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A new integral-series identity of multiple zeta values

and regularizations
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Abstract

We present a new “integral = series” type identity of multiple zeta values, and show
that this is equivalent in a suitable sense to the fundamental theorem of regularization. We
conjecture that this identity is enough to describe all linear relations of multiple zeta values
over Q. We also establish the regularization theorem for multiple zeta-star values, which too
is equivalent to our new identity. A connection to Kawashima’s relation is discussed as well.

1 Introduction

The multiple zeta values (MZVs) and the multiple zeta-star values (MZSVs, or sometimes re-
ferred to as the non-strict MZVs) are defined respectively by the nested series

ζ(k1, . . . , kr) =
∑

0<m1<···<mr

1

mk1
1 · · ·m

kr
r

and

ζ⋆(k1, . . . , kr) =
∑

0<m1≤···≤mr

1

mk1
1 · · ·m

kr
r

,

where ki (1 ≤ i ≤ r) are arbitrary positive integers with kr ≥ 2 (to ensure the convergence).
These numbers appear in various branches of mathematics as well as mathematical physics,

and have been actively studied since more than two decades. One of the main points of interest
in those studies is to find as many relations of MZVs as possible, and to pin down concretely
the set of basic relations which describe all linear or algebraic relations of MZVs over Q. Sev-
eral candidates of such a set are known today, of which we only mention here the “associator
relations” and the “extended double shuffle relations.” However, whether any of them give all
relations is still conjectural and unknown so far.

In this paper, we present a new, very simple and elementary relation which conjecturally
supplies all linear relations. The form of the relation (Theorem 4.1) is

ζ
(
µ(k, l)

)
=

∑

0<m1<···<mr=ns≥···≥n1>0

1

mk1
1 · · ·m

kr
r nl1

1 · · · n
ls
s

,

where k = (k1, . . . , kr) and l = (l1, . . . , ls) are any arrays of positive integers, and the left-
hand side is a certain integral which can be written, likewise the sum on the right, as a linear
combination of MZVs. See §§3, 4 for precise definition.
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We also show that these relations, together with either the shuffle or the harmonic (or stuffle)
product formula, are equivalent to the extended (or regularized) double shuffle relation (Theorem
4.6 and Theorem 4.8), which is conjectured to give all relations of MZVs. A way of regularizing
the MZSVs is also newly introduced, and Theorem 4.6 contains the regularization theorem of
MZSVs as well.

We first give necessary preliminaries in §2 and §3, and then state our main theorems in §4.
The proof of Theorem 4.1 is given immediately after stating the theorem, whereas the proof of
Theorem 4.6 is separately given in §5. In §6, we discuss a relation between our theorems and
Kawashima’s relation. Assuming the duality, Kawashima’s relation is also deduced from our
main identity. In the final §7, we deduce the restricted sum formula of Eie-Liaw-Ong [1] from
our identity.

2 Notation and algebraic setup

A finite sequence k = (k1, . . . , kr) of positive integers is called an index. Here the length r

(called the depth of k) can be 0 and the unique index of depth 0, namely the empty sequence, is
denoted by ∅. An index k = (k1, . . . , kr) is admissible if kr ≥ 2. The index ∅ is also regarded
as an admissible index.

Then, as already defined in the introduction, multiple zeta and zeta-star values associated
to an admissible index k = (k1, . . . , kr) are given by

ζ(k) =
∑

0<m1<···<mr

1

mk1
1 · · ·m

kr
r

and

ζ⋆(k) =
∑

0<m1≤···≤mr

1

mk1
1 · · ·m

kr
r

respectively. We set ζ(∅) = ζ⋆(∅) = 1.
We recall Hoffman’s algebraic setup [3] with a slightly different convention. Write H =

Q〈e0, e1〉 for the noncommutative polynomial algebra of indeterminates e0 and e1 over Q, and
define its subalgebras H0 and H1 by

H0 = Q+ e1He0 ⊂ H1 = Q+ e1H ⊂ H.

We put ek = e1e
k−1
0 for any positive integer k, so that the monomials ek1 · · · ekr associated to all

indices (resp. admissible indices) (k1, . . . , kr) form a basis of H1 (resp. H0) over Q (the monomial
associated to ∅ is 1). We often identify an index (k1, . . . , kr) with the monomial ek1 · · · ekr in
H1.

We consider two Q-bilinear commutative products x on H and ∗ on H1, called the shuffle
and the harmonic (or stuffle) products, which are characterized by

1x w = w x 1 = w (w ∈ H),

av x bw = a(v x bw) + b(av x w) (a, b ∈ {e0, e1}, v, w ∈ H),

and

1 ∗ w = w ∗ 1 = w (w ∈ H1),

ekv ∗ elw = ek(v ∗ elw) + el(ekv ∗ w) + ek+l(v ∗ w) (k, l ≥ 1, v, w ∈ H1),
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respectively. We denote by Hx (resp. H1
∗) the commutative Q-algebra H (resp. H1) equipped

with multiplication x (resp. ∗). Then the subspaces H1 and H0 of H (resp. the subspace H0 of
H1) are closed under x (resp. ∗) and become subalgebras of Hx (resp. H1

∗) denoted by H1
x

and
H0
x

(resp. H0
∗).

If with each index k is assigned an element f(k) of a Q-vector space V , we often extend this
assignment to a Q-linear map from H1 (or H0 or e1H, depending on the range of definition of
f) to V and denote this extension by the same symbol f . The typical example is the Q-linear
map ζ : H0 → R extending the definition of multiple zeta values. In the sequel we freely use the
letter ζ with this extended meaning.

The map ζ : H0 → R is a Q-algebra homomorphism on both H0
x

and H0
∗, that is, in terms of

indices,
ζ(kx l) = ζ(k ∗ l) = ζ(k)ζ(l) (2.1)

for any admissible indices k and l. This is the double shuffle relation of MZVs.
Next we briefly review the theory of regularization of multiple zeta values. Because of the

isomorphisms H1
x

∼= H0
x
[e1] and H1

∗
∼= H0

∗[e1] (see [9, Theorem 6.1] and [3, Theorem 2.6]), we can
extend the map ζ uniquely to Q-algebra homomorphisms ζx : H1

x
→ R[T ] and ζ∗ : H

1
∗ → R[T ]

from H1 to the polynomial algebra R[T ] by setting ζx(e1) = ζ∗(e1) = T . The extended maps ζx
and ζ∗ are called the shuffle and harmonic regularization of ζ, respectively. When we need to
make the indeterminate T explicit, we write ζ•(w;T ) for ζ•(w) ∈ R[T ], where • = x or ∗, and
we also write ζ•(w;T ) as ζ•(k;T ) when the index k corresponds to the word w.

