Multi-poly-Bernoulli numbers and related zeta functions

Masanobu Kaneko* and Hirofumi Tsumura

Abstract

We construct and study a certain zeta function which interpolates multi-poly-Bernoulli
numbers at non-positive integers and whose values at positive integers are linear combinations
of multiple zeta values. This function can be regarded as the one to be paired up with
the &-function defined by Arakawa and the first-named author. We show that both are
closely related to the multiple zeta functions. Further we define multi-indexed poly-Bernoulli
numbers, and generalize the duality formulas for poly-Bernoulli numbers by introducing more
general zeta functions.

1. Introduction

In this paper, we investigate the function defined by

1 o0 _ le Lk (1 — et)
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and its generalizations, in connection with multi-poly-Bernoulli numbers and multiple zeta values
(we shall give the precise definitions later in §2). This function can be viewed as a twin sibling
of the function £(k1,...,ky;s),

1 oo Lik Lk (1 —e_t)
1.2 ki,... kr;s) = — o1 H dt,
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which was introduced and studied in [4]. The present paper may constitute a natural continua-
tion of the work [4].

To explain our results in some detail, we first give an overview of the necessary background.
For an integer k € Z, two types of poly-Bernoulli numbers {B,(Lk)} and {C’,(Lk)} are defined as
follows (see Kaneko [20] and Arakawa-Kaneko [4], also Arakawa-Ibukiyama-Kaneko [3]):

Lip(1—e™) & Hmt"
(1.3 oo T2 B
Lip(l—e™) < "
(14) et _ 1 - 7;)071 n!7

*This work was supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research
(B) 23340010.
2010 Mathematics Subject Classification: Primary 11B68; Secondary 11M32
Key words: multi-poly-Bernoulli number, multiple zeta value, Arakawa-Kaneko zeta function



where Lig(z) is the polylogarithm function defined by

(1.5) Lip(z) = Y~
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Since Lij(z) = —log(1 — z), we see that BY (resp. Cr(ll)) coincides with the ordinary Bernoulli
number B,, defined by
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A number of formulas, including closed formulas of BT(Lk) and a(@k) in terms of the Stirling numbers
of the second kind as well as the duality formulas
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that hold for k,n € Z>o, have been established (see [20, Theorems 1 and 2] and [21, §2]). We

also mention that Brewbaker [9] gave a purely combinatorial interpretation of the number BT(L_
of negative upper index as the number of ‘Lonesum-matrices’ with n rows and &k columns.
A multiple version of Br(lk) is defined in [4, p. 202, Remarks (ii)] by

Lig, k. t
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is the multiple polylogarithm. Hamahata and Masubuchi [14, 15] investigated some properties of
B%kl’””kr), and gave several generalizations of the known results in the single-index case. Based
on this research, Bayad and Hamahata [8] further studied these numbers. Furusho [12, p. 269]
also refers to (1.8).

More recently, Imatomi, Takeda and the first-named author [18] defined and studied another
type of multi-poly-Bernoulli numbers given by
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for ki,...,k, € Z. They proved several formulas for ngl’”"kr) and C’,(Ikl""’kr), and further gave
an important relation between C’I()]ilé""kT) and the ‘finite multiple zeta value’, that is,
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for any prime number p.

The function (1.2) for ki,...,k, € Z>; can be analytically continued to an entire function
of the complex variable s € C ([4, Sections 3 and 4]). The particular case r = k = 1 gives
€(1;s) = sC(s+1). Hence &(ki,...,kr;s) can be regarded as a multi-indexed zeta function.
It is shown in [4] that the values at non-positive integers of {(k;s) interpolate poly-Bernoulli

(k)

numbers Cp,”,
(1.13) &(k; —m) = (=1)"C

for k € Z>1 and m € Z>o. And also by investigating &(k1, ..., ky;s) and its values at positive
integer arguments, one produces many relations among multiple zeta values defined by

(1.14) (lrosl) = 3 (= Lin (1)
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for ly,...,l, € Z>1 with I, > 2 ([4, Corollary 11]).

Recently, further properties of {(k1, ..., kr; s) and related results have been given by several
authors (see, for example, Bayad-Hamahata [6, 7], Coppo-Candelpergher [10], Sasaki [28], and
Young [31]).

In this paper, we conduct a basic study of the function (1.1) and relate it to the multi-poly-
Bernoulli numbers Bﬁlkl""’k’“) as well as multiple zeta (or ‘zeta-star’) values. Note that the only
difference in both definitions (1.1) and (1.2) is, up to sign, the arguments 1 — e* and 1 — et of
Lig, ... k. (z) in the integrands. One sees in the main body of the paper a remarkable contrast
between ‘B-type’ poly-Bernoulli numbers and those of ‘C-type’, and between multiple zeta and
zeta-star values. We further investigate the case of non-positive indices k; in connection with a
yet more generalized ‘multi-indexed’ poly-Bernoulli number.

The paper is organized as follows. In §2, we give the analytic continuation of n(k1, ..., k;s)
in the case of positive indices, and formulas for values at integer arguments (Theorems 2.3
and 2.5). In §3, we study relations between two functions n(ky,...,k;s) and &(ki,..., ky;s)
(Proposition 3.2), as well as relations with the single variable multiple zeta function (Definition
3.1 and Theorem 3.6). We turn in §4 to the study of n(ki,...,kr;s) in the negative index case
and give a certain duality formula for B ke =he) (Definition 4.3 and Theorems 4.4 and 4.7).
We carry forward the study of negative index case in §5 and define the ‘multi-indexed’ poly-
Bernoulli numbers {B,(,]flllrf{,)(d)} for (k1,...,k) € Z", (m1,...,my) € ZLqand d € {1,...,7}
(Definition 5.1), which include (1.8) and (1.10) as special cases. We prove the ‘multi-indexed’
duality formula for them in the case d = r (Theorem 5.4).

2. The function 7n(ky,...,k,;s) for positive indices and its values
at integers

2.1 Analytic continuation and the values at non-positive integers
We start with the definition in the case of positive indices.

Definition 2.1. For positive integers ki,...,k, € Z>1, let

1 o 1 Lig, ke (1=¢h)
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for s € C with Re(s) > 1 — r, where I'(s) is the gamma function. When r = 1, we often denote
n(k; s) by 11 (s)-

The integral on the right-hand side converges absolutely in the domain Re(s) > 1 —r, as is
seen from the following lemma.

Lemma 2.2. (i) For ki,...,k, € Z>1, the function Liy, . (1 — €*) is holomorphic for t € C
with |Im(t)| < 7.
(ii) For ki,...,kr € Z>1 and t € Rsq, we have the estimates

(2.1) Lig, k(1 =€) =0 ") (t —0)
and
(2.2) Lig, .5 (1—¢)=0 (t’“l*'*kr) (t — o).

Proof. As is well-known, we can regard the function Lig, 1. (%) as a single-valued holomorphic
function in the simply connected domain C ~\ [1,00), via the process of iterated integration
starting with Li1 (2) = [ dz/(1—2). Noting that 1—e’ € [1,00) is equivalent to Im(t) = (2j+1)7
for some j € Z, we have the assertion (i).

