f7 = 5t2 + 5t+ 1,
f8 = t5 + 15t4 + 35t3 + 28t2 + 9t+ 1, f9 = t2 + 4t+ 1,
f10 = t6 + 21t5 + 70t4 + 84t3 + 45t2 + 11t+ 1, f11 = 7t3 + 14t2 + 7t+ 1, . . .

When n = 18, we have 3, 7 | 21 = 18+3, and the twelve numbers 1, 2, . . . , 19, 20 are
coprime to 21. So

F18 = f0f4 · f18, deg f18 = 12/2 = 6.

When n = 21, we have 2, 3, 4, 6, 8, 12 | 24 = 21 + 3, and the eight numbers
1, 5, . . . , 19, 23 are coprime to 24. So

F21 = f0f1f3f5f9 · f21, deg f21 = 8/2 = 4.

Finally, we give the following lemma which will be used in the proof of Theorem 1.

Lemma 1. For −1 ≤ i < j, we have

FiFj−1 − FjFi−1 = (−1)iti+2Fj−i−3.

Proof. We proceed by induction on i. For i = −1, the identity becomes the recursion
of Fj. Suppose the identity is true up to i (and for all j). Then, by the recursion
and the induction hypothesis, we have

Fi+1Fj−1 − FjFi = (Fi + tFi−1)Fj−1 − (Fj−1 + tFj−2)Fi

= −t(FiFj−2 − Fj−1Fi−1) = (−1)i+1ti+3Fj−i−4.

2 n+3 points in Pn admitting a cyclic group action

For n + 2 points p1, . . . , pn+2 in the real projective n-space in general position (no
n+ 1 points are collinear), we would like to add another point pm, and require that
the m points admit a projective transformation σ inducing the cyclic action:

σ : p1 → p2 → · · · → pn+2 → pm → p1. (2)

Without loss of generality, we put n+ 3 points in the projective n-space Pn coordi-
natized by x1 : · · · : xn+1 as:

x1 : x2 : · · · : xn : xn+1

p1 = 1 : 1 : · · · : 1 : 1,
p2 = 1 : 0 : · · · : 0 : 0,
p3 = 0 : 1 : · · · : 0 : 0,
...

pn+1 = 0 : 0 : · · · : 1 : 0,
pn+2 = 0 : 0 : · · · : 0 : 1,
pm = ξ1 : ξ2 : · · · : ξn : ξn+1.
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In the following, we sometimes use the abbreviation x1x2 · · ·xn+1 for a point [x1 :
x2 : · · · : xn+1] in Pn.

Theorem 1. There exists a one-to-one correspondence between the m-th points pm
admitting the projective transformation σ as above and the roots of Fn(t). Moreover,
under this correspondence, the m points {p1, . . . , pn+2, pm} in Pn are in general po-
sition if and only if the associated root is a root of fn(t).

Proof. Since the inverse of σ induces the move 0 · · · 01 → 0 · · · 010 → · · · →
10 · · · 0 → 1 · · · 1, we have

σ−1 : x′
1 = x1 + b1x2, . . . , x′

n = x1 + bnxn+1, x′
n+1 = x1, (3)

for some non-zero bj’s. Because the last coordinate of the image of 1 · · · 1 is 1, we
may and shall assume ξn+1 = 1. Then from the move 1 · · · 1 → ξ1 · · · ξn1, we have

ξj = 1 + bj, (1 ≤ j ≤ n), (4)

and from the move ξ1 · · · ξn1 → 0 · · · 01, we get a system of equations in bj:

1 + b1 + b1(1 + b2) = 0,

1 + b1 + b2(1 + b3) = 0,

...

1 + b1 + bn−1(1 + bn) = 0,

1 + b1 + bn = 0.

Set b := bn. Then by the last equation we have

1 + b1 = −b (5)

and by solving the other equations we obtain

b1 =
b

1 + b2
, b2 =

b

1 + b3
, . . . , bn−1 =

b

1 + bn
=

b

1 + b
. (6)

In particular, every bj is written in terms of b (as a rational function) and so is
ξj (1 ≤ j ≤ n) by (4). Equations (5) and (6) in terms of ξj’s can be written as

ξ1 = −b and ξj =
ξ1

1− ξj−1

(2 ≤ j ≤ n). (7)

Now define rational functions hk(t) in t recursively by

h0 = t, hk =
t

1 + hk−1

(k = 1, 2, . . . ).

We easily see from (6) that bj = hn−j(b) (1 ≤ j ≤ n). The hk’s and Fibonacci
polynomials are related as

Lemma 2.