The fundamental theorem of regularizations of MZVs then asserts that the two polynomials
ζ•(k;T ) (• = x or ∗) are related with each other by a simple R-linear map involving the gamma
function Γ(u). Define an R-linear endomorphism ρ on R[T ] by the equality

ρ(eTu) = A(u)eTu (2.2)

in the formal power series algebra R[T ][[u]] on which ρ acts coefficientwise, where

A(u) = exp

(
∞∑

n=2

(−1)n

n
ζ(n)un

)

∈ R[[u]].

Note that A(u) = eγuΓ(1 + u), where γ is Euler’s constant.

Theorem 2.1 ([5, Theorem 1]). For any index k, we have

ζx(k;T ) = ρ
(
ζ∗(k;T )

)
. (2.3)

It is conjectured that this relation (or more precisely the relations obtained by comparing the
coefficients), together with the double shuffle relation (2.1), describes all (algebraic and linear)
relations of MZVs over Q.

For a non-empty index k = (k1, . . . , kr), we write k⋆ for the formal sum of 2r−1 indices of
the form (k1© · · · © kr), where each © is replaced by ‘ , ’ or ‘+’. We also put ∅⋆ = ∅. Then
k⋆ is identified with an element of H1, and we have ζ⋆(k) = ζ(k⋆) for admissible k.

Finally, we introduce theQ-bilinear ‘circled harmonic product’⊛ : e1H×e1H→ e1He0 defined
by

vek ⊛ wel = (v ∗ w)ek+l (k, l ≥ 1, v, w ∈ H1).

This is a binary operation on the space of formal sums of non-empty indices taking values in
the subspace spanned by non-empty admissible indices. We readily see from the definition that,

3



for non-empty indices k = (k1, . . . , kr) and l = (l1, . . . , ls), we have the series expression

ζ
(
k⊛ l⋆

)
=

∑

0<m1<···<mr=ns≥···≥n1>0

1

mk1
1 · · ·m

kr
r nl1

1 · · ·n
ls
s

. (2.4)

This formula includes MZV and MZSV as special cases:

ζ
(
k⊛ (1)⋆) = ζ(k1, . . . , kr−1, kr + 1)

and

ζ
(
(1)⊛ l⋆) = ζ⋆(l1, . . . , ls−1, ls + 1).

3 Review on 2-posets and associated integrals

In this section, we review the definitions and basic properties of 2-labeled posets (in this paper,
we call them 2-posets for short) and the associated integrals introduced by the second-named
author in [10].

Definition 3.1. A 2-poset is a pair (X, δX ), where X = (X,≤) is a finite partially ordered set
(poset for short) and δX is a map from X to {0, 1}. We often omit δX and simply say “a 2-poset
X.” The δX is called the label map of X.

A 2-poset (X, δX ) is called admissible if δX(x) = 0 for all maximal elements x ∈ X and
δX(x) = 1 for all minimal elements x ∈ X.

A 2-poset is depicted as a Hasse diagram in which an element x with δ(x) = 0 (resp. δ(x) = 1)
is represented by ◦ (resp. •). For example, the diagram

•

◦⑧⑧⑧⑧ •
❄❄

❄❄ ◦⑧⑧⑧⑧

◦⑧⑧⑧⑧

represents the 2-poset X = {x1, x2, x3, x4, x5} with order x1 < x2 > x3 < x4 < x5 and label
(δX(x1), . . . , δX(x5)) = (1, 0, 1, 0, 0). This 2-poset is admissible.

Definition 3.2. For an admissible 2-poset X, we define the associated integral

I(X) =

∫

∆X

∏

x∈X

ωδX(x)(tx), (3.1)

where
∆X =

{
(tx)x ∈ [0, 1]X

∣
∣ tx < ty if x < y

}

and

ω0(t) =
dt

t
, ω1(t) =

dt

1− t
.

Note that the admissibility of a 2-poset corresponds to the convergence of the associated
integral.

Example 3.3. When an admissible 2-poset is totally ordered, the corresponding integral is
exactly the iterated integral expression for a multiple zeta value. To be precise, for an index
k = (k1, . . . , kr) (admissible or not), we write

?>=<89:;k
•
⑧⑧⑧
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for the ‘totally ordered’ diagram:

•

◦⑧⑧⑧⑧

◦

⑧⑧⑧⑧

•⑧⑧⑧⑧

◦⑧⑧⑧⑧

◦

•⑧⑧⑧⑧

◦⑧⑧⑧⑧

◦

k1

kr−1

kr

If k = ∅, we regard it as the empty 2-poset.
Then, if k is an admissible index, we have

ζ(k) = I

( ?>=<89:;k
•
⑧⑧⑧

)

. (3.2)

Example 3.4. In [10], an integral expression for multiple zeta-star values is described in terms
of a 2-poset. For an index l = (l1, . . . , ls), we write

l⊙

for the following diagram:

⊙
◦⑧⑧⑧

◦

•
✴✴
✴✴
✴✴

•

◦⑧⑧⑧⑧

◦

•
✴✴
✴✴
✴✴

◦⑧⑧⑧⑧

◦ls l2 l1

where the symbol ⊙ represents either ◦ or •. For example,

(2, 3)• =
•

⑧⑧⑧⑧
◦

⑧⑧⑧⑧
◦
❄❄

❄❄

•

◦⑧⑧⑧⑧ , (3, 1, 1)◦ =
◦
❄❄

❄❄

•
❄❄

❄❄

•

⑧⑧⑧⑧
◦

◦⑧⑧⑧⑧ .

Then, if l is an admissible index, we have

ζ⋆(l) = I
(

l•

)

. (3.3)

We also recall an algebraic setup for 2-posets (cf. Remark at the end of §2 of [10]). Let P be
the Q-algebra generated by the isomorphism classes of 2-posets, whose multiplication is given
by the disjoint union of 2-posets. Then the integral (3.1) defines a Q-algebra homomorphism
I : P0 → R from the subalgebra P0 of P generated by the classes of admissible 2-posets.

