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1 Definitions and Result

In this paper, we determine the parity of calibers, both in wide and narrow senses, for all
(not necessarily fundamental) real quadratic discriminants.

In our previous paper [3], we studied congruences modulo 4 of calibers of real quadratic
fields whose discriminants are of special type, i.e., contain only two prime factors and are
fundamental. For instance, when the discriminant is a product of two odd primes p and q
congruent to 1 mod 4, we obtained a (partly conjectural) relationship between the caliber
modulo 4 and the quadratic residue symbol (q/p).

For the parity, we can determine it for all discriminants in an elementary way. Although
the determination of the parity does not require subtle quantities like the quadratic residue
symbol, the complete classification may be of some value.

We use almost the same notation and convention as in [3], which we recall briefly here
before stating the main theorem. A real quadratic number w is reduced if it satisfies w > 1
and −1 < w′ < 0, where w′ is the algebraic conjugate of w over the rationals Q. The
usual continued fraction expansion of w is purely periodic if and only if w is reduced. A
positive integer D is a discriminant of a real quadratic order if and only if it is not a perfect
square and D ≡ 0 or 1 (mod 4). A real quadratic number w is of discriminant D, denoted
disc(w) = D, if w satisfies

aw2 + bw + c = 0, a, b, c ∈ Z, a > 0, GCD(a, b, c) = 1, b2 − 4ac = D.

Let Q(D) be the set of all reduced quadratic numbers of a given discriminant D:

Q(D) := {w | disc(w) = D, w > 1, −1 < w′ < 0}.

The set Q(D) is finite and we call its cardinality κ(D) the caliber of discriminant D:

κ(D) := ]Q(D).

Any quadratic number of discriminant D is equivalent under the action of GL2(Z) (via the
linear fractional transformation) to an element in Q(D). We write w1 ∼ w2 if the two
numbers w1 and w2 are GL2(Z)-equivalent under this action. It is well-known that w1 ∼ w2

if and only if their minimal periods of continued fraction expansions are cyclically equivalent.
Let R(D) be the set of GL2(Z)-equivalence classes of Q(D) and h(D) be its cardinality:

R(D) := Q(D)/ ∼, h(D) := ]R(D).

The number h(D) is nothing but the (wide) class number of discriminant D.
We can also consider the corresponding notions for SL2(Z)-equivalence, and have the

similar sets and quantities Q+(D), κ+(D), R+(D), h+(D). For precise definitions and prop-
erties, see [3]. The quantity κ+(D) is the “m-caliber” (as we called it in [3]), or the caliber
in the narrow sense, of discriminant D.

Our main result is the following.
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Theorem 1. For all positive discriminants D, the parities of κ(D) and κ+(D) are completely
determined as follows:

(i) When D = 8, or D is of the form pk or 4pk with a prime p ≡ 1 (mod 4), the caliber
κ(D) is odd. In all other cases, κ(D) is even.

(ii) When D is a power of a single prime and D 6= 8, or D is of the form 4qk with a
prime q ≡ 3 (mod 4), the m-caliber κ+(D) is odd. In all other cases, κ+(D) is even.

We prove this theorem in §3 after giving some preliminary lemmas and propositions in
the next section. The final §4 will be devoted to the proof of lemmas.

2 Preliminaries

An element w ∈ Q(D) has a purely periodic continued fraction expansion

w = [a0, . . . , an−1] = a0 +
1

a1 +
1

. . . +
1

an−1 +
1

a0 +
1

a1 +
1

. . .

.

We define the quantities l(w) and s(w) by

l(w) := n and s(w) :=
n−1∑
i=0

ai,

the minimum period length and the sum of partial quotients in the period, respectively.
Note that, for w ∈ Q(D), the period length l(w) is even or odd according to N(εD) = 1 or
−1, where εD is the fundamental unit of the quadratic order Z[(D +

√
D)/2] of discriminant

D, i.e., εD > 1 and the set {±εn
D}n∈Z forms the group of units in the ring Z[(D +

√
D)/2].

In particular, the parity of l(w) depends only on the discriminant. We use the following
lemmas to establish the theorem. The proof of the lemmas will be postponed to the end of
the paper.

