
Math. Ann. (2013) 357:1091–1118
DOI 10.1007/s00208-013-0930-5 Mathematische Annalen

Double zeta values, double Eisenstein series,
and modular forms of level 2

Masanobu Kaneko · Koji Tasaka

Received: 12 December 2011 / Revised: 1 December 2012 / Published online: 3 April 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract We study the double shuffle relations satisfied by the double zeta values of
level 2, and introduce the double Eisenstein series of level 2 which satisfy the double
shuffle relations. We connect the double Eisenstein series to modular forms of level 2.
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1 Introduction

In [7], Gangl, Zagier and the first author studied in detail the “double shuffle relations”
satisfied by the double zeta values

ζ(r, s) =
∑

m>n>0

1

mr ns
(r ≥ 2, s ≥ 1), (1)

and revealed in particular various connections between the space of double zeta values
and the space of modular forms as well as their period polynomials on the full modular
group PSL2(Z). They also defined the “double Eisenstein series” and deduced the
double shuffle relations for them, and in [9] we illustrated a way to connect the double
Eisenstein series to the period polynomials of modular forms (of level 1).
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1092 M. Kaneko, K. Tasaka

In the present paper, we consider the double shuffle relations of level 2 and study
the formal double zeta space, whose generators are the formal symbols corresponding
to the double zeta values of level 2 (Euler sums) and the defining relations are the
double shuffle relations. One of the relations we obtain in the formal double zeta
space (Theorem 1) has an interesting application to the problem of representations
of integers as sums of squares, and this will be given in the subsequent paper by the
second author [12]. We then proceed to define the double Eisenstein series of level
2 and show that they also satisfy the double shuffle relations (Theorem 3), and have
connections like in the case of level 1 to double zeta values, modular forms, and period
polynomials, of level 2 (Theorem 5 and Corollary 1).

2 The double zeta values of level 2

The double zeta values of level 2 we are referring to are the following four types of
real numbers given for integers r ≥ 2 and s ≥ 1:

ζ ee(r, s) =
∑

m>n>0
m, n: even

1

mr ns
, ζ eo(r, s) =

∑

m>n>0
m: even, n: odd

1

mr ns
,

ζ oe(r, s) =
∑

m>n>0
m: odd, n: even

1

mr ns
, ζ oo(r, s) =

∑

m>n>0
m, n: odd

1

mr ns
.

These numbers can be written as simple linear combinations of the original multiple
zeta values (1) and the numbers often referred to as Euler sums defined by

ζ(r, s) =
∑

m>n>0

(−1)n

mr ns
, ζ(r , s) =

∑

m>n>0

(−1)m

mr ns
, ζ(r , s) =

∑

m>n>0

(−1)m+n

mr ns
,

and vice versa. Explicitly, we have the relations

⎛

⎜⎜⎝

ζ ee(r, s)
ζ oe(r, s)
ζ eo(r, s)
ζ oo(r, s)

⎞

⎟⎟⎠ =
1

4

⎛

⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

ζ(r, s)
ζ(r , s)
ζ(r, s)
ζ(r , s)

⎞

⎟⎟⎠ . (2)

(The matrix on the right is invertible.) Note that, from the obvious relations

ζ(r, s) = ζ ee(r, s)+ ζ eo(r, s)+ ζ oe(r, s)+ ζ oo(r, s)

and

ζ(r, s) = 2r+sζ ee(r, s),
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Double zeta values, double Eisenstein series, and modular forms of level 2 1093

we have the relation

(2r+s − 1)ζ ee(r, s) = ζ eo(r, s)+ ζ oe(r, s)+ ζ oo(r, s).

We shall hereafter only consider ζ eo(r, s), ζ oe(r, s), and ζ oo(r, s). Moreover define

ζ e(k) =
∑

n>0, even

1

nk
and ζ o(k) =

∑

n>0, odd

1

nk
.

Then in the standard manner we can show the following double shuffle relations.

Proposition 1 For positive integers r, s ≥ 2, we have

ζ o(r)ζ e(s) = ζ oe(r, s)+ ζ eo(s, r)

=
∑

i+ j=r+s
i≥2, j≥1

((
i − 1

r − 1

)
ζ oe(i, j)+

(
i − 1

s − 1

)
ζ oo(i, j)

)
,

ζ o(r)ζ o(s) = ζ oo(r, s)+ ζ oo(s, r)+ ζ o(r + s)

=
∑

i+ j=r+s
i≥2, j≥1

((
i − 1

r − 1

)
+
(

i − 1

s − 1

))
ζ eo(i, j).

Proof The first equality in each sequence of identities is obtained as usual from the
manipulation of the defining series. For the second, we use the following integral
representations of each zeta value and the shuffle product of integrals:

ζ o(k) =
∫
· · ·

∫

1>t1>t2>···>tk>0

dt1
t1
· dt2

t2
· · · dtk−1

tk−1
· dtk

1− t2
k

,

ζ e(k) =
∫
· · ·

∫

1>t1>t2>···>tk>0

dt1
t1
· dt2

t2
· · · dtk−1

tk−1
· tkdtk

1− t2
k

,

ζ eo(r, s) =
∫
· · ·

∫

1>t1>t2>···>tr+s>0

dt1
t1
· dt2

t2
· · · dtr−1

tr−1
· dtr

1− t2
r

·dtr+1

tr+1
· · · dtr+s−1

tr+s−1
· dtr+s

1− t2
r+s

,

ζ oe(r, s) =
∫
· · ·

∫

1>t1>t2>···>tr+s>0

dt1
t1
· dt2

t2
· · · dtr−1

tr−1
· dtr

1− t2
r

·dtr+1

tr+1
· · · dtr+s−1

tr+s−1
· tr+sdtr+s

1− t2
r+s

,
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ζ oo(r, s) =
∫
· · ·

∫

1>t1>t2>···>tr+s>0

dt1
t1
· dt2

t2
· · · dtr−1

tr−1
· tr dtr

1− t2
r

·dtr+1

tr+1
· · · dtr+s−1

tr+s−1
· dtr+s

1− t2
r+s

.

The first two are easy to deduce, and to see the rest for double zetas, we use the
expression (2) of each double zeta value in terms of Euler sums and the standard
integral representations

ζ(r, s) =
∫
· · ·

∫

1>t1>t2>···>tr+s>0

dt1
t1
· · · dtr−1

tr−1
· dtr

1− tr
· dtr+1

tr+1
· · · dtr+s−1

tr+s−1
· dtr+s

1− tr+s
,

ζ(r , s) =
∫
· · ·

∫

1>t1>t2>···>tr+s>0

dt1
t1
· · · dtr−1

tr−1
· (−dtr )

1+ tr
· dtr+1

tr+1
· · · dtr+s−1

tr+s−1
· (−dtr+s)

1+ tr+s
,

ζ(r, s) =
∫
· · ·

∫

1>t1>t2>···>tr+s>0

dt1
t1
· · · dtr−1

tr−1
· dtr

1− tr
· dtr+1

tr+1
· · · dtr+s−1

tr+s−1
· (−dtr+s)

1+ tr+s
,

ζ(r , s) =
∫
· · ·

∫

1>t1>t2>···>tr+s>0

dt1
t1
· · · dtr−1

tr−1
· (−dtr )

1+ tr
· dtr+1

tr+1
· · · dtr+s−1

tr+s−1
· dtr+s

1− tr+s
.