Moreover, there is a unique Q-algebra homomorphism W : P → Hx which satisfies the
following two conditions:

1) If (the underlying poset of) a 2-poset X = {x1 < x2 < · · · < xk} is totally ordered,

W (X) = eδX (x1)eδX(x2) · · · eδX(xk).

2) If a and b are non-comparable elements of a 2-poset X, the identity

W (X) = W (Xb
a) +W (Xa

b ) (3.4)

holds. Here Xb
a denotes the 2-poset that is obtained from X by adjoining the relation

a < b (see [10, Definition 2.2 (2)]).

5



Then we have W (P0) = H0 and I = ζ ◦W : P0 → R.

Example 3.5.

W
(

•
⑧⑧⑧
•

◦⑧⑧⑧
)

= e1e1e0, W
(

•
⑧⑧⑧
◦ ❄❄
❄

❄❄
❄

•
◦⑧⑧⑧

)

= e1e1e0e0 + e1e0e1e0.

4 Main theorems

For non-empty indices k = (k1, . . . , kr) and l = (l1, . . . , ls), we put

µ(k, l) = W







?>=<89:;k

l

•
⑧⑧⑧

◦⑧⑧⑧






∈ H0. (4.1)

Here, the diagram on the right-hand side is a combination of the symbols introduced in Examples
3.3 and 3.4 and represents the following:

•
⑧⑧⑧
◦

◦

•
⑧⑧⑧
◦

◦
⑧⑧⑧
◦
⑧⑧⑧
◦

◦

✴
✴
✴
✴

•
⑧⑧⑧
◦

◦
✴✴
✴

•
⑧⑧⑧
◦

◦

k1

kr

ls

ls−1 l1

Notice that the leftmost vertex of the ‘l-part’, which is located between /.-,()*+k and l in (4.1), is ◦.

Our first main theorem is the following identity which generalizes both (3.2) and (3.3).

Theorem 4.1. For any non-empty indices k and l, we have

ζ
(
µ(k, l)

)
= ζ
(
k⊛ l⋆

)
. (4.2)

Proof. The proof is done straightforwardly by computing the multiple integral as a repeated
integral “from left to right.” More specifically, one first computes the integral of the k-part as
in the usual proof of (3.2), and then computes the integral of the l-part as in the proof of [10,
Theorem 1.2].

Example 4.2. For k = (1, 1) and l = (2, 1), the computation proceeds as follows (here we omit
the condition 0 < ti < 1 from the notation):

ζ
(
µ(k, l)

)
=

∫

t1<t2<t3>t4<t5

dt1

1− t1

dt2

1− t2

dt3

t3

dt4

1− t4

dt5

t5
=

∫

t2<t3>t4<t5

∞∑

l=1

tl2
l

dt2

1− t2

dt3

t3

dt4

1− t4

dt5

t5

=

∫

t3>t4<t5

∞∑

l,m=1

tl+m
3

l(l +m)

dt3

t3

dt4

1− t4

dt5

t5
=

∫

t4<t5

∞∑

l,m=1

1− tl+m
4

l(l +m)2
dt4

1− t4

dt5

t5

=

∫

t4<t5

∑

0<m1<m2

1

m1m
2
2

m2∑

n=1

tn−1
4 dt4

dt5

t5
=

∫ 1

0

∑

0<m1<m2

1

m1m
2
2

m2∑

n=1

tn5
n

dt5

t5

=
∑

0<m1<m2≥n>0

1

m1m
2
2n

2
=

∑

0<m1<m2=n2≥n1>0

1

m1m2n
2
1n2

= ζ
(
k⊛ l⋆

)
.
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The integral on the left-hand side of (4.2) is a sum of MZVs (sum over all integrals associated
to possible total-order extension of the 2-poset in (4.1), see [10, Corollary 2.4]), whereas the right-
hand side is also a sum of MZVs in the usual way. Hence, for any given (non-empty) indices k
and l, the identity gives a linear relation among MZVs. We conjecture that the totality of these
relations gives all linear relations among MZVs:

Conjecture 4.3. Any linear dependency of MZVs over Q can be deduced from (4.2) with some
ks and ls.

We checked this by computer (Mathematica) up to weight (= sum of components of an
index) 17. In view of the widely believed conjecture that the double shuffle relation (2.1) and
the regularization theorem (2.3) describe all algebraic relations of MZVs, our theorems below
(Theorem 4.6 and Theorem 4.8) give a strong support to the conjecture. We would like to stress
that equation (4.2) is a completely elementary identity between convergent integral and sum,
without any process of regularization, even for non-admissible k or l.

Our second main theorem claims that the identity (4.2) is, in a suitable sense, equivalent
to the fundamental theorem of regularization (2.3). We also formulate the zeta-star version of
(2.3) and show that this too is equivalent. To state the theorem, we first introduce a formal
setting.

Definition 4.4. Let Z : H0 → R be a Q-linear map. We say that Z satisfies the double shuffle
relation if it is both a Q-algebra homomorphism from H0

x
and from H0

∗, i.e., the relation

Z(v x w) = Z(v ∗ w) = Z(v)Z(w)

holds for any v,w ∈ H0.

This is of course modeled after our MZV-evaluation map ζ : H0 → R satisfying (2.1).
Suppose that Z satisfies the double shuffle relation. Then, just as in the case of ζ, we can

extend the map Z uniquely to Q-algebra homomorphisms Zx : H1
x
→ R[T ] and Z∗ : H

1
∗ → R[T ]

by setting Zx(e1) = Z∗(e1) = T . The maps Zx and Z∗ are called the shuffle and harmonic
regularization of Z, respectively. When we need to make the variable T explicit, we write
Z•(w;T ) for Z•(w) ∈ R[T ], where • = x or ∗, and we often use the notation Z•(k;T ) for
Z•(w;T ) with an index k corresponding to w.

Let us introduce the ‘star-version’ of regularizations. The star-harmonic regularization is
defined by

Z⋆
∗ (w;T ) = Z∗(w

⋆;T ) (w ∈ H1).