Lemma 1. We have
κ(D) =

∑
[w]∈R(D)

l(w) (1)

and
κ+(D) =

∑
[w]∈R(D)

s(w), (2)

where the sums run over a set of representatives of R(D) in Q(D).

Lemma 2. Let w ∈ Q(D).
(i) If D is odd, then we have l(w) ≡ s(w) (mod 2).
(ii) If D is even and N(εD) = −1, then s(w) is even.
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(iii) Suppose D is even and N(εD) = 1. If w ∈ Q(D) satisfies w ∼ −1/w′, then we have

s(w) ≡ uD (mod 2), (3)

where uD is the coefficient u of
√

D in the expression of the fundamental unit εD = (t +
u
√

D)/2. If furthermore D 6≡ 0 (mod 32) and D 6≡ 12 (mod 16), then s(w) is even.

As a corollary, we have

Corollary 1. When D is even and N(εD) = 1, the congruence

κ+(D) ≡ h(D)uD (mod 2)

holds.

We also need the following propositions, the first of which is a consequence of the theory
of genera for general discriminants (see e.g., [1, §14.3, 14.5]1), and the second is the classical
class number formula (see e.g., [2, Ch. XIII]).

Proposition 1. Let ν be the number of distinct odd primes dividing D and put

λ =


ν − 1 if D is odd, or D ≡ 4 (mod 16),

ν + 1 if D ≡ 0 (mod 32),

ν otherwise.

Then the narrow class number h+(D) is divisible by 2λ.

Proposition 2. Let D = f2D0 be a discriminant, D0 being the fundamental discriminant of
Q(

√
D) and f the conductor. Let µ be the unit index, i.e., the integer satisfying εD = εµ

D0
.

Then the class number h(D) is given by

h(D) =
h(D0)f

µ

∏
`|f

(
1 − χD0(`)

`

)
,

where ` runs over prime factors of f and χD0 is the Kronecker character associated to
Q(

√
D0).

3 Proof of Theorem

In this section, we prove Theorem by using the lemmas and propositions in §2.

3.1 Parity of κ(D)

If N(εD) = 1, then l(w) is even for any w ∈ Q(D), and so is κ(D) by (1) of Lemma 1. In
particular, we see that κ(D) is even for a discriminant D divisible by 16 or a prime q ≡ 3
(mod 4), as the congruence x2 − Dy2 ≡ −4 has no solutions modulo 16 or q respectively.

If N(εD) = −1, then h(D) = h+(D) holds. If D is divisible by at least two distinct odd
primes, then we conclude by Proposition 1 that h(D) (= h+(D)) is even, and hence κ(D) is

1We thank Tomoyoshi Ibukiyama for informing us of the proposition and drawing attention to this
reference.
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even by equation (1). Note that all l(w) have the same parity. For the case D = 8, it can
be computed directly.

The remaining cases are D = pk, 4pk, 8pk with a prime p ≡ 1 (mod 4). If D = 8pk and
N(εD) = −1, then h+(D) = h(D) is even by Proposition 1 and hence κ(D) is even by (1).

Now we show that if D = pk or 4pk, then N(εD) = −1 and h(D) is odd. This implies
that κ(D) is odd by (1), and the proof of (i) is done. To show that N(εD) = −1 and h(D)
is odd in these cases, we use Proposition 2. Recall the classical facts that N(εp) = −1 and
h(p) is odd for a prime p ≡ 1 (mod 4). Suppose D = pk. Since D is not a perfect square, we
see that k is odd, and also D0 = p, f = p(k−1)/2 and ` = p with the notation in Proposition
2. Hence the unit index µ should be odd. Thus, N(εD) = N(εp)

µ = −1, and h(D) is odd. If
D = 4pk, then f = 2p(k−1)/2 and D0 = p. In this case, the factor 1−χD0(`)/` in the formula
of Proposition 2 for ` = 2 is 1/2 or 3/2 and hence the denominator 2 cancels out the factor
2 in f . This shows again that the unit index µ is odd, and the same conclusion as in the
case D = pk holds. This establishes (i) of Theorem 1.