1 + hk =
Fk

Fk−1

, hk = t
Fk−2

Fk−1

, k = 0, 1, . . . .
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Proof. The first identity is easily proved by induction on k. When k = 0, the both
sides are equal to 1 + t. Assuming the validity for k, we have

1 + hk+1 = 1 +
t

1 + hk

=
Fk/Fk−1 + t

Fk/Fk−1

=
Fk + tFk−1

Fk

=
Fk+1

Fk

.

The second follows from the first by the recurrence for Fk.

By the relations 1 + b1 + b = 0, b1 = hn−1(b) and by Lemma 2, we obtain

0 = 1 + hn−1(b) + b =
Fn−1(b)

Fn−2(b)
+ b =

Fn(b)

Fn−2(b)
.

Therefore b = −ξ1 is a root of the Fibonacci polynomial Fn(t).
Conversely, let b be any root of Fn(t) and bj (1 ≤ j ≤ n) be determined by

bn = b and (6). Then the point pm = ξ1 · · · ξn1 and the projective transformation σ
determined by (4) and (3) satisfy the desired condition. That the different b’s give
different pm’s is clear. We note that the σ is uniquely determined by the pm. This
concludes the proof of the first half of the theorem.

For the second half, suppose first a root b of Fn(t) is not a root of fn(t). Then
by 2) of Proposition 2, b must be a root of some fd−3(t) with d < m. This means
that b is a root of some Fj(t) with j < n. By the identity

ξn−j = 1 + bn−j = 1 + hj(b) =
Fj(b)

Fj−1(b)
, (8)

we conclude that ξn−j = 0, and so the points pm = ξ1 · · · ξn1 and p1, . . . , pn+2 are not
in general position (points other than p1 and pn−j+1 are on the hyperplane xn−j = 0).
Next suppose b is a root of fn(t). Then b is never a root of any Fj(t) with j < n by
2) of Proposition 2, and so by (8), no ξj (1 ≤ j ≤ n) can be zero. Also, by the same
identity (8), if ξn−i = ξn−j for some i < j, we have Fi(b)Fj−1(b) − Fj(b)Fi−1(b) = 0
and hence by Lemma 1 Fj−i−3(b) = 0 (note that b is never zero). This contradicts
to the fact that b is a root of fn(t). Therefore we have ξi ̸= ξj whenever i ̸= j
and hence we conclude {p1, . . . , pn+1, pm} is in general position. This completes the
proof of Theorem 1.

3 The rational curve of degree n passing through

n + 3 points

Let p1, . . . , pn+2, pm be m = n+ 3 points in general position admitting a projective
cyclic permutation. Without loss of generality, we assume n+ 2 points p1, . . . , pn+2

are as in §2, the m-th point pm has coordinates ξ1 : · · · : ξn : 1 with ξi ̸= 0 and
ξi ̸= ξj (i ̸= j), and the cyclic permutation is as (2).

It is known that there exits a unique rational curve C of degree n passing through
m points in Pn in general position (see for example [CYY]). Thus let

C : t 7−→ x1(t) : · · · : xn+1(t) ∈ Pn
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be the curve such that each xj(t) is a polynomial in t of degree n, and

C(q1) = p1, C(q2) = p2, . . . , C(qn+2) = pn+2, C(qm) = pm (9)

for some qj ∈ P1. We may normalize {qj} so that

q1 = ∞, q2 = 0, q3 = 1.

Our second theorem describes qj explicitly in terms of the root of fn(t) (= gm(t)).

Theorem 2. Let −|1+ ζ|−2 be the root of fn(t) corresponding to the m-th point pm
as in Theorem 1, where ζ is a primitive m-th root of unity. Then, qj is given by

qj = (1 + ζ) · 1− ζj−2

1− ζj−1
(1 ≤ j ≤ m).

The linear fractional transformation

z =
x− (1 + ζ)

ζx− (1 + ζ)
(10)

from the real x-line to the complex z-plane sends qj to ζj−2, hence q1, q2, . . . , qm are
inverse images of ζ−1, 1, ζ, . . . , ζm−2, vertices of a regular m-gon on the unit circle.

Corollary 2. Take ζ = ζ lm, (l,m) = 1 in the theorem (ζm = e2π
√
−1/m), then qj can

also be written as

qj = 1 +
sin

( (j−3)l
m

π
)

sin
( (j−1)l

m
π
) .

If we arrange q1, q2, . . . , qm acccording to magnitude as

q1 = r1 = −∞ < r2 < r3 < · · · < rm,

then the permutation of indices is given by

qj = r(j−1)l+1 (1 ≤ j ≤ m),

where the index of r should be taken modulo m with value in the interval [1,m]. In
particular, if ζ = ζm (l = 1), then qj = rj.