Noting the identities

1

1− t2 =
1

2

(
1

1− t
− (−1)

1+ t

)
,

t

1− t2 =
1

2

(
1

1− t
+ (−1)

1+ t

)
,

we obtain the desired integral expressions and hence the proposition by shuffle products
of integrals. ��

Now we introduce the level 2 version of the formal double zeta space studied in [7]
as follows. Let k > 2 and DZ k be the Q-vector space spanned by formal symbols
Z eo

r,s, Zoe
r,s , Zoo

r,s , Poe
r,s , Poo

r,s (r, s ≥ 1, r + s = k), and Zo
k with the set of relations

Poe
r,s = Zoe

r,s + Z eo
s,r =

∑

i+ j=k
i, j≥1

((
i − 1

r − 1

)
Zoe

i, j +
(

i − 1

s − 1

)
Zoo

i, j

)
, (3)

Poo
r,s = Zoo

r,s + Zoo
s,r + Zo

k =
∑

i+ j=k
i, j≥1

((
i − 1

r − 1

)
+
(

i − 1

s − 1

))
Z eo

i, j (4)

for r, s ≥ 1, r + s = k, so that

DZk =
{Q-linear combinations of Z eo

r,s, Zoe
r,s, Zoo

r,s, Poe
r,s , Poo

r,s , Zo
k }

〈Q-linear span of relations (3), (4)〉 .
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Since the elements Poe
r,s and Poo

r,s are written in Z ’s, we can also regard the space as
given by

DZk =
{Q-linear combinations of Z eo

r,s, Zoe
r,s, Zoo

r,s, Zo
k }

〈Q-linear span of relations (5), (6)〉

where the defining relations (5) and (6) are

Zoe
r,s + Z eo

s,r =
∑

i+ j=k
i, j≥1

((
i − 1

r − 1

)
Zoe

i, j +
(

i − 1

s − 1

)
Zoo

i, j

)
, (5)

Zoo
r,s + Zoo

s,r + Zo
k =

∑

i+ j=k
i, j≥1

((
i − 1

r − 1

)
+
(

i − 1

s − 1

))
Z eo

i, j . (6)

Note that the relations (3) and (4) (as well as (5) and (6)) correspond to those in
Proposition 1 when r, s ≥ 2, under the correspondences

Z eo
r,s ←→ ζ eo(r, s), Zoe

r,s ←→ ζ oe(r, s), Zoo
r,s ←→ ζ oo(r, s), Zo

k ←→ ζ o(k),

Poe
r,s ←→ ζ o(r)ζ e(s), Poo

r,s ←→ ζ o(r)ζ o(s),

because in that case the binomial coefficients for i = 1 on the right vanishes. For our
later applications it is convenient to allow the “divergent” Z eo

1,k−1, Poe
1,k−1 etc., and in

fact the double shuffle relations in Proposition 1 can be extended for r = 1 or s = 1
by using a suitable regularization procedure for ζ(1, s) etc. developed in [2] (the case
of m = 2 in their notation). Specifically, by setting

ζ o(1) := 1

2
(T + log 2), ζ e(1) := 1

2
(T − log 2) (7)

and, for s ≥ 2

ζ eo(1, s) = 1

2
ζ o(s)T − 1

2
(log 2)ζ o(s)− ζ oe(s, 1),

ζ oe(1, s) = 1

2
ζ e(s)T + 1

2
(log 2)ζ e(s)− ζ eo(s, 1),

ζ oo(1, s) = 1

2
ζ o(s)T + 1

2
(log 2)ζ o(s)− ζ oo(s, 1)− ζ o(s + 1)

where T is a formal variable, the equations in Proposition 1 are valid for all r, s ≥ 1
except (r, s) = (1, 1).
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Theorem 1 Suppose k is even and k ≥ 4. In DZ k , we have

1)

k−2∑

r=2
r :even

Zoo
r,k−r =

1

4
Zo

k .

2) Each Poe
r,k−r with r even can be written as a Q-linear combination of Poo

i, j (i, j :
even, i + j = k) and Zo

k

Proof Consider the generating functions

Z eo
k (X, Y ) =

∑

r+s=k

Z eo
r,s Xr−1Y s−1, Z oe

k (X, Y ) =
∑

r+s=k

Zoe
r,s Xr−1Y s−1,

Z oo
k (X, Y ) =

∑

r+s=k

Zoo
r,s Xr−1Y s−1.

Here and in the following, the sum
∑

r+s=k always means
∑

r+s=k, r,s≥1. The double
shuffle relations (5) and (6) are equivalent to the relations

Z oe
k (X, Y )+Z eo

k (Y, X)=Z oe
k (X + Y, Y )+Z oo

k (X + Y, X), (8)

Z oo
k (X, Y )+Z oo

k (Y, X)+Zo
k ·

Xk−1−Y k−1

X − Y
=Z eo

k (X + Y, Y )+Z eo
k (X + Y, X).

(9)

Substituting X = 1, Y = 0 in (8) and X = 1, Y = −1 in (9), we respectively obtain

Zoe
k−1,1 + Z eo

1,k−1 = Zoe
k−1,1 +

k−1∑

r=1

Zoo
r,k−r , (10)

2
k−1∑

r=1

(−1)r−1 Zoo
r,k−r + Zo

k = 2Z eo
1,k−1. (11)

We divide (11) by 2 and add (10) to obtain

1

2
Zo

k = 2
k−2∑

r=2
r : even

Zoo
r,k−r

and hence 1) of Theorem. ��
To prove 2), we need the following lemma.

Lemma 1 Let k ≥ 4 be an even integer and ai, j , bi, j , ci, j be rational numbers. Then
the following two statements are equivalent.
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Double zeta values, double Eisenstein series, and modular forms of level 2 1097

1) The relation

∑

i+ j=k

ai, j Z eo
i, j +

∑

i+ j=k

bi, j Zoe
i, j +

∑

i+ j=k

ci, j Zoo
i, j ≡ 0 (mod QZo

k )

holds in DZ k (as before
∑

i+ j=k means
∑

i+ j=k, i, j≥1).
2) There exist some homogeneous polynomials F, G ∈ Q[X, Y ] of degree k−2 such

that

F(Y1, X1)+ F(X2, Y2)− F(X2, X2 + Y2)− F(X3 + Y3, X3)

+ G(X3, Y3)+ G(Y3, X3)− G(X1, X1 + Y1)− G(X1 + Y1, X1)

=
∑

i+ j=k

(
k − 2

i − 1

)
ai, j X i−1

1 Y j−1
1 +

∑

i+ j=k

(
k − 2

i − 1

)
bi, j X i−1

2 Y j−1
2

+
∑

i+ j=k

(
k − 2

i − 1

)
ci, j X i−1

3 Y j−1
3 .

Proof This is an analogue of Proposition 2.2 in [7]. Take F(X, Y ) = (k−2
r−1

)
Xr−1Y s−1

(and G = 0) and compute the coefficients of F(Y1, X1)+ F(X2, Y2)− F(X2, X2 +
Y2) − F(X3 + Y3, X3) using binomial theorem. Then the relation in 1) is exactly
(not only mod QZo

k but as an exact equality) the relation (5). Similarly, by tak-

ing G(X, Y ) = (k−2
r−1

)
Xr−1Y s−1 (and F = 0) and computing the coefficients of

G(X3, Y3) + G(Y3, X3) − G(X1, X1 + Y1) − G(X1 + Y1, X1), we see that the
relation in 1) is the relation (6) modulo QZo

k . Since any relation of the form in 1)
in DZ k should come from a linear combination of (5) and (6) modulo QZo

k , and
any homogeneous polynomial is a linear combination of monomials, we obtain the
lemma. ��

Using the lemma, we are going to produce enough relations of the form

∑

r+s=k
r,s: even

αr,s Poe
r,s ≡

∑

r+s=k
r,s: even

βr,s Poo
r,s (mod QZo

k ) (12)

such that we can solve these in Poe
r,s . In view of the relations

Poe
r,s = Zoe

r,s + Z eo
s,r , Poo

r,s ≡ Zoo
r,s + Zoo

s,r (mod QZo
k ) (13)

and the lemma, we obtain the relation of the form (12) if we can take F and G in 2)
of Lemma 1 so that the coefficients satisfy

(i) ai, j = b j,i ,
(ii) ci, j = c j,i ,

(iii) ai, j = bi, j = ci, j = 0 for all odd i, j .

