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1 Introduction

This paper mainly study the Kaneko-Zagier differential equation. We construct exact solu-
tions that correspond to the classification of conformal field theory given by S. D. Mathur,
S. Mukhi and A. Sen (MMS classification for short) [6], and extend it to the case of solutions
with logarithmic terms.

The MMS classification is based on modular invariance property of the space of characters
of simple modules for rational vertex operator algebras. The point of their approach is the
use of modular differential equations [5], i.e.

d2h(τ)
dτ2

+ a(τ)
dh(τ)

dτ
+ b(τ)h(τ) = 0, (1.1)

where τ is the variable in the complex upper half-plane, a(τ) is a constant multiple of the
quasimodular Eisenstein series E2(τ) and b(τ) is a modular form of weight 4 on the mod-
ular group Γ = SL(2, Z). Solving (1.1) by the Frobenius method, Mathur, Mukhi and Sen
obtained the list of all possible q-graded characters and gave the corresponding rational con-
formal field theories.

The differential equation (1.1) is, as it turns out, equivalent to the differential equa-
tion introduced by Kaneko and Zagier [4] for number theoretical motivation; the study of
j-invariants of supersingular elliptic curves. After the work [4], Kaneko and Koike [3, 2]
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extensively studied this differential equation (the “K-Z equation” for short) and explicitly
constructed solutions which are modular or quasimodular forms of various levels and weights.

In this paper, by using these works, we describe exact solutions that correspond to the
MMS classification, and develop further their classification and our exact description to the
case of solutions with logarithmic terms. In the theory of rational vertex operator algebras,
any q-graded character of simple module is a holomorphic function (in q = e2πiτ ). There-
fore, these solutions that we find are candidates of pseudo-characters of non-rational vertex
operator algebras.

As an application of the existence of solutions with logarithmic terms, we prove a non-
existence theorem of rational vertex operator algebras with two-dimensional space of pseudo-
characters.

The paper is organized as follows. In section 2, we recall the concept of pseudo-characters
which generalizes q-graded characters for a rational vertex operator algebra. We study the
K-Z equation and the MMS classification as well as its generalization in section 3. The final
section is devoted to an application of our main results to the theory of vertex operator
algebras.

2 Pseudo-characters

2.1 q-graded traces of simple modules for vertex operator al-
gebras

Let V =
⊕∞

n=0 Vn be a vertex operator algebra. We write as n = |v| for an element v in Vn.
We say that V satisfies Zhu’s finiteness condition if the codimension of the vector subspace
that is linearly generated by a(−n)b (a, b ∈ V, n ≥ 2) of V is finite. Suppose that V satisfies
Zhu’s finiteness condition and let M be a simple V -module. Then, we have

M =
∞⊕

n=0

Mr+n, Mr 6= 0, Mr+n = {m ∈ M : L0m = (r + n)m } (2.1)

and dimC Mr+n < ∞ for any nonnegative integer n, where r is a complex number called a
conformal weight . It is well-known that any conformal weight r of a vertex operator algebra
satisfying Zhu’s finiteness condition is a rational number ([7]). Let cV be the central charge
of V . Then cV is also a rational number (see [7]).

We define the q-graded trace χM (−, q) of a simple module M by

χM (v, q) = trM o(v)qL0−cV /24 (2.2)

for any homogeneous v ∈ V , where o(v) = v(|v|−1) : Mr+n → Mr+n for any nonnegative
integer n. Note that for the vacuum element v = | 0 〉, we have

χM (q) := χM (| 0 〉, q) = trM idM qL0−cV /24 =
∞∑

n=0

(dimC Mr+n)qr+n−cV /24, (2.3)

which is called the q-graded character of the simple module M .
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2.2 Modular invariance of the space of q-graded characters

Let V be a rational vertex operator algebra satisfying Zhu’s finiteness condition and let
{M1, . . . , M s} be the complete list of inequivalent simple modules. Suppose that an element
v ∈ V is a homogeneous singular element of weight k = |v|, i.e. Lnv = 0 for all positive
integers n and v ∈ Vk, where {Ln, cV id}n∈Z is the Virasoro algebra associated with V .