Proof. With our normalization, the condition (9) is equivalent to the system of
equations

(x1(r) = ) c(r − q3)(r − q4)(r − q5) · · · (r − qn+2) = ξ1,

(x2(r) = ) c(r − q2)(r − q4)(r − q5) · · · (r − qn+2) = ξ2,

...

(xj−1(r) = ) c(r − q2) · · · (r − qj−1)(r − qj+1) · · · (r − qn+2) = ξj−1,

...

(xn+1(r) = ) c(r − q2)(r − q3)(r − q4) · · · (r − qn+1) = ξn+1 = 1,
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with n+1 unknowns q4, . . . , qn+2, r = qm and c. The value of c is determined by the
rest from the last equation. From the first and the (j − 1)-st equations, by taking
the ratio, we have

r − qj
r

=
ξ1
ξj−1

(3 ≤ j ≤ n+ 2)

and thus

qj = r
ξj−1 − ξ1

ξj−1

= rξj−2 (3 ≤ j ≤ n+ 2).

For the last equality, we have used (7) (with j → j − 1) in the previous section.
Since q3 = 1, the case j = 3 gives r (= qm) = 1/ξ1 and so we obtain

qj =
ξj−2

ξ1
(3 ≤ j ≤ m), (11)

where the case j = m is included because ξm−2 = ξn+1 = 1. From this, by writing
the relation ξj−1 = ξ1/(1− ξj−2) in (7) (j being replaced by j − 1) as

ξj−1

ξ1
=

1

1− ξj−2

=

1
ξ1

1
ξ1
− ξj−2

ξ1

,

we obtain the relation

qj+1 =
|1 + ζ|2

|1 + ζ|2 − qj
(1 ≤ j ≤ n+ 2). (12)

Here, we have used ξ1 = |1 + ζ|−2 from (7) (note b is the root of fn(t)), and note
that (12) is valid also for j = 1, 2 because of our normalization.

Now, let R = R(x) be the map given by (10):

z = R(x) =
x− (1 + ζ)

ζx− (1 + ζ)
.

This gives an orientation preserving homeomorphism from P1(R) to the unit circle
(counter clock-wise) in the complex z-plane, its inverse being given by

x = R−1(z) = (1 + ζ) · 1− z

1− ζz
.

Straightforward computation shows that the rotation z 7→ ζz in the z-plane corre-
sponds under R the map

x 7→ |1 + ζ|2

|1 + ζ|2 − x
(= R−1

(
ζ R(x)

)
). (13)

By our normalization, R(q1) = R(∞) = ζ−1. We therefore conclude that, by (12)
and (13), the point qj is the image of R−1 of ζj−2, which is the image of ζ−1 under
the (j − 1)-st iteration of the rotation z → ζz, and so

qj = R−1(ζj−2) = (1 + ζ) · 1− ζj−2

1− ζj−1
.
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This concludes the proof of Theorem 2.
When ζ = ζ lm, we compute

qj =
1 + ζ − ζj−2 − ζj−1

1− ζj−1
= 1 +

ζ − ζj−2

1− ζj−1

= 1 +
ζ(j−3)/2 − ζ−(j−3)/2

ζ(j−1)/2 − ζ−(j−1)/2
= 1 +

sin
( (j−3)l

m
π
)

sin
( (j−1)l

m
π
) .

The other assertion in the corollary is clear from the description above.

Examples: When m = 5 and 6, the vertices of the regural m-gon in P1(R) are

m = 5 : x = 0, 1,
1 +

√
5

2
,

3 +
√
5

2
, ∞,

m = 6 : x = 0, 1, 3/2, 2, 3, ∞.

Remark 2. We see that all qj’s are in Q(ζ + ζ−1), and so are the ξj’s. This is
a geometric explanation of the fact that this field is the splitting field of the core
Fibonacci polynomial fn.

4 Fixed points

Let τ be a root of fn. We find fixed points of σ (notation as in §1):

λx1 = x1 + b1x2, λx2 = x1 + b2x3, . . . , λxn = x1 + bnxn+1, λxn+1 = x1.

If we put xn+1 = 1, then λ must satisfy

H̃n(λ, τ) := −λn+1 + λn + b1(λ
n−1 + b2(· · · (λ2 + bn−1(λ+ bn)) · · · )) = 0.

If there is a real λ solving this equation, then the coordinates λ1 : · · · : λn : 1 of the
fixed point are

λ1 = λ, λ2 = λ
λ1 − 1

b1
, λ3 = λ

λ2 − 1

b2
, . . . ,

or equivalently, λn = 1 + bnλn+1/λ, λn−1 = 1 + bn−1λn/λ, . . . .