On the other hand, the star-shuffle regularization Z⋆
x
: H1 → R[T ] is defined differently by

Z⋆
x
(w;T ) = Z⋆

x
(k;T ) = Zx ◦W

(

k•
)
,

where k is the index which corresponds to a word w.

Remark 4.5. If w ∈ H0, we have Z⋆
∗ (w) = Z∗(w

⋆) = Z(w⋆) by definition. On the other hand,
the identity Z⋆

x
(w) = Zx(w

⋆) does not hold in general, even if w is in H0. Our star-shuffle
regularization is therefore different from the one previously adopted in, for instance, [7].

We define the R-linear maps ρZ and ρ⋆Z on R[T ] by

ρZ(e
Tu) = AZ(u)e

Tu, ρ⋆Z(e
Tu) = AZ(−u)

−1eTu

7



where

AZ(u) = exp

(
∞∑

n=2

(−1)n

n
Z(en)u

n

)

∈ R[[u]].

In particular, the map ρζ corresponding to the MZV-evaluation map ζ is exactly the map ρ

defined by (2.2).

Theorem 4.6. Suppose the map Z : H0 → R satisfies the double shuffle relation. Then the
following three properties of Z are equivalent:

Zx(k;T ) = ρZ
(
Z∗(k;T )

)
for any index k, (Reg)

Z⋆
x
(k;T ) = ρ⋆Z

(
Z⋆
∗ (k;T )

)
for any index k, (Reg⋆)

Z
(
µ
(
k, l
))

= Z
(
k⊛ l⋆

)
for any non-empty indices k and l. (Int-Ser)

We refer to the above three properties as the regularization theorem, the star-regularization
theorem and the integral-series identity for Z, respectively. The proof of Theorem 4.6 is carried
out in the next section.

Because we know the properties (Reg) and (Int-Ser) hold for Z = ζ, we obtain the star-
regularization theorem for multiple zeta-star values:

Corollary 4.7. For any index k, we have

ζ⋆
x
(k;T ) = ρ⋆ζ

(
ζ⋆∗ (k;T )

)
.

As for the implication (Int-Ser) ⇒ (Reg), it turns out that only ‘single’ shuffle relation is
sufficient, i.e., the following holds.

Theorem 4.8. Suppose that a Q-linear map Z : H0 → R satisfies the integral-series identity.
Then Z satisfies the shuffle relation if and only if Z satisfies the harmonic relation.

The proof is also given in the next section.

5 Proof of Theorem 4.6 and Theorem 4.8

5.1 Algebraic preliminaries

To prove Theorem 4.6, we need some identities which are purely algebraic (i.e., hold in H1).

Lemma 5.1. We have the following identities in the ring of formal power series H1
∗[[u]]:

∞∑

n=0

en1u
n = exp∗

(
∞∑

n=1

(−1)n−1 en

n
un

)

and

∞∑

n=0

(en1 )
⋆un = exp∗

(
∞∑

n=1

en

n
un

)

,

where exp∗ indicates that the products of coefficients are ∗-products.

8



Proof. These are more or less well-known. The first (resp. second) is essentially an identity
between elementary (resp. complete) and power-sum symmetric functions. See [3, Theorem
5.1]. We may also obtain the second identity from the first by applying the antipode of the Hopf
algebra of quasi-symmetric functions described in [4].

For non-empty indices k = (k1, . . . , kr) and l = (l1, . . . , ls), we put

ki = (k1, . . . , ki), ki = (ki+1, . . . , kr) (0 ≤ i ≤ r),
←−
k = (kr, . . . , k1),

k⊙ l = (k1, . . . , kr−1, kr + l1, l2, . . . , ls).

With our convention, we have k0 = kr = ∅.

Lemma 5.2. For any non-empty indices k = (k1, . . . , kr) and l = (l1, . . . , ls), the following
identities hold in H1:

s−1∑

i=0

(−1)iµ(k, li)x
←−
li + (−1)sk⊙

←−
l = 0, (Ax )

r−1∑

i=0

(−1)iµ(ki, l)xW
(

←−
ki

•

)

+ (−1)r W
(

l⊙
←−
k•

)

= 0, (A⋆
x
)

s−1∑

i=0

(−1)i
(
k⊛ (li)⋆

)
∗
←−
li + (−1)s k⊙

←−
l = 0, (A∗)

r−1∑

i=0

(−1)i
(
ki

⊛ l⋆
)
∗ (
←−
ki)

⋆ + (−1)r(l⊙
←−
k )⋆ = 0. (A⋆

∗)

Proof. First we show (Ax ). By the relation (3.4), we have

µ(k, li)x
←−
li = W







?>=<89:;k

li

•
⑧⑧⑧

◦⑧⑧⑧ ⊔ ONMLHIJK←−
li

•
⑧⑧⑧







= wi−1 + wi,

where w−1 = 0 and

wi = W













?>=<89:;k

li

•
⑧⑧⑧

◦⑧⑧⑧

⑧⑧⑧

ONMLHIJK←−
li

•
⑧⑧⑧













for i = 0, . . . , s − 1 (here, the edge connected to the right of li is actually connected to the

rightmost vertex in the diagram li ). Hence we obtain (Ax) by summing them up with signs

and using that ws−1 = W



 _^]\XYZ[
k⊙
←−
l

•
⑧⑧⑧



 = k⊙
←−
l . The identity (A⋆

x
) can be shown in a similar

way.

9



Next we prove (A∗) (again, (A
⋆
∗) is similarly shown). For i = 0, . . . , s−1, expand the products

⊛ and ∗ in
(
k⊛ (li)⋆

)
∗
←−
li =

(
(k1, . . . , kr)⊛ (li+1, . . . , ls)

⋆
)
∗ (li, . . . , l1).

We denote by Si the partial sum of those indices in which li appears in the right side of li+1,
and S′

i the sum of the other terms (i.e., those in which li appears in the left side of li+1 or those
contain li + li+1). When i = 0, we understand that all terms are contained in S′

0. Then we have

S0 = 0, S′
i = Si+1 (i = 0, . . . , s− 2), S′

s−1 = k⊙
←−
l .

Hence we obtain (A∗) by taking the alternating sum.