We now work for convenience with inhomogeneous polynomials. Recall the usual
correspondences f (x) = F(x, 1) and F(X, Y ) = Y k−2 f (X/Y ), and the action of
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the group � = PGL2(Z) on the space of polynomials of degree at most k − 2 by (we
are assuming k is even)

f (x)

∣∣∣
k−2

(
a b
c d

)
= (cx + d)k−2 f

(
ax + b

cx + d

)
. (14)

We extend this action to the group ring Z[�] by linearity. Set

T =
(

1 1
0 1

)
, S =

(
0 −1
1 0

)
, ε =

(−1 0
0 1

)
, δ =

(
0 1
1 0

)
.

Then the left-hand side of the equation in 2) of Lemma 1 can be written in inhomoge-
neous form as

(
f
∣∣δ−g

∣∣(T ST+T Sε)
)
(x1)+

(
f
∣∣(1−T ST )

)
(x2)−

(
f
∣∣T Sε−g

∣∣(1+δ)
)
(x3).

(15)

(We write
∣∣ instead of

∣∣
k−2.)

Lemma 2 Suppose the polynomial f (x) (of degree at most k−2) satisfies f
∣∣T ST ε =

f and put g = 1
2 f

∣∣T ε. Then the expression (15) gives the coefficients (in
Lemma 1-2) satisfying the above three conditions (i), (ii), (iii).

Proof Inserting g = 1
2 f

∣∣T ε into (15) and using the assumption f
∣∣T ST ε = f ,

which is equivalent to f
∣∣T S = f

∣∣T ε since (T ε)2 = 1, and also using the identities
T ST ST = S, T εT = ε, εS = δ, δε = εδ = S in �, we can write (15) as

(
f
∣∣δ(1− ε)

)
(x1)+

(
f
∣∣(1− ε)

)
(x2)−

(
f
∣∣T (1− ε)

)
(x3). (16)

Now the condition (iii) (the polynomial is even) is clear from this (being killed by 1+ε),
and the conditions (i) and (ii) are respectively the consequences of the equations

f
∣∣δ(1− ε)δ = f

∣∣(1− ε),

f
∣∣T (1− ε)δ = f

∣∣T δ − f
∣∣T S = f

∣∣T εS − f
∣∣T ε = f

∣∣T (1− ε).

Noting T ST ε = (−1 0
−1 1

)
and hence

(−x + 1)

( −x

−x + 1

)
= −x, and (−x + 1)

( −x

−x + 1
− 2

)
= x − 2,

we see that the polynomials xr (x − 2)k−2−r for r = 0, 2, . . . , k− 2 (even) satisfy the
condition f

∣∣T ST ε = f in Lemma 2. With this choice of f (for r = 0, 2, . . . , k − 4)
and g in Lemma 2, we compute the coefficients in Lemma 1 by noting (13), (16) and
by using
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xr (x − 2)k−2−r |(1− ε) = xr (x − 2)k−2−r − xr (x + 2)k−2−r

= −
k−2−r−1∑

i=1
i :odd

(
k − 2− r

i

)
2k−1−r−i xr+i

= −
k−2∑

i=r+2
i :even

(
k − 2− r

i − 1− r

)
2k−i x i−1 (r + i → i − 1)

= −
(

k − 2

r

)−1 k−2∑

i=r+2
i :even

(
k − 2

i − 1

)(
i − 1

r

)
2k−i x i−1,

to obtain a relation of the form

k−2∑

i=r+2
i :even

(
i − 1

r

)
2k−i Poe

i,k−i ≡ linear combination of Poo
even,even (mod QZo

k ).

When we put r = k−4, . . . , 2, 0, we can solve these congruences successively in each
Poe

i,k−i for i = k − 2, k − 4, . . . , 2 (because the system is triangular). This completes
the proof of Theorem 1. ��

3 The double Eisenstein series of level 2

3.1 Definition and the double shuffle relations

We introduce the double Eisenstein series of level 2 and first show that they satisfy
the double shuffle relations.

Let ev (resp. od) be the set of even (resp. odd) integers and τ a variable in the upper
half-plane. Define the three double Eisenstein series Geo

r,s(τ ), Goe
r,s(τ ), and Goo

r,s(τ ) by

Geo
r,s(τ ) := (2π i)−r−s

∑

λ>μ>0
λ∈ev·τ+ev
μ∈ev·τ+od

1

λrμs
= (2π i)−r−s

∑

mτ+n>m′τ+n′>0
m∈ev,n∈ev

m′∈ev,n′∈od

× 1

(mτ + n)r (m′τ + n′)s
,

Goe
r,s(τ ) := (2π i)−r−s

∑

λ>μ>0
λ∈ev·τ+od
μ∈ev·τ+ev

1

λrμs
, Goo

r,s(τ ) := (2π i)−r−s
∑

λ>μ>0
λ∈ev·τ+od
μ∈ev·τ+od

1

λrμs
.

(17)

Here, the positivity mτ+n > 0 of a lattice point means either m > 0 or m = 0, n > 0,
and mτ + n > m′τ + n′ means (m − m′)τ + (n − n′) > 0. We assume r ≥ 3 and
s ≥ 2 for the absolute convergence.
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All the series in (17) is easily seen to be invariant under the translation τ → τ + 1,
and hence have Fourier expansions. The Fourier series developments can be deduced
in a quite similar manner to the full modular case [7]. In particular, our double zeta
values of level 2 appear as constant terms.

Theorem 2 Let r ≥ 3 and s ≥ 2 be integers and set k = r + s. We have the following
q-series expansions (q = e2π iτ ).

Geo
r,s(τ ) = ζ̃ eo(r, s)+ geo

r,s(q)+
∑

p+h=k
p>1

×
{(

(−1)s
(

p − 1

s − 1

)
+ δp,s

)
ζ̃ o(p)ge

h(q)+ (−1)p+r
(

p − 1

r − 1

)
ζ̃ o(p)go

h(q)

}
,

Goe
r,s(τ ) = ζ̃ oe(r, s)+ goe

r,s(q)+
∑

p+h=k
p>1

×
{
(−1)s

(
p−1

s−1

)
ζ̃ o(p)go

h(q)+δp,s ζ̃
e(p)go

h(q)+(−1)p+r
(

p−1

r−1

)
ζ̃ o(p)ge

h(q)

}
,

Goo
r,s(τ ) = ζ̃ oo(r, s)+ goo

r,s(q)+
∑

p+h=k
p>1

×
{(

(−1)s
(

p − 1

s − 1

)
+ (−1)p+r

(
p − 1

r − 1

))
ζ̃ e(p)go

h(q)+ δp,s ζ̃
o(p)go

h(q)

}
,

where δp,s is Kronecker’s delta, ζ̃ ∗∗(r, s) = (2π i)−r−sζ ∗∗(r, s) and ζ̃ ∗(k) =
(2π i)−kζ ∗(k) (∗ = e or o), and the g’s are the following q-series:

geo
r,s(q) = − (−1)r+s

2r+s(r − 1)!(s − 1)!
∑

m>m′>0
u,v>0

(−1)vur−1vs−1qum+vm′ ,

goe
r,s(q) = − (−1)r+s

2r+s(r − 1)!(s − 1)!
∑

m>m′>0
u,v>0

(−1)uur−1vs−1qum+vm′ ,

goo
r,s(q) = (−1)r+s

2r+s(r − 1)!(s − 1)!
∑

m>m′>0
u,v>0

(−1)u+vur−1vs−1qum+vm′ ,

and

ge
r (q) = (−1)r

2r (r − 1)!
∑

u,m>0

ur−1qum, go
r (q) = (−1)r

2r (r − 1)!
∑

u,m>0

(−1)uur−1qum .
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Proof Put, for positive integers r and s,

ϕe
r (q) = (−1)r

2r (r − 1)!
∑

u>0

ur−1qu/2, ϕo
r (q) = (−1)r

2r (r − 1)!
∑

u>0

(−1)uur−1qu/2.