The estimate (2.1) is clear from the definition of Liy, 1. (2), because its Taylor series at
z = 0 starts with the term 2" /1% ...7F7 As for (2.2), we proceed by induction on the ‘weight’
ki1 4+ -+ k, as follows by using the formula

d 1L _ ky > 1
(2.3) ity (2) = {21 Bt b 1(z) )
§ T Ly (2) (kr = 1),

which is easy to derive and is the basis of the analytic continuation of Lix,  , (z) mentioned
above. If r = k1 = 1, then we have Lij(1 — e') = —t and the desired estimate holds. Suppose
the weight k is larger than 1 and the assertion holds for any weight less than k. If k. > 1, then
by (2.3) we have

‘Liklw-’kr(]‘ - et)| = m

1—et 7
L -
/ lklv"'vkr 1(“) du
0

t
1
= / T ULik17_,.7kT,1(1 —e”)(—e")dv (u:=1-¢")
0 — €
| ,Ligk1(1—e”) e
< /O eV 1 dv —|—/€ m]—-‘lkl,m,kr*1<1 — @U) dv

for small e > 0. The former integral is O(1) because the integrand is continuous on [0, ¢]. On the
other hand, by induction hypothesis, the integrand of the latter integral is O (vFF+Fr=1) a5
v — oo. Therefore the latter integral is O (t*17+*r) as ¢ — co. The case of k, = 1 is similarly

proved also by using (2.3), and is omitted here. O

We now show that the function n(ki,...,kr;s) can be analytically continued to an entire
function, and interpolates multi-poly-Bernoulli numbers By(rlf k) gt non-positive integer argu-
ments.



Theorem 2.3. For positive integers ki,...,k, € Z>1, the function n(ki,..., k. s) can be
analytically continued to an entire function on the whole complex plane. And the values of

n(ki, ..., kr;s) at non-positive integers are given by
(2.4) n(ki, ... ky;—m) = BFok) (m e 7).

In particular, ng(—m) = B,(,’f) for k € Z>1 and m € Z>.

Proof. In order to prove this theorem, we adopt here the method of contour integral represen-
tation (see, for example, [30, Theorem 4.2]). Let € be the standard contour, namely the path
consisting of the positive real axis from the infinity to (sufficiently small) e (‘top side’), a counter
clockwise circle C; around the origin of radius €, and the positive real axis from € to the infinity
(‘bottom side’). Let
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It follows from Lemma 2.2 that H (ki, ..., k.; s) is entire, because the integrand has no singularity

on € and the contour integral is absolutely convergent for all s € C. Suppose Re(s) > 1 —r.
The last integral tends to 0 as € — 0. Hence

1
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kl""ak;T;S)v

which can be analytically continued to C, and is entire. In fact n(k1,...,ky;s) is holomorphic
for Re(s) > 0, hence has no singularity at any positive integer. Set s = —m € Z<o. Then, by
(1.10),

(=1)™m!

M1 Ry —m) = T H (b s —m)
i
(=1)™m! / 1 = (k) ()" (F1yker)
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This completes the proof. ]
Remark 2.4. Using the same method as above or the method used in [4], we can establish the
analytic continuation of &(k1, ..., ky;s) to an entire function, and see that
(2.5) E(kr,. .. ks —m) = (=1)mCkLkr) (€ Zsg)
for k1,...,k, € Z>1, which is a multiple version of (1.13).

2.2 Values at positive integers

About the values at positive integer arguments, we prove formulas for both £(kq,. .., k,;s) and
n(ki, ..., kr;s), for general index (ki,...,k,). These formulas generalize [4, Theorem 9 (i)], and
have remarkable similarity in that one obtains the formula for n(ky, ..., k-;s) just by replacing



multiple zeta values in the one for &(ky, ..., ky;s) with multiple ‘zeta-star’ values. Recall the
multiple zeta-star value is a real number defined by

1
(2.6) Gyl = Y ——
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for ly,...,l, € Z>y with [, > 2. This was first studied (for general r) by Hoffman in [16].

To state our theorem, we further introduce some notation. For an index set k = (k1,...,k;) €
7%, put ky = (k1,...,kr—1,kr +1). The usual dual index of an admissible index (i.e. the one
that the last entry is greater than one) k is denoted by k*. For j = (ji,...,j,) € Z%,, we write
li| = j1+--- +jr and call it the weight of j, and d(j) = r, the depth of j. For two such indices k
and j of the same depth, we denote by k+ j the index obtained by the component-wise addition,
k+j=(k1+J1,.-.,kr + Jr), and by b(k;j) the quantity given by

baci) = [ <k i~ 1)

i=1 Ji

Theorem 2.5. For any index set k = (k1,...,k,) € Z%, and any m € Z>1, we have

(2.7) Eh, s kem) = Y (k)55 C((ky)" +])
lil=m~—1,d(j)=n

and

(2.8) Nk, kem) = (D" > b((ke)5) C((ke) ),

lil=m—1,d(j)=n

where both sums are over all j € Z5, of weight m —1 and depth n := d(k%) (= [k[ +1 — d(k)).
In particular, we have

E(kyy. . k1) =C((ky)") (= C(ky), by the duality of multiple zeta values)

and

(ks kel) = (1)1 ().

In order to prove the theorem, we give certain multiple integral expressions of the functions

f(kla s 7k7“;3> and U(kh s '7k’r;8)'

Proposition 2.6. Notations being as above, write (k+)* = (l1,...,l,). Then we have, for
Re(s) > 1—r,
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Proof. First write the index (kq,...,k,) as
(kl,...,kir):(1,...,1,b1+1,...,1,...,1,bh+1),
—— ——

a;—1 ap—1
with (uniquely determined) integers h > 1, a; > 1 (1 <i < h),b; >1 (1 <i<h—1), and
bp, > 0. Then, by performing the intermediate integrals of repeated dz/(1 — z) in the standard

iterated integral coming from (2. 3), we obtain the following iterated integral expression of the
multiple polylogarithm Liy, . (2)
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Here, to ease notation, we used the same variable in the repetitions of integrals fom dz/z, and
we understand z;, = z if by, = 0. The paths of integrations are in the domain C \ [1,00), and
the formula is valid for z € C\ [1,00). We may check this formula by differentiating both sides
repeatedly and using (2.3). Putting z = 1 —e~! and 1 — €!, changing variables accordingly, and
suitably labeling the variables, we obtain
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Thy+-+b 1 thy 4. (7
1 (tb1+-~'+bh_1+1_tb1+~--+bh_1)ahe IHetbh-t e bt thhaa e b1t tbp—_2+2

ap! otort o1 _ ’ olbrt b1 _ 1 otbrttbp_at2 _ |
bp—1—1
N
1 (toy4byt1 — tb1+b2)“3etb1+b2+1 elb1+by etbr+2
CLS! €tb1+b2+1 -1 etb1+b2 —1 etb1+2 -1
bo1

1 (tb1+1 _tbl)aQetb1+1 etbl el2 1 tal t1 dt J ;

a1 Cem—1 oz 1 aplen 1 Sdtz o divg,

b1—1

The factor (—1)" on the right of (2.10) comes from (—1)** "+ = (—1)". Plugging (2.9) and
(2.10) into the definitions (1.2) and (1.1) respectively and making the change of variables

t= T1+- -+, tbl+"'+bh =To+ - +Tnp, tb1+"~+bh—1 =T3+ - +Tp, ... 7t2 = Tn-1+Tn, t]. = Tn,

we obtain the proposition. One should note that the dual index (k4)* = (I1,...,1,) is given by

(k) =0,...,L,ap+1,1,..., a1+ 1,...,1,...,1,a1 + 1)
—— —— ——
by, bp—1—1 b1—1

and the depth n is equal to by + - -+ 4 by, + 1, and that (the trivial) xii_l =1whenl;=1. [

Proof of Theorem 2.5. Set s = m in the integral expressions in the proposition, and expand
(x1 4 --- + 2)™ ! by the multinomial theorem. Then the formula in the theorem follows from
the lemma below. O

Lemma 2.7. Forly,...,l, € Z>1 with l, > 2, we have

1 co x e xlr_l 1 1
lh,.... ) = =" 1 LA dri---d
C( b ’ r) r,: T(l; / / eritter _ 1 exettar _ err — 1 T1 Tr
j=1 J 0 0
and
ll Logh=1 gmatotar otr
*
(.. 0) = / / eﬂ:1+ S e RALLEE o 1d:v1 cdx,.