5.2 Proof of Theorem 4.6

Now we are ready to prove Theorem 4.6. Here we only show the equivalence of (Reg⋆) and
(Int-Ser), because the equivalence of (Reg) and (Int-Ser) is proved in almost the same manner.

First we prove that (Reg⋆) implies (Int-Ser). Throughout, Z is a map from H0 to R satisfying
the double shuffle relation.

Proposition 5.3. If Z satisfies the star-regularization theorem (Reg⋆), then Z also satisfies the
integral-series identity (Int-Ser).

Proof. Let k and l be non-empty indices. We prove the equality Z(µ(k, l)) = Z(k ⊛ l⋆) by
induction on the depth r of k. Assume the validity for the depth less than r (the case r = 1 is
also included, in which case no assumption is needed).

By applying Zx and Z∗ to (A⋆
x
) and (A⋆

∗) respectively, we obtain

r−1∑

i=0

(−1)iZ
(
µ(ki, l)

)
Z⋆
x
(
←−
ki ;T ) + (−1)r Z⋆

x
(l⊙
←−
k ;T ) = 0, (5.1)

r−1∑

i=0

(−1)iZ
(
ki

⊛ l⋆
)
Z⋆
∗ (
←−
ki ;T ) + (−1)r Z⋆

∗ (l⊙
←−
k ;T ) = 0. (5.2)

We then apply ρ⋆Z to (5.2) to see

r−1∑

i=0

(−1)iZ
(
ki

⊛ l⋆
)
ρ⋆Z
(
Z⋆
∗ (
←−
ki ;T )

)
+ (−1)r ρ⋆Z

(
Z⋆
∗ (l⊙

←−
k ;T )

)
= 0 (5.3)

(note that Z
(
ki

⊛ l⋆
)
∈ R and ρ⋆Z is R-linear). Now compare (5.1) and (5.3). By the assumption

(Reg⋆) and the induction hypothesis, all terms except for those of i = 0 in the sums coincide.
Thus the i = 0 terms should also coincide, and this is exactly what we have to prove.

Next we show the converse, i.e., that (Int-Ser) implies (Reg⋆). In fact, a weaker assumption
is sufficient.

Proposition 5.4. If the equation

Z
(
µ
(
(1, . . . , 1
︸ ︷︷ ︸

m

), l
))

= Z
(
(1, . . . , 1
︸ ︷︷ ︸

m

)⊛ l⋆
)

(5.4)

holds for any integer m ≥ 1 and any non-empty index l, then Z satisfies the star-regularization
theorem (Reg⋆).
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Proof. First we note that the identities

Z⋆
x

(
(1, . . . , 1
︸ ︷︷ ︸

n

);T
)
=

T n

n!
= ρ⋆Z

(
Z⋆
∗

(
(1, . . . , 1
︸ ︷︷ ︸

n

);T
))

(5.5)

hold for any n ≥ 0, assuming only the double shuffle relation. Indeed, the first equality is
immediate from the identity

W

( • ❄❄
❄

•

•

n
)

=

n
︷ ︸︸ ︷
e1 x · · ·x e1

n!

in Hx . On the other hand, by applying Z∗ to the second identity of Lemma 5.1, we obtain

∞∑

n=0

Z⋆
∗

(
(1, . . . , 1
︸ ︷︷ ︸

n

);T
)
un = exp

(
∞∑

n=1

Z∗(en)

n
un

)

= eTuAZ(−u),

hence
∞∑

n=0

ρ⋆Z
(
Z⋆
∗

(
(1, . . . , 1
︸ ︷︷ ︸

n

);T
))
un = ρ⋆Z(e

Tu)AZ(−u) = eTu.

This gives the second equality in (5.5).
Next, put k = (1, . . . , 1

︸ ︷︷ ︸

r

) in (5.1) and (5.2) to get

Z⋆
x

(
l⊙ (1, . . . , 1

︸ ︷︷ ︸

r

);T ) =

r−1∑

i=0

(−1)r−1−iZ
(
µ((1, . . . , 1
︸ ︷︷ ︸

r−i

), l)
)
Z⋆
x

(
(1, . . . , 1
︸ ︷︷ ︸

i

);T
)
,

Z⋆
∗

(
l⊙ (1, . . . , 1

︸ ︷︷ ︸

r

);T ) =

r−1∑

i=0

(−1)r−1−iZ
(
(1, . . . , 1
︸ ︷︷ ︸

r−i

)⊛ l⋆
)
Z⋆
∗

(
(1, . . . , 1
︸ ︷︷ ︸

i

);T
)

for any non-empty index l. If we apply ρ⋆Z to the latter equality, the right-hand side coincides
with that of the formar equality, by the assumption (5.4) and the identity (5.5). Hence we have

Z⋆
x

(
l⊙ (1, . . . , 1

︸ ︷︷ ︸

r

);T ) = ρ⋆Z
(
Z⋆
∗

(
l⊙ (1, . . . , 1

︸ ︷︷ ︸

r

);T )
)

for any non-empty index l and any integer r ≥ 1. Now the proof is complete, since an arbitrary
index is either of the form (1, . . . , 1

︸ ︷︷ ︸

n

) with some n ≥ 0, or of the form l ⊙ (1, . . . , 1
︸ ︷︷ ︸

r

) with some

non-empty l and r ≥ 1.

Thus we have finished the proof of Theorem 4.6.

Remark 5.5. Our proof of Theorem 4.6 gives an almost purely algebraic way to prove the
fundamental theorem of regularization (Theorem 2.1). The only point where we need the analysis
(or rather the property of real numbers) is in the elementary computation of multiple integrals
to prove the integral-series identity (4.2)!
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5.3 Proof of Theorem 4.8

Let us assume that Z satisfies (Int-Ser) and the shuffle relation, and prove the harmonic relation
(the other direction is similarly proved). We prove that the identity Z(k)Z(l) = Z(k ∗ l) holds
for any admissible indices k and l by induction on the depth of l.

Take any admissible indices k = (k1, . . . , kr) and l = (l1, . . . , ls), with r, s > 0. We put
k̃ = (k1, . . . , kr−1, kr − 1) and l̂ = (ls, . . . , l1, 1), use (Ax ) and (A∗) to the pair (k̃, l̂), and apply
the map Z. Then we obtain that

s∑

i=0

(−1)iZ
(
µ(k̃, l̂i)x

←−
l̂i
)
= (−1)sZ

(
k⊙
←−
l̂
)
=

s∑

i=0

(−1)iZ
(
(k̃⊛ (̂li)⋆) ∗

←−
l̂i
)
.