Then the series g∗r (q), g∗∗r,s(q) in the theorem can be written by using ϕ∗r (q) as

ge
r (q) =

∑

m>0

ϕe
r (q

2m), go
r (q) =

∑

m>0

ϕo
r (q2m),

geo
r,s(q) =

∑

m>m′>0

ϕe
r (q

2m)ϕo
s (q2m′), goe

r,s(q) =
∑

m>m′>0

ϕo
r (q2m)ϕe

s (q
2m′),

goo
r,s(q) =

∑

m>m′>0

ϕo
r (q2m)ϕo

s (q2m′), gee
r,s(q) =

∑

m>m′>0

ϕe
r (q

2m)ϕe
s (q

2m′).

The computation of the Fourier series can be carried out in a completely similar fashion
as done in [7], dividing the sum of the defining series into four terms, according as
m = m′ = 0, m = m′ > 0, m > m′ = 0, m > m′ > 0. For instance, in the case of
Geo

r,s(τ ), we compute

Geo
r,s(τ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

m=m′=0
n>n′>0

m,m′,n∈ev
n′∈od

+
∑

m=m′>0
n>n′

m,m′,n∈ev
n′∈od

+
∑

m>m′=0
n′>0

m,m′,n∈ev
n′∈od

+
∑

m>m′>0
m,m′,n∈ev

n′∈od

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(2π i)−r−s

(mτ + n)r (m′τ + n′)s
,

using the partial fraction decomposition

1

(τ + n)r (τ + n′)s
=(−1)s

r−1∑

i=0

(
s + i − 1

i

)
1

(τ + n)r−i
· 1

(n − n′)s+i

+
s−1∑

j=0

(−1) j
(

r + j − 1

j

)
1

(τ + n′)s− j
· 1

(n − n′)r+ j

and the formulas

∑

n∈Z

1

(τ + 2n)l
= (−2π i)l

2l(l − 1)!
∑

u>0

ul−1qu/2 = (2π i)lϕe
l (q) (l ≥ 2),

∑

n∈Z

1

(τ + 2n + 1)l
= (−2π i)l

2l(l − 1)!
∑

u>0

(−1)uul−1qu/2 = (2π i)lϕo
l (q) (l ≥ 2)
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(consequences of the standard Lipschitz formula, and when l = 1 we use

lim
N→∞

N∑

n=−N

1

τ + 2n
= −π i

2
+ (−2π i)

2

∑

u>0

qu/2 = −π i

2
+ (2π i)ϕe

1(q),

lim
N→∞

N∑

n=−N

1

τ + 2n + 1
= −π i

2
+ (2π i)ϕo

1(q)

instead). We leave the details to the reader. ��
We remark that each series in Theorem 2 is in R+ qQ[[q]] +√−1R[[q]], and the

terms in
√−1R[[q]] (“imaginary part”) only come from the terms having ζ̃ ∗(p) with

odd p as coefficients (note that ζ̃ ∗(p) is in Q or
√−1R according to the parity of p).

Now we extend the definition of the double Eisenstein series for any (non-
converging) r, s ≥ 1 (except r = s = 1), by using q-series. For this, we separately
define the imaginary part and the “combinatorial part”. First we define the imaginary
parts as

I eo
r,s(q) =

∑

p+h=k
p:odd

{(
(−1)s

(
p − 1

s − 1

)
+ δp,s

)
ζ̃ o(p)ge

h(q)

+(−1)p+r
(

p − 1

r − 1

)
ζ̃ o(p)go

h(q)

}
,

I oe
r,s(q) =

∑

p+h=k
p:odd

{
(−1)s

(
p − 1

s − 1

)
ζ̃ o(p)go

h(q)+ δp,s ζ̃
e(p)go

h(q)

+(−1)p+r
(

p − 1

r − 1

)
ζ̃ o(p)ge

h(q)

}
,

I oo
r,s (q) =

∑

p+h=k
p:odd

{(
(−1)s

(
p − 1

s − 1

)
+ (−1)p+r

(
p − 1

r − 1

))
ζ̃ e(p)go

h(q)

+δp,s ζ̃
o(p)go

h(q)

}
.

The sum is over p, h ≥ 1 with p odd. Note that the regularized values ζ̃ o(1) and ζ̃ e(1)

are defined by (7) and thus for any positive integers r, s, these series are elements of√−1R[T ][[q]]. Secondly, we define the part in qQ[[q]] which is referred to as the
combinatorial double Eisenstein series. Put

βeo
r,s(q) =

∑

p+h=r+s

{(
(−1)s

(
p−1

s−1

)
+δp,s

)
βo

pge
h(q)+(−1)p+r

(
p−1

r−1

)
βo

pgo
h(q)

}
,
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βoe
r,s(q) =

∑

p+h=r+s

{
(−1)s

(
p − 1

s − 1

)
βo

pgo
h(q)+ δp,sβ

e
pgo

h(q)

+(−1)p+r
(

p − 1

r − 1

)
βo

pge
h(q)

}
,

βoo
r,s(q) =

∑

p+h=r+s

{(
(−1)s

(
p−1

s−1

)
+(−1)p+r

(
p−1

r−1

))
βe

pgo
h(q)+δp,sβ

o
pgo

h(q)

}
,

where

βe
r = −

Br

2r+1 · r ! , βo
r = −

(1− 2−r )Br

2 · r ! (Br = the Bernoulli number),

and as before the condition “p + h = r + s” includes “p, h ≥ 1”. Let

g e
r (q) := −

∑

m>0

mϕe
r+1(q

2m), go
r (q) := −

∑

m>0

mϕo
r+1(q

2m) (r ≥ 0), (18)

and for integers r, s ≥ 1 let

ε eo
r,s(q) =δr,2g o

s (q)− δr,1g o
s−1(q)+ δs,1(g

e
r−1(q)+ g e

r (q))+ δr,1δs,1α1,

ε oe
r,s (q) =δr,2g e

s (q)− δr,1g e
s−1(q)+ δs,1(g

o
r−1(q)+ g o

r (q))+ δr,1δs,1α2,

ε oo
r,s (q) =δr,2g o

s (q)− δr,1g o
s−1(q)+ δs,1(g

o
r−1(q)+ g o

r (q))+ δr,1δs,1α3,

where

α1 = g o
0 (q)− 1

2
g e

0 (q), α2 = −α1, α3 = 4go
2(q)+ 1

2
g e

0 (q). (19)

Note that each ε
∗,∗
r,s is 0 when r ≥ 3 and s ≥ 2, and in the other boundary cases, the

definition is adopted (quite similarly as in [7]) so that the extended double Eisenstein
series below satisfy the double shuffle relations. The combinatorial double Eisenstein
series are then defined, for positive integers r, s ≥ 1, by

Ceo
r,s(q) =geo

r,s(q)+ βeo
r,s(q)+ 1

4
εeo

r,s(q),

Ceo
r,s(q) =goe

r,s(q)+ βoe
r,s(q)+ 1

4
εoe

r,s(q),

Coo
r,s(q) =goo

r,s(q)+ βoo
r,s(q)+ 1

4
εoo

r,s(q).