Proof. The first formula is given in [4, Theorem 3 (i)]. As for the second, we may proceed
similarly by using n=5 =T'(s)~! [7°t*"Te " dt to have

Cled)=3 Y :
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We record here one corollary to the theorem in the case of n;(m) (compare with the similar
formula in [4, Theorem 9 (i)]). Noting (k+ 1)* = (1,...,1,2), we have
———

k—1

Corollary 2.8. For k,m > 1, we have

(2.11) Me(m) = > (e = DS G1s -+ Jr—15Jk)-
F1seesdf—1 21,5 =2
Jj1+-tig=k+m

3. Relations among the functions &, 1 and (, and their con-
sequences to multiple zeta values and multi-poly-Bernoulli
numbers

In this section, we first deduce that each of the functions 7 and £ can be written as a linear
combination of the other by the same formula. This is a consequence of the so-called Landen-
type connection formula for the multiple polylogarithm Liy, . (2). We then establish a formula
for £(ki,...,kr;s) in terms of the single-variable multiple zeta function

(31) C(ll,...,lr;S) = Z A : l

e s S
1<my<<mp<m T4 7 Mr M

defined for positive integers [y, ...,1,, the analytic continuation of which has been given in [4]
(the analytic continuation of a more general multi-variable multiple zeta function is established
in [1]). This answers to the question posed in §5 of [4]. As a result, the function n(k1,...,kr;s)
can also be written by the multiple zeta functions of the type above. We then give a formula
for values at positive integers of {(ki,...,kr;s), and hence of n(ki,...,ky;s), in terms of the
‘shuffle regularized values’ of multiple zeta values, and thereby derive some consequences on the
values of ny(s).

Let k = (k1,...,k) € ZL, be an index set. Recall that k is said to be admissible if the
last entry k, is greater than 1, the weight of k is the sum ki + --- + k,, and the depth is
the length r of the index. For two indices k and k’ of the same weight, we say k' refines k,
denoted k =< K/, if k is obtained from k’ by replacing some commas by +’s. For example,
5)=(2+3) <(2,3), (2,3) =(1+1,2+1) =(1,1,2,1), etc. The standard expression of a
multiple zeta-star value as a sum of multiple zeta values is written as

Cl)= 3 ),

K/ <k
admissible
where the sum on the right runs over the admissible indices k’ such that k refines k’.
The following formula is known as the Landen connection formula for the multiple polylog-
arithm ([26, Proposition 9]).



Lemma 3.1. For any index k of depth r, we have

) =(=1)" > Lig(2).

K=<k’

z

(3.2) Lik(z —

We can prove this by induction on weight and by using (2.3), see [26].

t

By using this and noting 2/(z — 1) =1 —¢€’ (resp. 1 —e ) if z=1—¢e* (resp. 1 —¢'), we

immediately obtain the following proposition.

Proposition 3.2. Let k be any index set and r its depth. We have the relations

(3.3) n(k;s) = (=171 ) &K 9)

k=K'

and

(3.4) Ekss) = (1)1 ) n(Kss).
K=<k’

Corollary 3.3. Let k be a positive integer. Then we have

(3.5) m(s)= Y. &k

k:weight k

and

(3.6) Gis)= Y. nls),
k:weight k

where the sums run over all indices of weight k. Here we have written &(s) for &(k; s).

Proof. The index (k) is of depth 1 and all indices of weight k (admissible or non-admissible)
refine (k). O

We mention here that, also by taking k = (k) in Lemma 3.1 and setting 2 = 1—¢e’ or 1 —e™,

one immediately obtains a kind of sum formulas for multi-poly-Bernoulli numbers as follows
(compare with similar formulas in [17, Theorem 3.1]).

Corollary 3.4. For k > 1 and m > 0, we have

(3.7) B® = (—1)m Z O lhrehr)
k1+m+k7«:k
k;,r>1
and
(3.8) c®) = (1) Z BUrsskr)
ki++kr=k
kir>1

Next, we prove an Euler-type connection formula for the multiple polylogarithm. If an index
k is of weight |k|, we also say the multiple zeta value ((k) is of weight |k|.

10



Lemma 3.5. Let k be any index. Then we have

(3.9) Lig(1—2) = Y adK; )L, 1(1 = 2)Liw(2),

K/, j>0 )

where the sum on the right runs over indices K' and integers j > 0 that satisfy |K'|+j < |k|, and
ck(K'; j) is a Q-linear combination of multiple zeta values of weight |k| — |K'| —j. We understand
Lip(z) = 1 and |0] = 0 for the empty index O, and the constant 1 is regarded as a multiple zeta
value of weight 0.

Proof. We proceed by induction on the weight of k. When k = (1), the trivial identity Li;(1 —
z) = Lij(1 — 2) is the one asserted. Suppose the weight |k| of k is greater than 1 and assume
the statement holds for any index of weight less than |[k|. For k = (ki,...,k,), set k_ =
(kl, R R 1) and k, = (k’l, ey ke 1, ke + 1).

First assume that k is admissible. Then, by (2.3) and induction hypothesis, we have

d Lix (1—-=2) 1 Ny .
Lkl —2) = ——5——— = —1_Zlgock_(l,j)LlL_”Jﬂ—z)Lll(z),
= J

the right-hand side being of a desired form. Here, again by (2.3), we see that

1
T zLil" 1(1 — 2)Lij(z ZLll . 1(1 — 2)Lij144(2)

We therefore conclude

Lig(l—2)=— ) o ZLH 1(1 = 2)Lip144(2) + C
1,5>0 J i

with some constant C. Since lim, .o Liy, . 1(1 — 2)Lij144(2) = 0, we find C' = ((k) by setting
N—_——

j—i
z — 0, and obtain the desired expression for Lix(1 — z).
When k is not necessarily admissible, write k = (ko,1,...,1) with an admissible ko and
——

q
g > 0. We prove the identity by induction on q. The case ¢ = 0 (k is admissible) is already
done. Suppose g > 1 and assume the claim is true for smaller q. Then by assumption we have
the expression

Ligy1,...1(1=2) = > ae(m;j)Liy,. . 1(1— 2)Lim(2),
—— - N——
a—1 m, j>0 j
where we have put k' = (ko, 1,...,1). We multiply Li; (1 —2) on both sides. Then, by the shuffle
——
qg—1
product, the left-hand side becomes the sum of the form

qLik(1—2)+ > Ligy,.. 1(1-2),
k{ :admissible a1
and each term in the sum is written in the claimed form by induction hypothesis. On the other
hand, the right-hand side becomes also of the form desired because
Lh(l — Z)Lil’“.’l(l — Z) = (] -+ 1)Lil7.“,1(1 — Z)
N—— SN——
i j+1

Hence Lig(1 — 2) is of the form as claimed. O
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With the lemma, we are now able to establish the following (see [4, §5, Problem (i)]).

Theorem 3.6. Let k be any index set. The function {(k; s) can be written in terms of multiple

zeta functions as
s+7—1 .
Ekis)= Y ¢ <k,y>< )C(k';s+9)-
K50 J
Here, the sum is over indices k' and integers j > 0 satisfying |K'| + j < |Kk|, and cx(K'; ) is a
Q-linear combination of multiple zeta values of weight |k| — |K'| — j. The index k' may be O and
for this we set ((0;s+ j) = (s + 7).