Since
←−
l̂i = (ls−i+1, . . . , ls) is admissible as well as µ(k̃, l̂i) and k̃⊛(̂li)⋆, we can use the assumption

of the shuffle relation on the left-hand side and the induction hypothesis of the harmonic relation
on the right-hand side:

s∑

i=0

(−1)iZ
(
µ(k̃, l̂i)

)
Z
(←−
l̂i
)
=

s−1∑

i=0

(−1)iZ
(
k̃⊛ (̂li)⋆

)
Z
(←−
l̂i
)
+ (−1)sZ

(
(k̃⊛ (̂ls)⋆) ∗

←−
l̂s
)
.

The integral-series identity (Int-Ser) implies that the corresponding terms for i = 0, . . . , s − 1
are equal, hence we also have the equality for i = s:

Z
(
µ(k̃, l̂s)

)
Z
(←−
l̂s
)
= Z

(
(k̃⊛ (̂ls)⋆) ∗

←−
l̂s
)
.

This is exactly the identity Z(k)Z(l) = Z(k ∗ l), since µ(k̃, l̂s) = k̃ ⊛ (̂ls)⋆ = k and
←−
l̂s = l by

definition.

6 Relationship with Kawashima’s relation

In [6], Kawashima obtained a remarkable class of algebraic relations among MZVs. In this
section, we show that the double shuffle relation, the regularization theorem, and the duality
relation together imply Kawashima’s relation.

6.1 The duality relation

First we formulate the duality relation in the formal setting.

Definition 6.1. Let us denote by w 7→ w† the anti-automorphsim of H determined by e
†
0 = e1

and e
†
1 = e0. Note that the map w 7→ w† preserves H0. We say that a Q-linear map Z : H0 → R

satisfies the duality relation if the equality Z(w) = Z(w†) holds for any w ∈ H0.

Example 6.2. The MZV-evaluation map ζ : H0 → R satisfies the duality relation. This is an
immediate consequence of the iterated integral expression (3.2) and is well known.

We need another notion of dual of an index, called the Hoffman dual (see [4]).

Definition 6.3. For an index k = (k1, . . . , kr), its Hoffman dual is the index k∨ = (k′1, . . . , k
′
r′)

determined by k := k1 + · · ·+ kr = k′1 + · · · + k′r′ and

{1, 2, . . . , k − 1} = {k1, k1 + k2, . . . , k1 + · · ·+ kr−1} ∐ {k
′
1, k

′
1 + k′2, . . . , k

′
1 + · · ·+ k′r′−1}.

We extend the map k 7→ k∨ to a Q-linear automorphism of H1.
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Thus we have two notions of dual k† and k∨ of an index. They are related to the notion of
the transpose of a 2-poset in the following ways.

Definition 6.4. For a 2-poset X, let Xt denote its transpose, i.e., the 2-poset obtained by
reversing the order on X and setting δXt(x) = 1 − δX(x). We extend the map X 7→ Xt to a
Q-linear automorphism on P.

The following equalities are easily verified from the definition:

W (X)† = W (Xt) for any X ∈ P,

k∨• =
(

k◦
)t

for any non-empty index k.

From the first equality, we see that Z satisfies the duality relation if and only if

Z(W (X)) = Z(W (Xt))

holds for any X ∈ P0.

6.2 Kawashima’s relation

Let us recall Kawashima’s result in our notation.

Theorem 6.5 ([6, Theorem 5.3]). For any non-empty indices k, l and any integer m ≥ 1, we
have

∑

p,q≥1
p+q=m

ζ
(
(1, . . . , 1
︸ ︷︷ ︸

p

)⊛ (k∨)⋆
)
ζ
(
(1, . . . , 1
︸ ︷︷ ︸

q

)⊛ (l∨)⋆
)

= −ζ
(
(1, . . . , 1
︸ ︷︷ ︸

m

)⊛ ((k ∗̄ l)∨)⋆
)
.

Here, the multiplication ∗̄ on H1 is the “zeta-star version” of the harmonic product and is
defined by

1 ∗̄ w = w ∗̄ 1 = w (w ∈ H1),

ekv ∗̄ elw = ek(v ∗̄ elw) + el(ekv ∗̄ w)− ek+l(v ∗̄ w) (k, l ≥ 1, v, w ∈ H1).

Motivated by the above result, we give the following definition:

Definition 6.6. A Q-linear map Z : H0 → R is said to satisfy Kawashima’s relation if

∑

p,q≥1
p+q=m

Z
(
(1, . . . , 1
︸ ︷︷ ︸

p

)⊛ (k∨)⋆
)
Z
(
(1, . . . , 1
︸ ︷︷ ︸

q

)⊛ (l∨)⋆
)

= −Z
(
(1, . . . , 1
︸ ︷︷ ︸

m

)⊛ ((k ∗̄ l)∨)⋆
)

holds for any non-empty indices k, l and any integer m ≥ 1.

Theorem 6.7. If a Q-linear map Z : H0 → R satisfies the double shuffle relation, the regular-
ization theorem (or equivalently the integral-series identity) and the duality relation, then Z also
satisfies Kawashima’s relation.
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Proof. By using (Int-Ser) and the duality relation, we have

Z
(
(1, . . . , 1
︸ ︷︷ ︸

m

)⊛ (k∨)⋆
)
= Z ◦W

(

•

•

⑧⑧⑧⑧
k∨◦

m

)

= Z ◦W

( ◦

◦
❄❄

❄❄

k•
m

)

for non-empty k and m ≥ 1. Therefore, if we denote the rightmost expression by Am(k), it
suffices to prove

∑

p,q≥1
p+q=m

Ap(k)Aq(l) = −Am(k ∗̄ l) (6.1)

(here Am is extended to a linear functional on e1H
1; the same rule is also applied to Bm below).

To prove this, we need two lemmas.