We can express the polynomial H̃n in terms of the Fibonacci polynomials. Since
bn = h0(τ) = τ and

b1 = hn−1(τ) = τ
Fn−3(τ)

Fn−2(τ)
, b1b2 = hn−1(τ)hn−2(τ) = τ 2

Fn−4(τ)

Fn−2(τ)
, . . . ,

b1 · · · bn = hn−1 · · ·h0 = τn
F−2(τ)

Fn−2(τ)
,

and 0 = Fn(τ) = Fn−1(τ) + τFn−2(τ), we see that, if we put x = λ/τ , H̃n(λ, τ) is a
constant multiple of Hn(x, τ), where

Hn(x, t) := Fn−1(t)x
n+1 + Fn−2(t)x

n + · · ·+ F−1x+ F−2, F−1 = F−2 = 1.
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Theorem 3. Let τ be a root of fn. When n is odd, Hn(x, τ) has no real root. When
n = 2k is even, Hn(x, τ) has a unique real root

−Fk−2(τ)

Fk−1(τ)
.

Proof. Substituting

Fi = Gi+3 =
1√

1 + 4t
(αi+3 − βi+3)

into Hn =
∑n−1

i=−2 Fix
i+2, we have

Hn =
n−1∑
i=−2

1√
1 + 4t

(αi+3 − βi+3)xi+2 =
1√

1 + 4t

n+1∑
i=0

(αi+1 − βi+1)xi

=
1√

1 + 4t

{
α
αn+2xn+2 − 1

αx− 1
− β

βn+2xn+2 − 1

βx− 1

}
=

αβ(αn+2 − βn+2)xn+3 − (αn+3 − βn+3)xn+2 + α− β√
1 + 4t(αx− 1)(βx− 1)

.

Since α + β = 1, αβ = −t and α− β =
√
1 + 4t, we have

Hn =
−tFn−1(t)x

n+3 − Fn(t)x
n+2 + 1

1− x− tx2
.

If τ is a root of Fn(t) (which is always negative real), the equation Hn = 0 in x is
equivalent to

xn+3 =
1

τFn−1(τ)
.

If n is even, this has a unique real solution, and if n is odd, since Fn−1(τ) is positive
(next Lemma), it has no real solution. The theorem follows from the two lemmas
below.

Lemma 3. If n is odd and if τ is a root of fn(t), then Fn−1(τ) is positive.

Proof. Recall that Fn = Gn+3, and the roots of Gn+3(t) are given as (Corollary 1)

τi = − 1

4 cos2 iπ
n+3

, 1 ≤ i ≤
[n
2

]
+ 1,

and the roots of Gn+2(t) are

tj = − 1

4 cos2 jπ
n+2

, 1 ≤ j ≤
[
n+ 1

2

]
.

Since τi − tj < 0 if and only if

j

n+ 2
<

i

n+ 3
,

the number of roots tj such that τi − tj < 0 (for fixed i) is i − 1. So if i is odd,
Fn−1(τ) > 0. If n is odd and τ is a root of fn(t), we must have (i, n+3) = 1, which
implies i is odd.
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Lemma 4. Let n = 2k is even, and let τ be a root of F2k(t). Then we have(
−Fk−2(τ)

Fk−1(τ)

)n+3

=
1

τFn−1(τ)
.

Proof. Recall that, if we set a = (1 +
√
1 + 4τ)/2 and b = (1−

√
1 + 4τ)/2,

Fj(τ) =
aj+3 − bj+3

√
1 + 4τ

.

By assumption, we have a2k+3 = b2k+3. We first note

−Fk−2(τ)

Fk−1(τ)
= −ak+1 − bk+1

ak+2 − bk+2
=

ak+1

bk+2
,

because
(ak+2 − bk+2)ak+1 + (ak+1 − bk+1)bk+2 = a2k+3 − b2k+3 = 0.

Hence, we have(
−Fk−2(τ)

Fk−1(τ)

)n+3

=

(
ak+1

bk+2

)2k+3

=

(
a2k+3

b2k+3

)k
a2k+3

b2(2k+3)
=

1

b2k+3
.

On the other hand, by using τ = −ab,
√
1 + 4τ = a − b, and a2k+3 = b2k+3, we

obtain

1

τFn−1(τ)
=

−(a− b)

ab(a2k+2 − b2k+2)
=

−(a− b)

b(b2k+3 − ab2k+2)
=

−(a− b)

b2k+3(b− a)
=

1

b2k+3
.
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