Proof. By setting z = e~ ! in the lemma and using

(3.10) Liy  1(z) = Zlosd=2))

. 9

we have 4
. _ N
Lig(1—e™%) = Z ck(k';j)ﬁhk/(e )
k/,j>0
Substituting this into the definition (1.2) of {(k;s) and using the formula ([4, Proposition 2,

M)

1 00 y4s—1 . B
C(k;s) = F(s)/o . 1L1k(e b at,

we immediately obtain the theorem. O

Remark 3.7. This theorem generalizes [4, Theorem 8|, where the corresponding formula for
Li17 o 1,k(1 — Z) is
N——

r—1

Lip ax(l—2)= (D" Y7 Lin (1 —2)Lij, 5, (2)
N——

Stttk T

r—1 Vi 21 Je—1
k—2 _
+ (_I)JC(I?717k'_])L11,,1(Z)
. N—— ——
j=0 r—1 j

As pointed out by Shu Oi, one can deduce Lemma 3.5 by induction using [27, Prop. 5|. However,
to describe the right-hand side of the lemma explicitly is a different problem and neither proof
gives such a formula in general. See also [25] for a related topic.

Example 3.8. Apart from the trivial case (1,...,1), examples of the identity in Lemma 3.5 up
to weight 4 are:

Lio(1 —2) = —Lis(z) — Lii(1 — 2)Liy(2) + ¢(2),

Liz(1 —z) = Lija(2)+ Lizi(2) + Lii (1 — 2)Li11(2) — ((2)Lii(2) +¢(3),
Lij2(1 —2) = -—Lig(z) — Li;j(1 — 2)Lia(2) — Li; 1 (1 — 2)Lii (2) + ¢(3),
Lis1(1 —2) = 2Lis(z)+ Li;(1 — 2)Lia(2) 4+ ((2)Li; (1 — 2) — 2¢(3),

Lig(1 —2) = —Lij12(2) —Lij21(2) —Liz11(2) — Li;(1 — 2)Lij 1 1(2)

+C(2)Li1 1 (2) — ¢(3)Lir(2) 4 ¢(4),

12



Li;3(1 —2) = Lijg(z)+ Liga(z) + Liz1(2) 4+ Lij (1 — 2)Lij 2(2) + Liy (1 — 2z)Lig 1 (2)
$Lisa (1 - 2)Lisa(2) ~ CB)Lia(2) + 1C(4),
Ligo(1 —2) = —Liz2(2) —2Li31(2) — Lir(1 — Z)le 1(2 ) C(2)Lis (1 = 2)Li1(2)
—((2)Li2(z) + 2¢(3)Lix(2) + ZC( )
(z

L1371(1 — Z) = —2Li1 3 ) — L12 2( ) Lll(l — Z)Lilyg(z) + C(2)L12(Z’)
HBL( - 2) - 10)
Lij12(1 —2) = —Lis(z) — Lii(1 — 2)Lig(2) — Liy,1 (1 — 2)Lia(2)

)
—Liy11(1 — 2)Lis(2) + ¢(4),
Lij21(1 —2) = 3Lis(2)+ 2Li1 (1 — 2)Lig(2) + Liy 1(1 — z)Lia(2) + ¢(3)Li1 (1 — 2)
—3¢(4),
Lis11(1—2) = —3Lis(2) —Lii(1 — 2)Liz(2) + ¢(2)Li1 1 (1 — 2) — 2¢(3)Liy (1 — 2)
+3¢(4).

Accordingly, we have

§(2;55) = —C(25s) —sC(Lis +1) 4+ C(2)¢(s),

€3:5) = C(L28)+C2,158) +8C(L s +1) — C2)C(L55) + (),
€1.25) = ~C3s) - sc@ s+ 1) - e+ 9) 1)),
€2,158) = 2(3:) (254 1)+ CC(s + 1) ~ 2B)C()

E4;s) = —((1,1,2;8) — ¢(1,2,1;5) — ¢(2,1,1;8) — sC(1,1,1;5+ 1)

FCRL 1) — CB)C(155) +CAIC),

€(1,3;8) = ((1,3;8) +(2,2;8) +((3,1;8) +sC(1,2;s+ 1) + s¢(2,1;5+ 1)
D1 2 - e + Lo,

€22 = ~C(2.200) =200 1) — K210 1) - C)scliss 1)
LI + 2030 (1:5) + SC()C(),

€019 = 200139~ C(2.255) - 0,215 1)+ G2 )
FCB)C(s 1) — ¢,

E1125) = ()~ scrs+1) - 2 e pg)
DD (1554 3) 4 cls)

£(1,2,1;8) = 3C(4;8)+2s¢(3;s+1) + S(SQMC(Q;S +2)+¢(3)sC(s+ 1)
~3¢(4)¢(s),

€@ L) = —30(s) —scBst+ 1)+ @ T (s 1 9) — 2¢(3)sc(s + 1)
+3¢(4)C(s).

From these and (3.5) of Corollary 3.3, we have for instance

m(s) = &(2;8)+&(1,1;5)
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= C2) (L 1)+ C)C() + S

m(s) = &B3is) +&(1,255) +£(2,158) +£(1,1,155)
= ((358) +C(1,258) +C(2,158) +s¢(1, ;5 + 1) —

2
—@)c(ts8) + C@scls+ 1)+ LCFVEF D gy

774(5) = 5( )+£(173;S)+§(272;S)+€(371;S)+€(17172;S)+€(17271;S)
+£(2,1,1;5) +&(1,1,1, 15 s)
= —C(455) = C(1,355) = €(2,258) = ((3,1;8) — ((1,1,2;5) — ((1,2,155)

¢(s +2),

s(s+1)

C(1;8+2)

—C(2,1,158) — sC(1,1, 15 4+ 1) + C(2)¢(1, 1y 5) + 8(8; Yea s +2)
@15+ 1) +¢@ (s 4 2) - LEDEED g 4
+£C(4)C(S) N s(s+ 1)(321— 2)(s + S)C(S +a).

Before closing this section, we present a curious observation. Recall the formula
&(m)=C"(1,...,1,k+1)
——
m—1
discovered by Ohno [24]. Comparing this with the two formulas (2.11) and [4, Corollary 10],
one may expect
?
me(m) £ (1, Lk + 1),
——
m—1
This is not true in fact. However, we found experimentally the identities
(3.11) M (1m) = 1im (F)

and

(3.12)

-l e (5) = 2(1—21F)¢(k)  (k: even),
e 0 (k: odd).

]:1
These are respectively analogous to the duality relation
¢1,...,LE+1)=((1,...,1,m+1)
—— ——
m—1 k—1
and the relation

k—1 a . 2(1 — 21F)¢ (k) (k: even)
§ : Jj-1 — = 7
(—1) C(L?Lk ]+1) - {O (k Odd),

which is a special case of the Le-Murakami relation [23] (or one can derive this from the well-
known generating series identity [2], [11]

I'(1-X)I'(1-Y)

1- LooLk—j DNXFIYd =
k>35>1 G 1
by setting Y = —X and using the reflection formula for the gamma function.)

We are still not able to prove (3.11)*, but could prove (3.12) by using the following general

*Quite recently, Shuji Yamamoto communicated to the authors that he found a proof.
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formula for the value £(k;m) and the relation (3.3) in Proposition 3.2. We shall discuss this and
other aspects of ‘height one’ multiple zeta values in more detail in a subsequent paper [22].