Lemma 6.8. For an index k (admissible or not) and m ≥ 0, put

Bm(k) = Z∗ ◦W

( ◦

◦
❄❄

❄❄
?>=<89:;k

•
⑧⑧⑧

m

)

if k 6= ∅, and put

Bm(∅) =

{

1 (m = 0),

0 (m > 0).

Then we have ∑

p,q≥0
p+q=m

Bp(k)Bq(l) = Bm(k ∗ l) (6.2)

for any indices k, l and m ≥ 0.

Proof. If k or l is empty, the claim is obvious. If both k = (k1, . . . , kr) and l = (l1, . . . , ls) are
non-empty, it is obtained by applying Z∗ to the identity

∑

p,q≥0
p+q=m

W

( ◦

◦
❄❄

❄❄
?>=<89:;k

•
⑧⑧⑧

p

)

∗W

( ◦

◦
❄❄

❄❄
?>=<89:;l

•
⑧⑧⑧

q

)

= W

( ◦

◦
❄❄

❄❄
ONMLHIJKk ∗ l

•
⑧⑧

m

)

(6.3)

in H1. To see (6.3), we expand W ’s and the harmonic products. First consider the factor

W

( ◦

◦
❄❄

❄❄
?>=<89:;k

•
⑧⑧⑧

p

)

. This is the finite sum of words in e0 and e1 which are obtained by inserting

e0 into (or putting at the right of)

e1 e0 · · · e0
︸ ︷︷ ︸

k1−1

e1 e0 · · · e0
︸ ︷︷ ︸

k2−1

· · · e1 e0 · · · e0
︸ ︷︷ ︸

kr−1

p times. Take such a word v with a specified way of insertion, and similarly w from the second

factor W

( ◦

◦
❄❄

❄❄
?>=<89:;l

•
⑧⑧⑧

q

)

. Then their harmonic product v ∗w is the sum of words each of which

is obtained from
e1 e0 · · · e0
︸ ︷︷ ︸

h1−1

e1 e0 · · · e0
︸ ︷︷ ︸

h2−1

· · · e1 e0 · · · e0
︸ ︷︷ ︸

ht−1

,
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where (h1, . . . , ht) is an index appearing in k∗ l, by inserting e0 p+ q = m times in the following
way. For a = 1, . . . , t, ha = ki, lj or ki + lj for some i, j. In the first two cases, insert e0 into

e1 e0 · · · e0
︸ ︷︷ ︸

ha−1

= e1 e0 · · · e0
︸ ︷︷ ︸

ki−1

or e1 e0 · · · e0
︸ ︷︷ ︸

lj−1

in the manner specified for the corresponding part of v or w respectively. In the third case,
insert e0 into

e1 e0 · · · e0
︸ ︷︷ ︸

ha−1

= e1 e0 · · · e0
︸ ︷︷ ︸

ki−1

e0 e0 · · · e0
︸ ︷︷ ︸

lj−1

in the manner specified for the corresponding parts of v and w.
Thus we associate with each word appearing in the expansion of the left-hand side of (6.3) a

word appearing in the right-hand side, and it is easy to see that this correspondence is bijective.
Hence we have the equality (6.3).

Lemma 6.9. For a non-empty index k = (k1, . . . , kr) and an integer m ≥ 1, we have

r−1∑

i=0

(−1)iAm(ki)B0(
←−
ki) + (−1)rBm(

←−
k ) = 0. (6.4)

Proof. It can be shown that

r−1∑

i=0

(−1)iW

( ◦

◦
❄❄

❄❄

ki•
m

)

xW




ONMLHIJK←−
ki

•
⑧⑧⑧



+ (−1)rW

(
◦

◦
❄❄

❄❄
GFED@ABC←−
k

•
⑧⑧⑧

m

)

= 0

by a method similar to the proof of (Ax ) in Lemma 5.2. Then, applying Zx , we have

r−1∑

i=0

(−1)iAm(ki)Zx ◦W




ONMLHIJK←−
ki

•
⑧⑧⑧



+ (−1)rZx ◦W

(
◦

◦
❄❄

❄❄
GFED@ABC←−
k

•
⑧⑧⑧

m

)

= 0.

Finally, we apply ρ−1
Z and use the assumption Z∗ = ρ−1

Z ◦Zx (i.e. the regularization theorem for
Z) to obtain (6.4).

Define an R-linear operator R on H1 by R(k) = (−1)r
←−
k for indices k of depth r. It is

immediate from the definition that

R(k ∗̄ l) = R(k) ∗R(l) (6.5)

holds for any indices k and l. We set B′
m(k) = Bm(R(k)).

Now let us return to the proof of (6.1). For non-empty indices k = (k1, . . . , kr) and l =
(l1, . . . , ls), apply Lemma 6.9 to (each term of) k ∗̄ l to see

r−1∑

i=0

s−1∑

j=0

Am(ki ∗̄ lj)B′
0(ki ∗̄ lj) +

r−1∑

i=0

Am(ki)B′
0(ki ∗̄ l)

+

s−1∑

j=0

Am(lj)B′
0(k ∗̄ lj) +B′

m(k ∗̄ l) = 0.
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By (6.5) and Lemma 6.8, this can be rewritten as

r−1∑

i=0

s−1∑

j=0

Am(ki ∗̄ lj)B′
0(ki)B

′
0(lj) +

r−1∑

i=0

Am(ki)B′
0(ki)B

′
0(l)

+
s−1∑

j=0

Am(lj)B′
0(k)B

′
0(lj) +

∑

p,q≥0
p+q=m

B′
p(k)B

′
q(l) = 0.

(6.6)

By Lemma 6.9, the second and the third sums are cancelled out with the terms for (p, q) = (m, 0)
and (0,m) in the fourth sum:

r−1∑

i=0

Am(ki)B′
0(ki)B

′
0(l) +B′

m(k)B′
0(l) = 0,

s−1∑

j=0

Am(lj)B′
0(k)B

′
0(lj) +B′

0(k)B
′
m(l) = 0.

Furthermore, we also apply Lemma 6.9 to the other terms in the fourth sum to obtain

∑

p,q≥1
p+q=m

B′
p(k)B

′
q(l) =

∑

p,q≥1
p+q=m

r−1∑

i=0

s−1∑

j=0

Ap(k
i)Aq(l

j)B′
0(ki)B

′
0(lj).