For any singular vector v ∈ Vk, we denote by Mv the vector space linearly spanned by
χM1(v, q), . . . , χMs(v, q). Then, it is well-known ([8]) that the vector space Mv is invariant
under the action of the slash operator |k of the modular group Γ = SL(2, Z), which is defined
by

f |k (τ) = (cτ + d)−kf
(aτ + b

cτ + d

)
for

(
a b
c d

)
∈ Γ.

Here, τ is a variable in the upper half-plane and q = e2πiτ .

2.3 Pseudo-characters of vertex operator algebras

We recall the definition of one-point functions and the concept of pseudo-characters.
Let E2k (k ≥ 2) be the normalized Eisenstein series of weight 2k on the modular group Γ

defined by

E2k(τ) =
1
2

∑
m,n∈Z

(m,n)=1

1
(mτ + n)2k

, (2.4)

so normalized that its Fourier series

E2k(τ) = 1 − 2k

B2k

∞∑
n=1

σ2k−1(n)qn (2.5)

starts with 1. Here, B2k is the Bernoulli number and σ2k−1(n) is the sum of (2k−1)-st power
of positive divisors of n. Recall that the ring of holomorphic modular forms of integral weight
for Γ is identified with the polynomial ring C[E4, E6].

Definition 2.1. Define the linear space Oq(V ) as a C[E4, E6]-submodule of C[E4, E6] ⊗ V
linearly generated by elements

u(0)v (∀u, v ∈ V ), (2.6)

u(−2)v +
∞∑

k=2

2(2k − 1)ζ(2k)E2k(τ) ⊗ u(2k−2)v, (∀u, v ∈ V ), (2.7)

where ζ(2k) =
∑∞

n=1 1/n2k is the value of the Riemann zeta function at 2k.

Definition 2.2. Let H be the upper half-plane. A functional S(−, τ) : C[E4, E6]⊗V ⊗H → C
satisfying the following conditions is called a one-point function on the torus:

i) For any v ∈ C[E4, E6] ⊗ V , the function S(v, τ) of τ is holomorphic in H;

ii) S(
∑

i fi(τ) ⊗ vi, τ) =
∑

i fi(τ)S(vi, τ) for any vi ∈ V and fi(τ) ∈ C[E4, E6];

3



iii) S(v, τ) = 0 for all v ∈ Oq(V );

iv) For any v ∈ Vn, one has

S(L−2v, τ) = ∂S(v, τ) +
∞∑

k=2

2ζ(2k)E2k(τ)S(L2k−2u, τ), (2.8)

where we define ∂ by

∂S(v, τ) = ∂nS(v, τ) = 2πi
d

dτ
S(v, τ) +

nπ2

3
E2(τ)S(v, τ) (2.9)

for any homogeneous v ∈ Vn and extend it by linearity. Here, the function E2(τ) is the
(quasimodular) Eisenstein series of weight 2 defined by

E2(τ) := 1 − 24
∞∑

n=1

σ1(n)qn.

We denote the space of one-point functions (on the torus) by C(V ).

Definition 2.3. Let V be a vertex operator algebra. For any one-point function S(−, τ) : V →
C, the function S(| 0 〉, τ) is called a pseudo-character of V .

The following theorem is well-known.

Theorem 2.4. Let V be a rational vertex operator algebra satisfying Zhu’s finiteness condi-
tion. Then the space of pseudo-characters of V has a basis {χM1(−), . . . , χMr(−)}, where
{M1, . . . , Mr} is the complete list of inequivalent simple modules. In other words, any
pseudo-character is a linear combination of trace functions of simple modules.

2.4 Differential equations for pseudo-characters

The space Mv (v ∈ Vn) is invariant under the action of the slash operator |n. There is a
canonical way to obtain ordinary differential equation of which the space of solutions is Mv.
To see this, we prepare several preliminary definitions and lemmas on derivatives of modular
forms.

Definition 2.5. Introduce the first order differential operator D acting on modular forms by

D = q
d

dq
− 1

12
E2(τ) · w, (2.10)

where w(f) = kf if f is of weight k.

The following lemma is well-known.