Lastly, the constant term of the double Eisenstein series is given by the (regularized)
double zeta values.
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Definition 1 For any integers r, s ≥ 1 with (r, s) �= (1, 1), we define

Geo
r,s(q) := ζ̃ eo(r, s)+ Ceo

r,s(q)+ I eo
r,s(q),

Goe
r,s(q) := ζ̃ oe(r, s)+ Coe

r,s(q)+ I oe
r,s(q),

Goo
r,s(q) := ζ̃ oo(r, s)+ Coo

r,s(q)+ I oo
r,s (q).

To state the double shuffle relations in the forms (3) and (4) for these series, we

need usual Eisenstein series for the congruence subgroup �0(2) =
{(

a b
c d

)
∈ SL2(Z) |

c ≡ 0 mod 2
}

. For each integer k ≥ 3, let the series G(i∞)
k (τ ) and G(0)

k (τ ) be defined

by

G(i∞)
k (τ ) :=

∑

λ>0
λ∈ev·τ+od

1

λk
=

∑

mτ+n>0
m: even, n: odd

1

(mτ + n)k
,

and

G(0)
k (τ ) :=

∑

λ>0
λ∈od·τ+Z

1

λk
=

∑

mτ+n>0
m: odd

1

(mτ + n)k
.

When k ≥ 4 is even, the functions G(i∞)
k (τ ) and G(0)

k (τ ) are the Eisenstein series
for �0(2) associated to cusps i∞ and 0 respectively, and as such they are modular of
weight k with respect to �0(2). The Fourier series of G(i∞)

k (τ ) and G(0)
k (τ ) are given

as follows. Let Gk(τ ) be the Eisenstein series of weight k for SL2(Z):

Gk(τ ) :=
∑

Zτ+Z�mτ+n>0

1

(mτ + n)k
= ζ(k)+ (−2π i)k

(k − 1)!
∑

n≥1

σk−1(n)qn,

(σk−1(n) =
∑

d|n
dk−1). (20)

(Note that this gives a non-zero function even when k is odd.) With this we have

G(i∞)
k (τ ) = Gk(2τ)− 2−k Gk(τ ) = ζ o(k)+ (−2π i)k

2k(k − 1)!
∑

n≥1

(∑

d|n
(−1)ddk−1

)
qn,

G(0)
k (τ ) = Gk(τ )− Gk(2τ) = (−2π i)k

(k − 1)!
∑

n≥1

⎛

⎜⎜⎝
∑

d|n
n/d:odd

dk−1

⎞

⎟⎟⎠ qn . (21)

We define the q-series Gk(q), G(i∞)
k (q), and G(0)

k (q) for any k ≥ 1 by the (convergent)
q-series on the right-hand sides of (20) and (21), with the regularized values (7) and
ζ(1) = T (= ζ e(1)+ ζ o(1)). Finally we set
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Go
k(q) = (2π i)−k G(i∞)

k (q) = ζ̃ o(k)+ go
k (q),

Ge
k(q) = 2−k(2π i)−k Gk(q) = ζ̃ e(k)+ ge

k(q).

Theorem 3 For any integers r, s ≥ 1 with (r, s) �= (1, 1), we have

Go
r (q)Ge

s(q)+ 1

4
(δr,2g e

s (q)+ δs,2g o
r (q)) = Goe

r,s(q)+ Geo
s,r (q)

=
∑

i+ j=r+s

((
i − 1

r − 1

)
Goe

i, j (q)+
(

i − 1

s − 1

)
Goo

i, j (q)

)
,

Go
r (q)Go

s (q)+ 1

4
(δr,2go

s (q)+ δs,2go
r (q)) = Goo

r,s(q)+ Goo
s,r (q)+ Go

r+s(q)

=
∑

i+ j=r+s

((
i − 1

r − 1

)
+
(

i − 1

s − 1

))
Geo

i, j (q).

The proof of the theorem will be postponed to Sect. 3.3.

3.2 Double Eisenstein series and period polynomials

In this subsection, we describe a mysterious connection between our double Eisenstein
series and the period polynomials associated to cusp forms on �0(2). This kind of
connection was first observed in the full modular case [9], which will be recalled
briefly in the appendix for the convenience of the reader because the reference [9]
circulated only among participants of the conference.

Let us recall the theory of period polynomials for �0(2) given in [6] and [8]. We
follow the formulation of [10]. Recall the group �0(2) is generated by two elements
(see e.g. [1, Theorem 4.3]))

T =
(

1 1
0 1

)
, M =

(−1 −1
2 1

)
.

Let k be a positive even integer and Vk be the space of polynomials with rational
coefficients of degree at most k − 2:

Vk := {P(X) ∈ Q[X ] | deg( f ) ≤ k − 2}.

The group �0(2) acts on Vk as in (14) and this action extends to that of the group ring
Z[�0(2)] as usual. Consider the subspace Wk of Vk defined by

Wk :=
{

P ∈ Vk
∣∣ P|k−2(1− T )(1+ M) = 0

}
.
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For a cusp form f ∈ Sk(2) := {the space of cusp forms on�0(2)}, the period polyno-
mial r f (X) is given by

r f (X) :=
i∞∫

0

f (τ )(X − τ)ndτ.

It is implicitly shown in the proof of Proposition 3 in [8] that

r f (X) ∈ Wk ⊗ C.

Now we consider the even and odd parts of polynomials separately. Put ε = (−1 0
0 1

)
.

By the identity

ε(1− T )(1+ M) = −(1− T )(1+ M)T−1ε

(every matrix identity is regarded projectively, i.e., as that in �0(2)/ {±1}), we see that
if P ∈ Wk then P|(1± ε) ∈ Wk , and so we have the direct sum decomposition

Wk = W+k ⊕W−k ,

where W+k (resp. W−k ) is the even (resp. odd) part of Wk :

W±k :=
{

P ∈ Vk
∣∣ P|ε = ±P and P|(1− T )(1+ M) = 0

}
.

We also denote by r±f (X) the even and odd part of r f (X),

r±f (X) := 1

2
r f (X)|(1± ε),

and by r± the map

r± : Sk(2) � f �−→ r±f (X) ∈ W±k ⊗ C.

For the space W+k of even polynomials, we have two obvious elements 1 and Xk−2.
This is clear for 1 because 1|(1− T ) = 0. For Xk−2, we note the identity

(1− T )(1+ M) = (1− T M)(1+ M) (because M2 = 1)

and T M = (
1 0
2 1

)
and thus Xk−2|T M = Xk−2. Hence, we have the decomposition

W+k = Q · 1⊕Q · Xk−2 ⊕W+,0
k ,
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where

W+,0
k :=

{
P(X) ∈ Vk

∣∣∣ P(X) =
k−4∑

i=2
even

ai Xi , P|(1− T )(1+ M) = 0

}
.

Let r+,0 be the map Sk(2)→ W+,0
k obtained by the composition of r+ and the natural

projection W+k → W+,0
k . From the works of Fukuhara and Yang [6] and Imamoḡlu

and Kohnen [8], we obtain the following

Theorem 4 For even k, the two maps

r+,0 : Sk(2) −→ W+,0
k ⊗ C and r− : Sk(2) −→ W−k ⊗ C

are isomorphisms of vector spaces.

Proof We know from [6] and [8] that both maps are injective. So all we have to show
is the dimensions of the target spaces are equal to the dimension of Sk(2), which is
equal to [k/4]−1. We only calculate the dimension of W+,0

k , since the other is similar
and only the former is relevant to the subsequent story involving the double Eisenstein
series.