Therefore, (6.6) becomes

r−1∑

i=0

s−1∑

j=0

{

Am(ki ∗̄ lj) +
∑

p,q≥1
p+q=m

Ap(k
i)Aq(l

j)

}

B′
0(ki)B

′
0(lj) = 0.

Now we can prove (6.1) by induction on r and s. In fact, if i > 0, the depth of ki is less than r,
hence the induction hypothesis implies that the corresponding value in { } vanishes. The same
holds for terms with j > 0. Hence also the term of i = j = 0 must vanish, and this is exactly
what we have to show.

7 A proof of the restricted sum formula using the Int-Ser iden-

tity

The sum formula for the multiple zeta values, which asserts that the sum of all MZVs with fixed
weight and depth is equal to the Riemann zeta value ζ(k) (k = weight), is probably the most
well-known identity in the theory, and a good many different proofs are known. In the light
of our Conjecture 4.3, there should be yet another proof based on the integral-series identity
(4.2). In this last section, we deduce from the identity (4.2) a generalization of the sum formula
provided by Eie, Liaw and Ong [1], which they call the restricted sum formula.

Let Z : H0 → R be a Q-linear map (we don’t assume the double shuffle relation here).

Proposition 7.1. If Z satisfies the integral-series identity (Int-Ser), then the restricted sum

16



formula
∑

k1,...,kq≥1
k1+···+kq=k−p

Z(1, . . . , 1
︸ ︷︷ ︸

p−1

, k1, . . . , kq−1, kq + 1)

=
∑

k1,...,kp≥1
k1+···+kp=p+q−1

Z(k1, . . . , kp−1, kp + k − p− q + 1)
(7.1)

holds for any positive integers k, p, q with k ≥ p+ q.

Proof. Write S(k, p, q) (resp. T (k, p, q)) for the left-hand side (resp. the right-hand side) of (7.1),
and put m = k − p− q + 1. Take k = (1, . . . , 1

︸ ︷︷ ︸

p−1

,m) and l = (1, . . . , 1
︸ ︷︷ ︸

q

). Then we see that

Z(µ(k, l)) = Z ◦W







•
✆✆
•

•
✆✆
◦

◦
✆✆
◦✾✾
•

•
•
✾✾

p

m
q−1







=

q−1
∑

i=0

Z ◦W







•

•
✆✆
•

❑❑❑◦

◦
sss
◦ ❑❑
❑

•

•
ss
s
✾✾
•

•

p−1

m−1 q−1−i

i







=

q−1
∑

i=0

(
p+ i− 1

p− 1

)

S(k, p + i, q − i) (7.2)

holds. On the other hand, we have

Z(k⊛ l⋆) = Z
(
(1, . . . , 1
︸ ︷︷ ︸

p−1

,m)⊛ (1, . . . , 1
︸ ︷︷ ︸

q

)⋆
)
=

p+q−1
∑

j=p

(
j − 1

p− 1

)

T (k, j, p + q − j). (7.3)

To see this, we first note that (1, . . . , 1
︸ ︷︷ ︸

q

)⋆ is equal to the formal sum of all indices of weight q.

An index appearing in the expansion of k ⊛ l⋆ has weight k, depth j with p ≤ j ≤ p + q − 1,
and the last component greater than m. Given such an index m, we may count the number
of appearances of m in the expansion of k ⊛ l⋆ as

(
j−1
p−1

)
because there are

(
j−1
p−1

)
choices of the

position of 1 in m coming from k, and to each such choice there is a unique index in (the
expansion of) l⋆ to be combined by ⊛ to make m. Therefore, by (Int-Ser), we obtain from (7.2)
and (7.3)

q−1
∑

i=0

(
p+ i− 1

p− 1

)

S(k, p+ i, q − i) =

p+q−1
∑

j=p

(
j − 1

p− 1

)

T (k, j, p + q − j)

=
j=p+i

q−1
∑

i=0

(
p+ i− 1

p− 1

)

T (k, p + i, q − i).

Hence, by induction on q, the proposition follows.

Corollary 7.2. The integral-series identity (Int-Ser) implies the sum formula

∑

k1,...,kq−1≥1,kq≥2
k1+···+kq=k

Z(k1, . . . , kq) = Z(k)

for any integers k > q > 0.
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Proof. Set p = 1 in (7.1).

Remark 7.3. We can also deduce Hoffman’s relation ([2])

r∑

i=1

ζ(k1, . . . , ki + 1, . . . , kr) =
∑

1≤i≤r

ki≥2

ki−1∑

j=1

ζ(k1, . . . , ki−1, j, ki − j + 1, ki+1, . . . , kr)

more straightforwardly from the integral-series identity (Int-Ser) by taking k = (k1, . . . , kr−1, kr−
1) and l = (1, 1). (This was also communicated to us by Henrik Bachman.) To deduce known
identities such as Ohno’s relation [8] directly from (Int-Ser) may be a good challenge for graduate
students.

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Numbers JP24224001, JP23340010,
JP26247004, JP16H06336 and JSPS Joint Research Project with CNRS “Zeta functions of
several variables and applications.”

References

[1] M. Eie, W.-C. Liaw and Y. L. Ong, A restricted sum formula among multiple zeta values,
J. Number Theory 129 (2009), 908–921.

[2] M. Hoffman, Multiple harmonic series, Pacific J. Math 152 (1992), 275–290.

[3] M. Hoffman, The algebra of multiple harmonic series, J. Algebra 194 (1997), 477–495.

[4] M. Hoffman, Quasi-symmetric functions and mod p multiple harmonic sums, Kyushu J.
Math. 69 (2015), 345–366.

[5] K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for multiple zeta
values, Compositio Math. 142 (2006), 307–338.

[6] G. Kawashima, A class of relations among multiple zeta values, J. Number Theory 129

(2009), 755–788.

[7] S. Muneta, Algebraic setup of non-strict multiple zeta values, Acta Arith. 136 (2009), 7–18.

[8] Y. Ohno, A generalization of the duality and sum formulas on the multiple zeta values, J.
Number Theory, 74 (1999), 39–43.

[9] C. Reutenauer, Free Lie Algebras, Oxford Science Publications, 1993.

[10] S. Yamamoto, Multiple zeta-star values and multiple integrals, to appear in RIMS
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