3.2 Parity of κ+(D)

We proceed to determine the parity of κ+(D).
When D is odd, we know by (i) of Lemma 2 and Lemma 1 that κ+(D) ≡ κ(D) (mod 2).

Hence the theorem is already proved in the previous subsection. We note that when D is a
power of an odd prime p, it is necessary that p ≡ 1 (mod 4) because D ≡ 1 (mod 4) and D
cannot be a perfect square.

From now on, we assume that D is even. Let us first look at the case when D is a power
of 2. For D = 8, we can directly compute as κ+(8) = 2. When D = 22k+3 with k ≥ 1, the
corresponding fundamental discriminant is 8 and the conductor is 2k. The fundamental unit
of the ring Z[

√
2] of discriminant 8 is 1+

√
2. It is then easy to see that εD = (1+

√
2)2k

whose
norm is 1, and thus that h(D) is odd by Proposition 2. Furthermore, we see inductively that
(1 +

√
2)2k

= (tD + uD

√
D)/2 with uD odd. Hence by Corollary 1, we conclude that κ+(D)

is odd.
Suppose D is divisible by an odd prime. When N(εD) = −1, every s(w) is even by (ii)

of Lemma 2 and thus κ+(D) is even.
Assume N(εD) = 1. If D ≡ 0 (mod 32), then h(D) is even by Proposition 1, and hence

κ+(D) is even by Corollary 1. If D 6≡ 0 (mod 32) and D 6≡ 12 (mod 16), then κ+(D) is
even by (iii) of Lemma 2 and (2) of Lemma 1.

Finally, suppose D ≡ 12 (mod 16). If D is divisible by at least two distinct odd primes,
then h+(D) is divisible by 4 and hence h(D) is even, by Proposition 1. We then see that
κ+(D) is even by Corollary 1. When D is divisible by a single odd prime q, we necessarily
have D = 4qk with q ≡ 3 (mod 4) because of the congruence D ≡ 12 (mod 16). The
corresponding fundamental discriminant D0 is 4q and we know by [4] that h(4q) is odd.
From this we see by Proposition 2 that h(D) is odd. Therefore, by Corollary 1, the m-
caliber κ+(D) is odd if and only if uD is odd. But when D = 4qk with a prime q ≡ 3
(mod 4), the number uD is always odd. To see this, we only need to see that u4q is odd
because the unit index µ in εD = εµ

4q is odd (by Proposition 2 and that h(4q) is odd). The
fact that u4q is odd is proved in [6] (see also [5] for a simpler proof and a historical remark).2

This completes the proof of Theorem. ¤

2We thank Kenneth S. Williams for informing us of these references as well as showing us the simple
proof of this fact using the method of Dirichlet.

4



4 Proof of Lemmas

Equation (1) of Lemma 1 is immediate from the definition, and (2) has appeared in [3,
Proposition 2.1]. For the assertions (i) and (ii) of Lemma 2, see also [3, Lemma 2.3]. In the
following, we shall prove (iii) of Lemma 2 and Corollary 1.

Suppose D is even and N(εD) = 1. Let w = [a0, . . . , an−1] ∈ Q(D) satisfies w ∼ −1/w′.
Set (

p q
r s

)
:=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·

(
an−1 1

1 0

)
.

Then from the standard theory we have

w =
pw + q

rw + s

which is equivalent to rw2 + (s− p)w− q = 0, and the fundamental discriminant is given by

εD =
tD + uD

√
D

2
= rw + s. (4)

Let g := GCD(r, s − p, q). The minimal equation of w is then

r

g
w2 +

s − p

g
w − q

g
= 0,

and hence

w =
−s + p + g

√
D

2r
(5)

and
g2D = (s − p)2 + 4rq. (6)

We thus obtain
g = uD (7)

by (4) and (5).

Now we look at

(
p q
r s

)
mod 2. First note that l(w) is even because N(εD) = 1. Assume

s(w) is even. Then, among the partial quotients ai of w = [a0, . . . , an−1], the numbers of odd
ai’s and even ai’s are both even. Then by [3, Lemma 2.2], we have(

p q
r s

)
≡

(
1 0
0 1

)
or

(
1 1
1 0

)
or

(
0 1
1 1

)
(mod 2).