Put T ′ = (
1 0−1 1

)
. Obviously P = 0 is equivalent to P|T ′ = 0. For an even

polynomial

P(X) =
∑

2≤i≤k−4
i :even

ai Xi

with no constant term and no Xk−2 term, we compute the condition P|(1 − T )(1 +
M)T ′ = 0 for P being in W+,0

k . By

(1− T )(1+ M)T ′ = T ′ − T T ′ − t T + MT ′
(

T MT ′ = t T =
(

1 0
1 1

))

and

T T ′ =
(

0 1
−1 1

)
, MT ′ =

(
0 −1
1 1

)
,

the condition becomes

(−X + 1)k−2
(

P

(
X

−X + 1

)
− P

(
1

−X + 1

))

−(X + 1)k−2
(

P

(
X

X + 1

)
− P

( −1

X + 1

))
= 0,
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which is written as

∑

2≤i≤k−4
i :even

ai (Xi − 1)
(
(−X + 1)k−2−i − (X + 1)k−2−i

)
= 0.

Using binomial theorem, we can write this as

2
∑

1≤ j≤k−3
j :odd

⎛

⎜⎝
∑

2≤i≤k−4
i :even

((
i

j

)
−
(

i

k − 2− j

))
ak−2−i

⎞

⎟⎠ X j = 0.

Therefore, the space W+,0
k is the set of polynomials

P(X) =
∑

2≤i≤k−4
i :even

ai Xi

whose (rational) coefficients satisfy a set of linear relations

∑

2≤i≤k−4
i :even

((
i

j

)
−
(

i

k − 2− j

))
ak−2−i = 0 ( j = 1, 3, . . . , k − 3). (22)

Clearly the equations for j and k − 2 − j have just opposite sign, and so we have
to look only at the equations for j < k/2 − 1, the total number of equations being
[(k − 2)/4]. But then for i < j the coefficient of ak−2−i is zero, and the coefficient
matrix is upper triangular with non-zero diagonals, or more explicitly, the equation
can be solved to express ak−4, ak−6, . . . , ak−2[(k+2)/4] by the other coefficients. We
thus see that the dimension of W+,0

k is k/2 − 2 − ([(k + 2)/4] − 1) = [k/4] − 1, as
desired. ��
Remark 1 We have not succeeded in characterizing the (codimension 2) image of
Sk(2) by r+ in W+k ⊗ C. It is expected that such a characterization as in [10] should
exist.

Amazingly enough, the coefficient matrix in (22) appears exactly when we look
at the imaginary part of the double Eisenstein series of level 2, which we are going
to explain. We look at the imaginary part of Goo

r,k−r (τ ) (as q-series) for r even. Let

π : C[[q]] −→ √−1R[[q]] be the natural projection to imaginary part (note that
by imaginary part we mean the term in

√−1R[[q]], not the coefficient of
√−1). As

Theorem 2 and Definition 1 (for r = 2) shows, imaginary parts come from the terms
with ζ̃ e(p)go

h(τ ) for odd p, and we have in matrix form
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π

⎛

⎜⎜⎜⎝

Goo
2,k−2(q)

Goo
4,k−4(q)

...

Goo
k−2,2(q)

⎞

⎟⎟⎟⎠ = Qk

⎛

⎜⎜⎜⎝

ζ̃ e(k − 3)go
3(q)

ζ̃ e(k − 5)go
5(q)

...

ζ̃ e(3)go
k−3(q)

⎞

⎟⎟⎟⎠ , (23)

where Qk is the (k/2− 1)× (k/2− 2) matrix given by

Qk =
((

2 j

2i − 1

)
−
(

2 j

k − 2i − 1

))

1≤i≤k/2−1
1≤ j≤k/2−2

.

This is exactly the coefficient matrix of (22)!
Let DE k be the Q-vector space generated by Goo

r,k−r (r = 2, 4, . . . , k − 2).

Theorem 5 Let k ≥ 4 be a positive even integer.

1)

dim DE k = k

2
− 1,

so that the series Goo
r,k−r (τ ) (r even) are linearly independent over Q.

2) The space DE k contains Q · (2π i)−k G(i∞)
k (τ )⊕ SQ

k (2), where SQ
k (2) is the space

of cusp forms on �0(2) having rational Fourier coefficients.

Proof We first prove 2). By Theorem 3, we see the map

Z eo
r,s �→ Geo

s,r (q), Zoe
r,s �→ Goe

r,s(q), Zoo
r,s �→ Goo

r,s(q), Zo
k �→ Go

k(q),

Poe
r,s �→ Go

r (q)Ge
s(q)+ 1

4
(δr,2ge

s(q)+ δs,2go
r (q)),

Poo
r,s �→ Go

r (q)Go
s (q)+ 1

4
(δr,2go

s (q)+ δs,2go
r (q))

gives a realization of the space DZ k in DE k . Then, the first part of Theorem 1
ensures that the space DE k contains Go

k(q) = (2π i)−k G(i∞)
k (τ ), and by Theorem 3

we see that Go
r (q)Ge

s(q) and Go
r (q)Go

s (q) (r+ s = k, r, s > 2) are contained in DE k .
Because of the relation

(2π i)−k G(0)
r (τ )G(i∞)

s (τ ) = (2r − 1)Ge
r (q)Go

s (q)− Go
r (q)Go

s (q) (q = e2π iτ )

and the fact shown by Imamoglu and Kohnen in [8] that these cusp forms G(0)
r (τ )

G(i∞)
s (τ ) generate the space Sk(2), we obtain the assertion 2).
For 1), first we note by definition the inequality

dim DE k ≤ k

2
− 1.

123



1110 M. Kaneko, K. Tasaka

Since elements in Q · (2π i)−k G(i∞)
k (τ )⊕ SQ

k (2) have no imaginary parts, they sit in
the kernel of the projection π from DE k to

√−1R[[q]], thus

dim ker π ≥ 1+ dim Sk(2) =
[

k

4

]
.

As for the dimension of the image of π , we see that it is equal to the rank of the matrix
Qk because the series go

3(q), go
5(q), . . . , go

k−3(q) are linearly independent over C.
This can be seen as follows. For an odd prime p, the coefficient of q p in go

r (q) is
1 + pr−1 times a constant independent of p. Hence by picking distinct odd prime
numbers p3, p5, . . . , pk−5 and looking at the coefficients of q, q p3 , q p5 , . . . , q pk−5

in go
3(q), go

5(q), . . . , go
k−3(q), we see the desired linear independence because the

coefficient matrix is essentially the (non-vanishing) Vandermonde determinant. We
thus have

dim im π = rankQk =
[

k + 2

4

]
− 1

and therefore

dim DE k ≥
[

k

4

]
+
[

k + 2

4

]
− 1 = k

2
− 1.

Therefore we conclude

dim DE k = k

2
− 1

and also

ker π = Q · (2π i)−k G(i∞)
k (τ )⊕ SQ

k (2).

��
Corollary 1 For an even integer k > 2, we have

dim〈ζ oo(2r, k − 2r) | 1 ≤ r ≤ k/2− 1〉Q ≤ k

2
− 1− dim Sk(2).

Proof By taking the constant term of the q-series, we obtain the surjective map

μ : DE k −→ 〈ζ oo(2r, k − 2r) | 1 ≤ r ≤ k/2− 1〉Q.

By the theorem, the kernel of μ contains the space SQ
k (2) and hence we obtain the

corollary. ��

123



Double zeta values, double Eisenstein series, and modular forms of level 2 1111

Remark 2 The above corollary says that among the k/2−1 numbers ζ oo(even, even)

there are at least dim Sk(2) linear relations. It seems that the k/2 − 1 numbers
ζ oo(odd, odd) are linearly independent over Q, and the total space

〈ζ oo(r, k − r) | 2 ≤ r ≤ k − 1〉Q

is spanned by ζ oo(odd, odd) and ζ(k). (Recall the sum formula in Theorem 1, so that
ζ(k) is contained in the above space.) The conjectural dimension of this space is thus
k/2. We also conjecture that the space of usual double zeta values of even weight k is
contained in the space spanned by ζ oo(r, k − r) except ζ oo(k − 1, 1):

〈ζ(r, k − r) | 2 ≤ r ≤ k − 1〉Q ⊂ 〈ζ oo(r, k − r) | 2 ≤ r ≤ k − 2〉Q,

and that the space 〈ζ oo(2r, k − 2r) | 1 ≤ r ≤ k/2 − 1〉Q is contained in the usual
double zeta space:

〈ζ oo(2r, k − 2r) | 1 ≤ r ≤ k/2− 1〉Q ⊂ 〈ζ(r, k − r) | 2 ≤ r ≤ k − 1〉Q.