Proposition 3.9. Let k be any index and m > 1 an integer. Then we have
3.13 k;m) = (-1)™ ¢ (kg 1,...,1),
(3.13) §(k;m) = (=1)" " (ky : )

where (™ stands for the ‘shuffle reqularized’ value, which is the constant term of the shuffle
reqularized polynomial defined in [19].

Proof. By making the change of variable z = 1 — e~ in the definition (1.2), we have

1 XT
r(ls)/o (~log(1 — )" 'Lix(2) d?.

Put s = m and use (3.10) to obtain

£k s) =

1
§(k%m)=/0 Lil,..A,1($)Lik(x)d§.

m—1

The regularization formula [19, Eq. (5.2)], together with the shuffle product of Liy . 1(x)Lik(z),
N——r

m—1

immediately gives (3.13). O

By using (3.13) and (3.5), we can write ni(m) in terms of shuffle regularized values. The
following expression seems to follow from that formula by taking the dual, but we have not yet
worked it out in detail.

7 (m+k Ji+-+ gt , . -
tor) 2 (" Y otm -+ - ( )<l + 1,0 e+ L +2)
k 2<Tz<;+1 k—r+1
1+ Air=m+k—r—1
4. The function 7n(ky,...,k,;s) for non-positive indices

In this section, as in the case of positive indices, we construct n-functions with non-positive
indices. It is known that Li_(2) can be expressed as

Li_g(z) = w

for k € Z>o, where P(z; k) € Z[z] is a monic polynomial satisfying

1 (k=0)
1

deg P(z;k) = {k (k> 1)

x| P(x;k)

(see, for example, Shimura [29, Equations (2.17), (4.2) and (4.6)]; Note that the above P(z;k)
coincides with xPyy1(x) in [29]). We first extend this fact to multiple polylogarithms with
non-positive indices as follows.
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Lemma 4.1. Forky, ..., k, € Z>q, there exists a polynomial P(x;ky,. .., k,) € Z]x] such that

: P(Z;k‘l,...,kr)
(41) Ll—k}h---,—kr (Z) = (1 — Z)k1+"'+kr+r7
(4.2) deg P(zi k1, k) =4 (k1 | )
ki+---+k.+r—1 (otherwise),

(4.3) x| P(xy ki, ..., ky).

More explicitly, P(x;0,0,...,0) =z".
—_——
'

Proof. We prove this lemma by the double induction on » > 1 and K = k1 +---+ &k, > 0. The
case r = 1 is as mentioned above. For r > 2, we assume the case of » — 1 holds and consider the

case of r. When K = k1 +---+ k., =0, namely k; = --- =k, = 0, we have
o
Lio..o(z) = >, ™=} >
m1<---<my m1<-<Mp_1 Mp=mp_1+1

T

__~* Mr—1 — ... = “
Cl-z Z - (1—2)’

mp<--<mMmp—_1

which implies (4.1)—(4.3) hold, and also P(z;0,...,0) = 2". Hence we assume the case K =
k1 +---+k, — 1 holds and consider the case K = kj +---+ k(> 1). We consider the two cases
k. = 0 and k, > 1 separately. First we assume k, = 0. Then, by induction hypothesis, we have

oo

. k k'r‘fl r
Ligy, o heoiolz)= D mpiteeemyt Y

mp<--<mp_1 Mmpe=my_1+1

z ky— .
= E mlfl ...mrr_llzm?—l
1—2

my<--<mp_1

_ z P(Z:/{l,...,krfl)
T 1—z (1= z)ltrtker—T

Let P(z;ki,...,ky—1,0) = 2P(2; k1, ..., ky—1). Then (4.1)—(4.3) hold.
Next we assume k, > 1. Then, using the same formula as in (2.3) and the induction
hypothesis, we have

Li_klr-w_krfly_kr (Z) = Z@Li_klv-n_kr‘i‘l (Z)

d (P(z:kl,...,k:r—l)>

T2 (1 = o)Ak

o 2{P(zky, ke =)A= 2)F (ki 4+ ke — 1+ 7) P2k, ke — 1)}
o (1 — z)katothrtr )

If ky = - =k,—1 =0and k, =1, then the numerator, that is, P(0,...,0,—1) equals r2z", using
the above results. If not, the degree of the numerator equals ky + - -- + k. + r — 1 by induction
hypothesis. The both cases satisfy (4.1)—(4.3). This completes the proof of the lemma. O

Remark 4.2. In the case r > 2, P(z;ky,...,k,) is not necessarily a monic polynomial. For
example, we have Lip _1(2) = 222/(1 — 2)3, so P(z;0,1) = 222.
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We obtain from (4.1) and (4.2) that

(44)  Tig,.k(-e)=

P(1—eki,....k)  [0O(1)  (ki=- =k =0)
elkitthetr)t ) O(et)  (otherwise)

as t — oo, and from (4.3) that
(4.5) Lig . —k(l—€e)=0@") (t—0).
Therefore we can define the following.

Definition 4.3. For ki, ... ,k, € Z>0, define

1 o0 _ Li,k i—k (1 — €t)
4.6 —ki,...,—kps) = — g Lk dt
( ) 77( 1 ) S) F(S) /0 1— et

for s € C with Re(s) > 1 —r. In the case r = 1, denote n(—k; s) by n_x(s).

We see that the integral on the right-hand side of (4.6) is absolutely convergent for Re(s) >

1 —r. Hence n(—ki,...,—ky;s) is holomorphic for Re(s) > 1 — r. By the same method as in
the proof of Theorem 2.3 for n(ki,...,kr;s), we can similarly obtain the following.
Theorem 4.4. For ki,...,ky € Z>o, n(—k1,...,—kr;s) can be analytically continued to an

entire function on the whole complex plane, and satisfies
(4.7) n(—=ki,...,—kp;—m) = BCRomke) (e 7).
In particular, n_p(—m) = Bfn_k) (k € Z>p, m € Z>p).

It should be noted that {(—kq, ..., ;5) cannot be defined by replacing {k;} by {—k;} in
(1.2). In fact, evenlfr—landk—()m( 2), we see that

€o(s) = F(ls) /0 5= 11410(1::(L3 )dt _ 1—\(15) /Ooot51dt,

which is not convergent for any s € C. Therefore we modify the definition (1.2) as follows.

Definition 4.5. For ky,..., k. € Z>o with (k1,...,k.) # (0,...,0), define

~ 1 © L Lig .k (1—¢b)
4. _ L= 7" — s—1 1yeeey T
( 8) g( kla ) k ’S) F(S) /0 13 e—t — 1 dt

for s € C with Re(s) > 1 — 7. In the case r = 1, denote &(—Fk; s) by £_(s) for k > 1.

We see from (4.4) and (4.5) that (4.8) is well-defined. Also it is noted that £(kq, ...,k )
cannot be defined by replacing {—k;} by {k;} in (4.8) for (k;) € Z%,
In a way parallel to deriving Theorem 4.4, we can obtain the following.

Theorem 4.6. For ki,...,k, € Z>o with (k1,...,kr) # (0,...,0), g(—krl,...,—k:T;s) can be
analytically continued to an entire function on the whole complex plane, and satisfies

(4.9) E(=k1,...,—kp;—m) = CGFok) (€ Zsg).

In particular, E_k(— ) = C( k) (k € Z>1, m € Z>p).
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Next we give certain duality formulas for ngl""’kr) which is a generalization of (1.6). To

state this, we define another type of multi-poly-Bernoulli numbers by

= r— H;: 1—e" 2=ty b
Z(_l)a( a 1> Z (1l1(—|-'--+l7~ —a))s

(4.10) a=0 hde>1
mi m

- 3 3 oy

M g e omy, |

mi,...,mp>0

for s € C. In the case r = 1, we see that ‘Bgi) = B,(ff) for k € Z. Then we obtain the following
result which is a kind of the duality formula. In fact, this coincides with (1.6) in the case r = 1.