But since D is even, the number s − p is even by (6) and thus the only possibility is(
p q
r s

)
≡

(
1 0
0 1

)
(mod 2).

From this we see that r and q are also even and hence g = GCD(r, s− p, q) is even. By (7),
we conclude that uD is even and so s(w) ≡ uD (mod 2).

Next assume s(w) is odd. Because w ∈ Q(D) satisfies w ∼ −1/w′, the periods [a0, . . . , an−1]
and [an−1, . . . , a0] of w and −1/w′ are cyclically equivalent, i.e., there is an index i such that

[a0, . . . , ai−1, ai, . . . , an−1] = [ai−1, . . . , a0, an−1, . . . , ai]. (8)
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This means that the two subsequences [a0, . . . , ai−1] and [ai, . . . , an−1] are both palindromic.
Recall that the length n is even. Thus, in order to have s(w) odd, the only possibility is
that both i and n − i are odd, and one and the only one of the “centers” of [a0, . . . , ai−1]

and [ai, . . . , an−1] is odd. Set E :=

(
0 1
1 0

)
and O :=

(
1 1
1 0

)
. Then, by the congruences

E2 ≡ O3 ≡
(

1 0
0 1

)
, OEO ≡ E, EOE ≡ O2 (mod 2),

we conclude that the possibility is(
p q
r s

)
≡ E, OE, O2E, EO, or EO2 (mod 2).

Therefore, we have(
p q
r s

)
≡

(
0 1
1 0

)
,

(
1 1
0 1

)
, or

(
1 0
1 1

)
(mod 2).

In any cases, at least one of r, q is odd and hence uD(= g) is odd. This establishes (3).
Assume furthermore D 6≡ 0 (mod 32) and D 6≡ 12 (mod 16). If s(w) is odd, by rotating

cyclically (8) to place the odd center of either [a0, . . . , ai−1] or [ai, . . . , an−1] at the top, we see
that there exists an element w1 equivalent to w such that its continued fraction expansion
is of the form

[b0, b1, . . . , bs, bs+1, bs, . . . , b1]

with b0 odd. Then we have

w1 = b0 +
1

− 1
w′

1

= b0 − w′
1.

Let
aw2

1 + bw1 + c = 0, GCD(a, b, c) = 1, a > 0

be the minimal equation of w1. Then we have b0 = w1 + w′
1 = −b/a. Because b0 is odd,

we may write a = 2ka′ and b = 2kb′ with a′, b′ both odd. Since the discriminant D of w1

is even, we conclude from D = b2 − 4ac that b is even, i.e., k ≥ 1 and a is also even. Since
GCD(a, b, c) = 1, the integer c must be odd. Now look at

D = b2 − 4ac = 22kb′2 − 2k+2a′c.

If k = 1, then D = 4(b′2 − 2a′c) ≡ 12 (mod 16), and if k ≥ 2, then D = 2k+2(2k−2b′2 − a′c)
is divisible by 32. This contradicts to D 6≡ 0 (mod 32) and D 6≡ 12 (mod 16). Thus s(w)
cannot be odd. This completes the proof of Lemma 2. ¤

Finally, we prove Corollary 1. Recall that, for any w = [a0, . . . , an−1] ∈ Q(D), we see
that −1/w′ = [an−1, . . . , a0] and hence s(w) = s(−1/w′). From this we have

κ+(D) =
∑

[w]∈R(D)

s(w) ≡
∑

[w]∈R(D),w∼−1/w′

s(w) (mod 2).

By (iii) of Lemma 2, we then have

κ+(D) ≡
∑

[w]∈R(D),w∼−1/w′

uD ≡
∑

[w]∈R(D)

uD = h(D)uD (mod 2)

as desired. ¤

Acknowledgments. This work was partially supported by JSPS Grant-in-Aid for
Scientific Research (S) 24224001 and (B) 23340010.

6



References

[1] J. W. S. Cassels, Rational Quadratic Forms, Academic Press (1978), xiv+318 pp.

[2] H. Cohn, A Second Course in Number Theory, John Wiley & Sons, INC., (1962),
xiii+276 pp.

[3] M. Kaneko and K. Mori, Congruenced modulo 4 of calibers of real quadratic fields, Ann.
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