When k is odd, we can prove that every ζ oo(r, k − r) except ζ oo(k − 1, 1) is a linear
combination of ζ(r, k − r):

〈ζ oo(r, k − r) | 2 ≤ r ≤ k − 2〉Q ⊂ 〈ζ(r, k − r) | 2 ≤ r ≤ k − 1〉Q.

To prove this we use the identity of Y. Komori, K. Matsumoto, and H. Tsumura ([11])

(
1+ (−1)r ) ζ2(r, s)+ (

1+ (−1)s) ζ2(s, r)

=
k−3∑

i=0
even

2−k+i+1
((

k − i − 1

r − 1

)
+
(

k − i − 1

s − 1

))
ζ(i)ζ(k − i)− ζ(k),

valid when r, s ≥ 2 and r + s = k : odd, where

ζ2(r, s) =
∑

m,n≥1

1

(m + 2n)r ms
= ζ oo(r, s)+ ζ ee(r, s).

For ζ oo(k−1, 1), it seems we need (log 2)ζ(k−1) other than usual double zeta values,
but we have not proved this.

3.3 Proof of Theorem 3

As in [7], we prove Theorem 3 by dividing it into three parts: the constant term,
the imaginary part, and the combinatorial part. The double shuffle relation of the
constant term is nothing but that of double zeta values, namely Proposition 1 and its
regularization. As for the imaginary part, the assertion is as follows.
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1112 M. Kaneko, K. Tasaka

Lemma 3 For each integer k > 2, we define generating functions I eo
k (X, Y ),

I oe
k (X, Y ), I oo

k (X, Y ) by

I eo
k (X, Y ) :=

∑

r+s=k

I eo
r,s Xr−1Y s−1, I oe

k (X, Y ) :=
∑

r+s=k

I oe
r,s Xr−1Y s−1,

I oo
k (X, Y ) :=

∑

r+s=k

I oo
r,s Xr−1Y s−1.

Then we have

∑

p+h=k
p:odd

(
Xh−1Y p−1 + X p−1Y h−1

)
ζ̃ o(p)g o

h (q)=I oo
k (X, Y )+I oo

k (Y, X)

= I eo
k (X+Y, X)+I eo

k (X+Y, Y ),
∑

p+h=k
p:odd

(
Xh−1Y p−1ζ̃ e(p)go

h(q)+X p−1Y h−1ζ̃ o(p)ge
h(q)

)
=I oe

k (X, Y )+I eo
k (Y, X)

= I oe
k (X + Y, X)+I oo

k (X + Y, Y ),

where g o
h (q) and g e

h (q) are the series defined in (18).

Proof By definition, each generating function can be given as

I eo
k (X, Y ) =

∑

p+h=k
p:odd

(
Xh−1Y p−1 − Xh−1(X − Y )p−1

)
ζ̃ o(p)ge

h(q)

+
∑

p+h=k
p:odd

Y h−1(X − Y )p−1ζ̃ o(p)go
h(q),

I oe
k (X, Y ) =

∑

p+h=k
p:odd

Xh−1Y p−1ζ̃ e(p)go
h(q)−

∑

p+h=k
p:odd

Xh−1(X − Y )p−1ζ̃ o(p)go
h(q)

+
∑

p+h=k
p:odd

Y h−1(Y − X)p−1ζ̃ o(p)ge
h(q),

I oo
k (X, Y ) =

∑

p+h=k
p:odd

(
Y h−1(Y − X)p−1 − Xh−1(Y − X)p−1

)
ζ̃ e(p)go

h(q)

+
∑

p+h=k
p:odd

Xh−1Y p−1ζ̃ o(p)go
h(q).

The lemma follows from these by a simple calculation using binomial theorem and
we omit the details. ��
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Double zeta values, double Eisenstein series, and modular forms of level 2 1113

For the computation of the combinatorial part, we prepare the generating functions
as follows.

β(X) :=
∑

p>0

βp X p−1 = 1

2

(
1

X
− 1

eX − 1

)
,

βe(X) :=
∑

p>0

βe
p X p−1 = 1

4

(
2

X
− 1

e
X
2 − 1

)
,

βo(X) :=
∑

p>0

βo
p X p−1 = 1

4

1

e
X
2 + 1

,

ge(X) :=
∑

p>0

ge
p(τ )X p−1 = −1

2

∑

u>0

e
−u X

2 · qu

1− qu
,

go(X) :=
∑

p>0

go
p(τ )X p−1 = −1

2

∑

u>0

(−1)ue
−u X

2 · qu

1− qu
,

g e(X) :=
∑

p>0

g e
p(τ )X p−1 = 1

2X

(
∑

u>0

e
−u X

2 · qu

(1− qu)2 − 4ge
2(τ )

)
,

g o(X) :=
∑

p>0

go
p(τ )X p−1 = 1

2X

(
∑

u>0

(−1)ue
−u X

2 · qu

(1− qu)2 − 4go
2(τ )

)
,

geo(X, Y ) :=
∑

r,s≥1

geo
r,s(τ )Xr−1Y s−1 = 1

4

∑

u,v>0

(−1)ve−
u X+vY

2 · qu

1− qu
· qu+v

1− qu+v
,

goe(X, Y ) :=
∑

r,s≥1

goe
r,s(τ )Xr−1Y s−1 = 1

4

∑

u,v>0

(−1)ue−
u X+vY

2 · qu

1− qu
· qu+v

1− qu+v
,

goo(X, Y ) :=
∑

r,s≥1

goo
r,s(τ )Xr−1Y s−1= 1

4

∑

u,v>0

(−1)u+ve−
u X+vY

2 · qu

1−qu
· qu+v

1−qu+v
,

βeo(X, Y ) :=
∑

r,s≥1

βeo
r,s(τ )Xr−1Y s−1 = βo(Y )ge(X)− βo(X − Y )(ge(X)−go(Y )),

βoe(X, Y ) :=
∑

r,s≥1

βoe
r,s(τ )Xr−1Y s−1 = βe(Y )go(X)− βo(X − Y )(go(X)−ge(Y )),

βoo(X, Y ) :=
∑

r,s≥1

βoo
r,s(τ )Xr−1Y s−1 = βo(Y )go(X)− βe(X − Y )(go(X)−go(Y )),
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1114 M. Kaneko, K. Tasaka

εeo(X, Y ) :=
∑

r,s≥1

εeo
r,s(τ )Xr−1Y s−1

= Xgo(Y )− Y go(Y )− go
0(τ )+ Xge(X)+ ge

0(τ )+ ge(X)+ α1,

εoe(X, Y ) :=
∑

r,s≥1

εoe
r,s(τ )Xr−1Y s−1

= Xge(Y )− Y ge(Y )− ge
0(τ )+ Xgo(X)+ go

0(τ )+ go(X)+ α2,

εoo(X, Y ) :=
∑

r,s≥1

εoo
r,s(τ )Xr−1Y s−1= Xgo(Y )−Y go(Y )+Xgo(X)+go(X)+α3,

where α1, α2 and α3 are defined as in (19). Let

C eo(X, Y ) :=
∑

r,s≥1

Ceo
r,s Xr−1Y s−1,

C oe(X, Y ) :=
∑

r,s≥1

Coe
r,s Xr−1Y s−1,

C oo(X, Y ) :=
∑

r,s≥1

Coo
r,s Xr−1Y s−1.