Theorem 4.7. For ki,...,k, € Z>o,

(4.11) Nkt —kes) =B
Therefore, for m € Zx>o,

(112) O

Proof. We first prepare the following relation which will be proved in the next section (see
Lemma 5.9):

r eZ;:j :L“u(l B et) k1 kr

$ e $
wi [ = Y Lot
mil- e2ov=j (1 — et) 0 k1! k!

holds around the origin. Let

xlfl . ka
. — . [
:,:F(l'l,...,xr7$)— Z ’)’](—kl,...,—kr,s)m.
K1yeeskr >0
As a generalization of [18, Proposition 5], we have from (4.13) that
1 [ ! el (1 ¢
F(x1,... xp;8) = / ; € i (1—¢) dt
I'(s)Jo 1—e el e2v=3 (1 — et)
1 /°° Ly oty tﬁ 1
= — (1 —=e)" e - dt
F(S) 0 j=1 1 —et (1 — e Zu:j l"u)

“rig () X ey

a=0 mi,...,mr>075=1

% Oots—le(a—r)t . e—mjt dt
e

r—1 W7 — 1 H;:l (]- —e ZZZJ’ wl’)mj
:Z(_l) < a ) Z (mi+--+mp+r—a)

a=0 mi,...,my>0

Therefore, by (4.10), we obtain (4.11). Further, setting s = —m in (4.11) and using (4.7), we
obtain (4.12). N
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Remark 4.8. In the case r = 1, (4.11) implies n_(s) = B,(:). Thus, using Theorem 4.4, we
obtain the duality formula (1.6), which is also written as

(4.14) N-k(=m) = n-m(=k)

for k,m € Z>¢. This is exactly contrasted with the positive index case (3.11). Furthermore, by

the same method, we can show that g,k,l(—m) = C,g;rln) for k,m € Z>. Hence, using Theorem
4.6 in the case 7 = 1, we obtain the duality formula (1.7).

Example 4.9. When r = 2, we can calculate directly from (4.10) that %% =37%—-27% On the

other hand, as mentioned in Lemma 4.1, we have Li_j o(2) = 22/(1 — 2)3. Hence the left-hand
side of (1.10) equals
Li_ _ —t _ ot
i0(1—e™) _l-e B G2
1—et e—3t ’

hence BT(,;LO) = 3™ — 2™, Thus we can verify Bﬁ;l’o) = ‘Bg;)m).

5. Multi-indexed poly-Bernoulli numbers and duality formulas

In this section, we define multi-indexed poly-Bernoulli numbers (see Definition 5.1) and prove
the duality formula for them, namely a multi-indexed version of (1.6) (see Theorem 5.4).

For this aim, we first recall multiple polylogarithms of #-type and of w-type in several
variables defined by

Zml .« e Zm'r
ok _ 1 T
(5.1) Lig, s (21,00,20) = E I e
1<mi<--<my 1 2
- My —Myp—
Z{Tnzgng ml"'zr7 r—1

51 52 “ .. Sr
mytm,, my

(5.2) Li¥ (2= )

1<my <--<my

= i lel Zé2 oo zi’r
Iy I=1 l‘il(ll+l2)82...(l1+...+lr)sr
for s1,...,8, € C and 21,---,2 € C with [2;] <1 (1 < j < r) (see, for example, [13]). The

symbols * and w are derived from the harmonic product and the shuffle product in the theory
of multiple zeta values. In fact, Arakawa and the first-named author defined the two types
of multiple L-values L*(ky,...,ky; f1,..., fr) of #-type and L™ (ki,..., kr; f1,..., fr) of w-type
associated to periodic functions {f;} (see [5]), defined by replacing {z]"} by {f;(m)} and setting
(sj) = (kj) € ZX, on the right-hand sides of (5.1) and (5.2) for (ki,...,k,) € ZL,. Note that

T T
(5.3) Lif, o (ez) =12 (ITz Iz 212 20)-
j=1 j=2

Definition 5.1 (Multi-indexed poly-Bernoulli numbers). For sq,...,s, € Candd € {1,2,...,7},
the multi-indexed poly-Bernoulli numbers {Bﬁﬂ jfs.?,”yﬁ,’.sT)’(d)} are defined by

. J— T — — —
Li¥ ) (1*6 D=ty 1 — e U170 ] ¢ “)

81,758
[Ty (1)

(5.4)  F(x1,...,%p;81,-..,8;d) =

19



~ T (1_6—221]%)%—6]-(@

-y =

. Sj
T J
l,elr=1 Hj:l (Zuzl lV)
oo mi1 My
_ Y Bem@tn
mi,...,Myr m1| e m’/‘! ’

mi,...,mpr=0
where 0;(d) =1 (j <d), =0 (j > d).

Remark 5.2. Note that Li}| . (2,...,2) = Lig, _,(2) defined by (1.9). Suppose 1 = --- =
zyr—1 =0 and (sj) = (k;) € Z" in (5.4). We immediately see that if d = 1 then

B[()k17~-~7k'r)7(1) — Bg;l,...,kr) (m c ZEO)

s, 0,m

(see (1.6)), and if d = r then

Bélﬁ,,.(.).’flr)v(r) _ Bgﬁl’“'”“) (m € Zso)
(see (1.8)).

Remark 5.3. Let

(5:5) A ={(@rm) €CT [ [L—e X ™ <1 (1<) <)}

Then we can see that

LiLU r (1 —_ eiZlﬁleV7 ceuy ]_ — 673?7'71717‘7 1 - eiw’r) (817 . ‘787" € (C)

51,77 ,8

is absolutely convergent for (x;) € A,. Also F(x1,...,2,;51,...,5-;d) is absolutely convergent

. . . . S81,..058 d) . . .
in the region A, x C", so is holomorphic. Hence B,glij,,,jnsz’( ) is an entire function, because

o \™ o\
(814eeey8r),(d) o . .
Bmi,...,mr - (8.’171) (8.’1771) F(x17"'7x7"7817"'787'7d)

(z1,...,2)=(0,...,0)

is holomorphic for all (sq,...,s,) € C".
In the preceding section, we gave a certain duality formula for Bf,f 1--skr) (see Theorem 4.7).
By the similar method, we can prove certain duality formulas for Br(,fll,lf{r) ’(d), though they may

be complicated. Hence, in the rest of this section, we will consider the case d = r. For emphasis,
we denote Bﬁ,ﬁ,’f,’fj%)’m by 1837(5}’7]',’,%2. Note that d;(r) = 1 for any j. With this notation, we

T

prove the following duality formulas.

Theorem 5.4. For mi,...,my, ki,...,k, € Z>o,

(5.6) Bk —kr) _ g=ma,—me)

mi,...,Myr - kl,...,kr
Now we aim to prove this theorem. First we generalize Lemma 4.1 as follows.