Then by definition we have

C eo(X, Y ) = geo(X, Y )+ βeo(X, Y )+ 1

4
εeo(X, Y ),

C oe(X, Y ) = goe(X, Y )+ βoe(X, Y )+ 1

4
εoe(X, Y ),

C oo(X, Y ) = goo(X, Y )+ βoo(X, Y )+ 1

4
εoo(X, Y ).

The double shuffle relations of the combinatorial double Eisenstein series are stated
as

Lemma 4 Put

Qoe(X, Y ) := go(X)ge(Y )+ βo(X)ge(Y )+βe(Y )go(X)+ 1

4
(Xg e(Y )+Y g o(X)),

Qoo(X, Y ) := go(X)go(Y )+ βo(X)go(Y )+ βo(Y )go(X)+ 1

4
(Xgo(Y )+Y go(X)),

C o(X) := go(X)− α3

2
· X.

Then we have

Qoe(X, Y ) = C oe(X, Y )+ C eo(Y, X) = C oe(X + Y, Y )+ C oo(X + Y, X),

Qoo(X, Y ) = C oo(X, Y )+ C oo(Y, X)+ C o(X)− C o(Y )

X − Y
= C eo(X + Y, X)+ C eo(X + Y, Y ).
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Proof Computations are parallel to those in [7], though tedious, and we omit the
details. ��

The two lemmas and Proposition 1 complete the proof of Theorem 3.

Appendix: The double Eisenstein series and the period polynomials in the case
of SL2(Z)

In this appendix we briefly recall the relation described in [9] between the double
Eisenstein series and modular forms for SL2(Z).

The double Eisenstein series for SL2(Z) was first defined and studied in [7]:

Gr,s(τ ) := (2π i)−r−s
∑

λ>μ>0
λ,μ∈Z·τ+Z

1

λrμs
= (2π i)−r−s

∑

mτ+n>m′τ+n′>0
m,n,m′,n′∈Z

× 1

(mτ + n)r (m′τ + n′)s
.

Its Fourier series is given there as

Gr,s(τ ) = ζ̃ (r, s)+ gr,s(q)+
∑

p+h=k
p>1

×
(

(−1)s
(

p − 1

s − 1

)
+ (−1)p+r

(
p − 1

r − 1

)
+ δp,s

)
ζ̃ (p)gh(q),

where ζ̃ (r, s) = (2π i)−r−sζ(r, s), ζ̃ (p) = (2π i)−pζ(p), and

gr,s(q) = (−1)r+s

(r − 1)!(s − 1)!
∑

m>n>0
u,v>0

ur−1vs−1qum+vn,

gh(q) = (−1)h

(h − 1)!
∑

u,m>0

uh−1qum .

By extending the definition in the case of non-absolute convergence using q-series,
we showed that the double Eisenstein series satisfy the double shuffle relations (in the
form described in [7]), that the space of double Eisenstein series contains the space of
modular forms on SL2(Z), and made a connection to the period polynomial by looking
at the imaginary parts of the q-expansions of Gr,s(τ ). Specifically, the imaginary parts
are given, like (23), by

π

⎛

⎜⎜⎜⎝

G2,k−2(τ )

G3,k−3(τ )
...

Gk−2,2(τ )

⎞

⎟⎟⎟⎠ = Q(1)
k

⎛

⎜⎜⎜⎝

ζ̃ (k − 3)g3(q)

ζ̃ (k − 5)g5(q)
...

ζ̃ (3)gk−3(q)

⎞

⎟⎟⎟⎠ ,
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1116 M. Kaneko, K. Tasaka

where Q(1)
k is the (k − 3)× (k/2− 2) matrix given by

Q(1)
k =

(
(−1)i

(
2 j

i

)
− (−1)i

(
2 j

k − 2− i

)
+ δk−2−i,2 j

)

1≤i≤k−3
1≤ j≤k/2−2

.

Rather surprisingly, this contains exactly Qk as a minor. For example,

Q(1)
12 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 −4 −6 −8
1 6 15 28
0 −4 −20 −48
0 1 15 42
0 0 0 0
0 0 −14 −42
0 4 20 48
0 −6 −15 −27
2 4 6 8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Q12 =

⎛

⎜⎜⎜⎜⎝

−2 −4 −6 −8
0 −4 −20 −48
0 0 0 0
0 4 20 48
2 4 6 8

⎞

⎟⎟⎟⎟⎠
.

Precisely, the i-th row of Qk is the 2i − 1-st row of Q(1)
k .

The right kernel of Q(1)
k corresponds to the even period polynomials (without con-

stant term) of weight k for SL2(Z), an example being t (1,−3, 3,−1) in the right
kernel of Q(1)

12 and the corresponding period polynomial X8 − 3X6 + 3X4 − X2 of
weight 12. As in Corollary 1, by looking at the constant term of the double Eisenstein
series and by using the connection to the period polynomial just mentioned, we obtain
the upper bound of the dimension of the space of double zeta values:

dim〈ζ(r, k − r) | 2 ≤ r ≤ k − 1〉Q ≤ k

2
− 1− dim Sk(1).

Also, elements in the left kernel of Q(1)
k produce expressions of modular forms in

terms of double Eisenstein series. By comparing the Fourier coefficients, we obtain
certain formulas for Fourier coefficients of modular forms. Let us look at some exam-
ples in weight 12.

As the simplest example, take (0, 0, 0, 0, 1, 0, 0, 0, 0) in the left kernel of Q(1)
12 .

This corresponds to the relation

27 · 3 · 52 · 691 G6,6(τ ) = 29 · 32 · 52 G̃12(τ )−
(τ),

where 
(τ) = q�n>0(1− qn)24 =∑
n>0 τ(n)qn is the famous cusp form of weight

12. Comparing the coefficients of both sides, we obtain

τ(n) = 2

693
σ11(n)+ 691

22 · 32 · 7σ5(n)− 691

22 · 32 σ3(n)

+ 5 · 691

2 · 32 · 11
σ1(n)− 2 · 691

3
ρ5,5(n),
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where

ρk,l(n) :=
∑

a+b=n
a,b>0

∑

u|a,v|b
a
u > b

v

ukvl .

Incidentally, the Ramanujan congruence

τ(n) ≡ σ11(n) (mod 691)

is clearly seen from this.
Secondly take (0, 0, 7, 28, 0, 20, 0, 0, 0), which gives the relation

27 · 32 · 5 · 7 · 691G4,8(τ )+ 29 · 32 · 5 · 7 · 691G5,7(τ )+ 29 · 32 · 52

·691G7,5(τ ) = 25 · 33 · 5 · 11 · 149G̃12(τ )−
(τ)

and the formula

τ(n) = 149

840
σ11(n)− 691

180
σ7(n)− 11747

126
σ5(n)+ 173441

360
σ3(n)

− 3455

9
σ1(n)− 2764

3
ρ3,7(n)− 19348

3
ρ4,6(n)− 13820

3
ρ6,4(n).

We may take yet other vectors in the left kernel of Q(1)
12 (the dimension is 6) and may

deduce similar kind of formulas for τ(n).

Remark 3 Interestingly enough, the matrix Q(1)
k appears when we write “motivic”

double zeta values in terms of certain basis elements f3, f5, . . . using coproduct
structure described in F. Brown’s recent important papers [4,5]. One of the present
authors has found the same relation between triple Eisenstein series and motivic triple
zeta values. Or a variant (minor matrix) of Q(1)

k appears in the work of Baumard and
Schneps [3] on a relation of double zeta values and period polynomials. Each of these
should be related with each other, but we have not figured out the exact relations.
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