Lemma 5.5. Forky,...,k, € Z>q, there exists apolynomiallg(ml, ooy Xy ko k) € L, ..
such that

P(l_[;:1 24, H;ZQ Zjy ooy Zp—12p, Zr K1, Ky)

(57) Ll*_k,l —k (Zl,... Zr) = =
[RRRE} T ’ EV:ku'i'l ’
H;=1 (1 - HZ:j ZV) ’
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(5.8) deg, P(x1,... @ik, k) <Ok +1,
(5.9) (z1--2) | Py, ... ¢pi ke, .. k).
Sety; =[I,—;z (1 <j<r). Then (5.7) implies

ﬁ(yla"' )yT;kh'"ak’l’)
[Ty (1 — yy) =ittt

(5.10) Li% kW) =

Proof. In order to prove this lemma, we have only to use the same method as in Lemma 4.1 by
induction on r. Since the case of r = 1 is proven, we consider the case of r > 2. Further, when
K=k + -4k =0, it is easy to have the assertion. Hence we think about a general case
K=k +-+k-(>1). When k, =0, we have

Liikl,...,—k,‘(zlv ceeyZp) = Li”i,ﬂ,_”_kp1 (214 vy Zr—2y 2r—12r)
2 P(H;:1 Zjy ooy Zr—12ri k1, oo kp—1)
S ku+1
-1
H§:1 <1 - HZ:J‘ Zj) o

Therefore, setting 15(331, oo xpi ko ko1, 0) = l'rﬁ(l‘l, ey Tp_13 k1, ... ke—1), we can verify

(5.7)~(5.9).
Next we consider the case k, > 1. For k € Z>(, we inductively define a subset {cgky) Yo<ju<kt+1
of Z by

d k+1 k+1
(5.11) - (Z mkzm> = (e ZZ ll’ acl

m>l 7=0v=0
In fact, by
d m 1 l l +1
d2;<22>:(12;)2<2+l2_lz )7
m>l
and

Z mkm = Zdiz (Z mk_lzm> (k>1),

m>l
we can determine {cgky)} by (5.11). Using this notation, we have

d .
k(21 2) = ZrELlikl,...,—er(Zlu Sy 2r)
(s

kT 1 v mr_1+7
- kl-.. krlml‘.. mT,12 EVO]I/ m’f‘ lzT
= Zr ml m,r. 1 Zl ZT‘*l - i

(1 - Zr) T
my<--<myp_1

(kr—1) _j+1 k kr—1+v_m My
1—2 kr—&—lzz , ZJ 2 : mll"'mrrl 211' '(erlzr) T

7=0v=0 my<---<mp_1

-----

By the induction hypothesis in the case » — 1, this is equal to
P(H;;i Zj) e 727"—127-; kl, . e 7k"l‘—27 k'l‘—l + l/)

DI
kr+1 oo kvt

=0 =0 HE;%(l Myz) ™7 = zaz)leaivs
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Therefore we set

P(SU]_,"’ 7'T7”;k17"'7k1”)
= ZZ kr l)xj+1 xrfl)kr_yﬁ(mlv'” al"r'*l;kla"'vk:TvakT*l +V)
=0 v=0
Then this satisfies (5.7)—(5.9). This completes the proof. O
From this result, we can reach the following definition.

Definition 5.6. For ki, ... ,k, € Z>0, define

1 o e s;—1
77( 15 ) Ty 51, ’ST) H;=l F(Sj)/o /O ]1;[1 ’

Li%, (L —eXimtr 1 —etroitte ] — elr) ﬁdt
X Ittty i ~ J
IT;- (1 - e2v=i") j=1

for s1,...,s, € C with Re(s;) >0 (1 <j <r).

(5.12)

Lemma 5.5 ensures that the integral on the right-hand side of (5.12) is absolutely convergent
for Re(s;) > 0. By the same method as in the proof of Theorem 2.3 for n(k1,...,ky;s), we can
similarly obtain the following.

Theorem 5.7. For ki,...,k, € Z>o, n(—k1,...,—kr;s1,...,8,) can be analytically continued
to an entire function on the whole complex space, and satisfies
(5.13) D(=ki, ..o~k —ma, ..., —my) = BU kD (L m, € Zso).

Proof. As in the proof of Theorem 2.3, let

(514) H(—kl,...,—kr;sl,...,s,,«)

Tt g (e et
= H J r B STt H j
Tj=1 _ e ) 1

r ‘ 0o c© T Liw (1 o GZ;=1 1 — et’“) r
= 27”'5.7 —1 PN tsj—l —kiyes—kr ) ? dt
];[(6 ) / /s ]Z[ J 7?: . eZ;:j tu) H J

€

j=1
/ Htsj—lLiEkl,...,—kT.(l —eXv=tv Hdt
r > g
g] 1 szl(l—e 1’]

where C" is the direct product of the contour € defined before. Note that the integrand on the sec-
ond member has no singularity on C". It follows from Lemma 5.5 that H(—k1, ..., —ky;s1,...,5;)
is absolutely convergent for any (s;) € C", namely is entire. Suppose Re(s;) > 0 for each j, the
second integral tends to 0 as ¢ — 0. Hence

1
n(—kiy...,—kp;S1,...,8,) = H§:1(62m5j — 1)F(3j)H(_k1’ vy —kpss1, . 8),
which can be analytically continued to C". Also, setting (s1,...,s;) = (=m1,...,—m;) € ZL,
n (5.14), we obtain (5.13) from (5.4). This completes the proof. O
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Next we directly construct the generating function of n(—k1, ..., —k;;s1,...,s,). We prepare
the following two lemmas which we consider when (z;) is in A, defined by (5.5).

Lemma 5.8. For (sj) € C" with Re(sj) >0(1<j5<r),
(5.15) F(ml,.. y Ty ST, - -

y Sy T
>0
esv=i"
7 dt;
11T (s5) / / { —ezl’:ﬂ'x”(l 2= }H 7

Proof. Substituting n=* = (1/I(s)) [;* t*~'e~™d¢ into the second member of (5.4), we have

Fimktsin= 3 [[(-eBom)" " ot

Iyl =1 j=1 J=1

L Lhf (g

We see that the integrand on the right-hand side can be rewritten as

T T T
Ht;j_l Hexp flj(z t,)
j=1 j=1 v=j

Hence we have

F({mj};{sj};r):nglr(sj)(11—e—z;_j / / Ht%

i ﬁ(l_e—z;j ) Lt )Hdtj
b le=1j=1 j=1

= / / H ts]'—l e~ 2v=jtv f[ "
.7 1 S] (1 — e_ Z;:g xl’)e_ Z;:J ty ; J

: /OO /OO - si—1 BZZ:j Ty r
= —— .« e t "7 _ _ dt -
H;ZI F(S]) 0 0 le J ]_ — ezl/:j xV(]_ — 62,,:3- tl/) H J

j=1
This completes the proof. ]
Lemma 5.9. Let z1,...,2 € C and assume that |z;| (1 < j <) are sufficiently small. Then
r ZT_ Ty oo k1 ko,
Y v=y) DI s
(5.16) H j—r = Z Li% ok, (21, )77}
i 1— zjezv=1 Ty o Eyl--- k!

Set zj =1— eXv=iv (1< j<r) for (tj) € Ar. Then
r eZZ:j Ty (1 _ eZZ:j t'/)

(5.17) H S @ (1 i ty)

j=11—e

k’l . ke

[o.¢]
§ : . Tty Ly Ty
= Ll_klw.7_kr(1—62”*1 7...,1—6 )W
1- ct e
k1,....kr=0

In particular, the case ty = --- =t,_1 =0 and t, =t implies (4.13).
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Proof. We have only to prove (5.16). Actually we have

00 k1 k
§ L (2 )u
—k1,.., =k \FLy - y 2 kl kf»,«‘

k1,...,kr=0

-y oy et

k1,...kr=0my,...mr=1j=1

- e

mi,.. ,mr—lj 1

) r S Ty
SRR (G B P e
= ZJC J = T
mi,...,mp=1j=1 j=1 1- Zj€ ZV:J ’
Thus we have the assertion. d
Using these lemmas, we obtain the following.

Theorem 5.10. For ky,..., k, € Z>o,
(5.18) Nkt —kps st 50) = B,

Proof. By Lemmas 5.8 and 5.9, we have

(5.19) F(:L’l,.. Ty STy

y Spi T
00 T ZT:.;E,/ T
s]—l e—v=y dt
/ / { —ezz—jf‘"(l—ezz—j“)}n ’

j=1
— H;::F(sj) kl’g%:o{/o /O ]:[t;j—l

Li“ (1—eXv=ttr . 1—elr ke

i .
" 1 1_[;:1(1—6ZZ ) Hd } k'

for Re(sj) > 0 (1 < j <r). Combining (5.4), (5.12) and (5.19), we obtain (5.18) for Re(s;) > 0
(1 <j <), hence for all (s;) € C, because both sides of (5.18) are entire functions (see Remark

5.3). O
Proof of Theorem 5.4. Setting (s1,...,8,) = (—=my,...,—m,) in (5.18), we obtain (5.6) from
(5.13). This completes the proof of Theorem 5.4. O

Example 5.11. We can easily see that

Z1%9
(1 — 21)2(1 — ZQ),

2122(2 — 21 — Zz)
(1 — Z1)2(1 — 22)2'

Lifl,o(zl, z9) =

Li(L)I'i_l(Zl, 22) =

Hence we have

m,n

B 0 =2m3", BOD = (2™ +1)3" (m,n € Zx).

Therefore Béjll’o) = Bg?(’)_l) = 3. Similarly we obtain, for example,

—1,-2 —-1,0 -3,—1 —1,—-2 —2,—1 —2,—2
Bg 0 ) — Bg,z ) — 18’ ]ng72 ) — Bg,l ) — 1820, Egg ) — Bg,l ) — 1958.

)
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Remark 5.12. Hamahata and Masubuchi [14, Corollary 10] showed the special case of (5.6),
namely

0,...,0,—k 0,...,0,—m
IB3§),...,0,m )= B((),...,O,k ) (m, k € Z>o)

(see Remark 5.2). On the other hand, Theorem 4.7 corresponds to the case d = 1 # r except
for r = 1 (see Remark 5.2), hence is located in the outside of Theorem 5.4. Therefore, in (4.12),
another type of multi-poly-Bernoulli numbers appear.

References

1]

2]

S. Akiyama, S. Egami and Y. Tanigawa, Analytic continuation of multiple zeta functions
and their values at non-positive integers, Acta Arith., 98 (2001), 107-116.

K. Aomoto, Special values of hyperlogarithms and linear difference schemes, Illinois J.
Math., 34-2 (1990), 191-216.

T. Arakawa, T. Ibukiyama and M. Kaneko, Bernoulli Numbers and Zeta Functions,
Springer, Tokyo, 2014.

T. Arakawa and M. Kaneko, Multiple zeta values, poly-Bernoulli numbers, and related
zeta functions, Nagoya Math. J., 153 (1999), 189-209.

T. Arakawa and M. Kaneko, On multiple L-values, J. Math. Soc. Japan, 56 (2004), 967—
991.

A. Bayad and Y. Hamahata, Polylogarithms and poly-Bernoulli polynomials, Kyushu J.
Math., 65 (2011), 15-24.

A. Bayad and Y. Hamahata, Arakawa-Kaneko L-functions and generalized poly-Bernoulli
polynomials, J. Number Theory, 131 (2011), 1020-1036.

A. Bayad and Y. Hamahata, Multiple polylogarithms and multi-poly-Bernoulli polynomi-
als, Funct. Approx. Comment. Math., 46 (2012), 45-61.

C. Brewbaker, A combinatorial interpretation of the Poly-Bernoulli numbers and two
Fermat analogues, Integers, 8 (2008), § A02.

M. -A. Coppo and B. Candelpergher, The Arakawa-Kaneko zeta function, Ramanujan J.,
22 (2010), 153-162.

V. G. Drinfel’d, On quasitriangular quasi-Hopf algebras and a group closely connected
with Gal(Q/Q), Leningrad Math. J. 2 (1991), 829-860.

H. Furusho, p-adic multiple zeta values. I. p-adic multiple polylogarithms and the p-adic
KZ equation, Invent. Math., 155 (2004), 253-286.

A. B. Goncharov, Multiple polylogarithms, cyclotomy, and modular complexes, Math.
Res. Lett., 5 (1998), 497-516.

Y. Hamahata and H. Masubuchi, Special multi-poly-Bernoulli numbers, J. Integer Seq.,
10 (2007), Article 07.4.1.

25



[15]

[16]
[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

Y. Hamahata and H. Masubuchi, Recurrence formulae for multi-poly-Bernoulli numbers,
Integers, 7 (2007), # A46.11.

M. Hoffman, Multiple harmonic series, Pacific J. Math., 152 (1992), 275-290.

K. Imatomi, Multi-poly-Bernoulli-star numbers and finite multiple zeta-star values, Inte-
gers, 14 (2014), A51.

K. Imatomi, M. Kaneko and E. Takeda, Multi-poly-Bernoulli numbers and finite multiple
zeta values, J. Integer Sequences, 17 (2014), Article 14.4.5.

K. Thara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for multiple
zeta values, Compositio Math., 142 (2006), 307-338.

M. Kaneko, Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux, 9 (1997), 199-206.

M. Kaneko, Poly-Bernoulli numbers and related zeta functions, Algebraic and Analytic
Aspects of Zeta Functions and L-functions, MSJ Mem., 21, pp. 73-85, Math. Soc. Japan,
Tokyo, 2010.

M. Kaneko and M. Sakata, Notes on height one multiple zeta values, in preparation.

T. Q. T. Le and J. Murakami, Kontsevich’s integral for the Homfly polynomial and rela-
tions between values of multiple zeta functions, Topology Appl., 62 (1995), 193-206.

Y. Ohno, A generalization of the duality and sum formulas on the multiple zeta values, J.
Number Theory, 74 (1999), 39-43.

S. Oi, Gauss hypergeometric functions, multiple polylogarithms, and multiple zeta values,
Publ. Res. Inst. Mat. Sci. 45 (2009), 981-10009.

J. Okuda and K. Ueno, Relations for multiple zeta values and Mellin transforms of multiple
polylogarithms, Publ. Res. Inst. Math. Sci., 40 (2004), 537-564.

J. Okuda and K. Ueno, The sum formula for multiple zeta values and connection problem
of the formal Knizhnik-Zamolodchikov equation, Zeta Functions, Topology and Quantum
Physics, Dev. Math., 14, Springer, New York, (2005), 145-70.

Y. Sasaki, On generalized poly-Bernoulli numbers and related L-functions, J. Number
Theory, 132 (2012), 156-170.

G. Shimura, FElementary Dirichlet Series and Modular Forms, Springer Monographs in
Mathematics, Springer, New York, 2007.

L. C. Washington, Introduction to Cyclotomic Fields, Second edition, Graduate Texts in
Mathematics 83, Springer-Verlag, New York, 1997.

P. T. Young, Symmetries of Bernoulli polynomial series and Arakawa-Kaneko zeta func-
tions, J. Number Theory, 143 (2014), 142-161.

26



M. Kaneko: Faculty of Mathematics, Kyushu University, Motooka 744, Nishi-ku Fukuoka 819-0395,
Japan

Tel & Fax: 092-802-4443

e-mail: mkaneko®@math.kyushu-u.ac. jp

H. Tsumura: Department of Mathematics and Information Sciences, Tokyo Metropolitan University,

1-1, Minami-Ohsawa, Hachioji, Tokyo 192-0397 Japan
e-mail: tsumura@tmu.ac. jp

27