Lemma 2.6. Let f be a modular form of weight k on Γ or its subgroup. Then Df is modular
of weight k + 2 on the same group.
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Definition 2.7. Let {f1, . . . , fn} be a set of linearly independent modular forms of weight k,
and let

Wi = det



f1 . . . fn

Df1 . . . Dfn
... . . .

...
Di−1f1 . . . Di−1fn

Di+1f1 . . . Di+1fn
... . . .

...
Dnf1 . . . Dnfn


(2.11)

for any integer 0 ≤ i ≤ n, and introduce functions φi (0 ≤ i ≤ n − 1) by

φi(τ) = (−1)n−iWi/Wn. (2.12)

Lemma 2.8. The functions φi(τ) (0 ≤ i ≤ n − 1) are modular forms of weight 2(n − i).

Proof. By the definition of determinant and Lemma 2.6, it follows that Wi (0 ≤ i ≤ n− 1) is
a modular form of weight

k + (k + 2) + · · · + (k + 2n) − (k + 2i) = nk + n(n + 1) − 2i (2.13)

and thus φi(τ) (0 ≤ i ≤ n − 1) is a modular form of weight

nk + n(n + 1) − 2i − nk − n(n + 1) + 2n = 2(n − i). (2.14)

2.5 Two-dimensional case

We study the case that the vector space Mv is two-dimensional. Let χ1(τ) = χ1(v, τ) and
χ1(τ) = χ2(v, τ) form a basis of the vector space Mv. Then, χ1(τ) and χ2(τ) are solutions
of the second order ordinary differential equation

f ′′(τ) −
(
χ1(τ)χ

′′
2(τ) − χ2(τ)χ

′′
1(τ)

)
W (τ)

f ′(τ) +

(
χ′

1(τ)χ
′′
2(τ) − χ′

2(τ)χ
′′
1(τ)

)
W (τ)

f(τ) = 0, (2.15)

where W (τ) is a wronskian, i.e. W (τ) = χ1(τ)χ
′
2(τ)−χ2(τ)χ

′
1(τ), and ′ means the derivative

D. Let

a1(τ) = −χ1(τ)χ
′′
2(τ) − χ2(τ)χ

′′
1(τ)

W (τ)
, a2(τ) =

χ′
1(τ)χ

′′
2(τ) − χ′

2(τ)χ
′′
1(τ)

W (τ)
. (2.16)

Then, the modular invariance property of χ1(τ) and χ2(τ) implies that a1(τ) and a2(τ) are
(meromorphic) modular forms of weights 2 and 4, respectively.

Proposition 2.9. Let V be a vertex operator algebra satisfying Zhu’s finiteness condition,
and suppose that the space of pseudo-characters of V is two-dimensional. Let {χ1(τ), χ2(τ)}
be a basis of the space of pseudo-characters of V , then a1(τ) and a2(τ) given by (2.16) are
(meromorphic) modular forms of weight 2 and 4, respectively.

5



3 MMS theory and Kaneko-Zagier equation

3.1 The Kaneko-Zagier equation

Let k be a rational number. The so-called Kaneko-Zagier equation (K-Z equation for short)
is the second order ordinary differential equation

f
′′
(τ) − k + 1

6
E2(τ)f ′(τ) +

k(k + 1)
12

E′
2(τ)f(τ) = 0, (])k

where
′ =

1
2πi

d

dτ
= q

d

dq
.

A particular solution of this equation, which is a modular form of weight k, was studied in
[4] from a viewpoint of number theory (in relation to j-invariants of supersingular elliptic
curves), and then various modular or quasimodular form solutions were found and described
in [3] and [2].

Suppose f(τ) is a solution of (])k that is modular of weight k (on some congruence
subgroup). Then, the quotient f(τ)/η(τ)2k is a modular function (of weight 0), where

η(τ) = q1/24
∞∏

n=1

(1 − qn) (3.1)

is the Dedekind eta function. What Mathur et al. did in [6] is, in our framework, to list
all possible solutions f(τ) with which the quotient f(τ)/η(τ)2k has positive integral Fourier
coefficients. Let us reformulate their argument in our setting.

Put g(τ) = f(τ)/η(τ)2k. By the well-known formulas

η′(τ) =
1
24

η(τ)E2(τ) and E′
2(τ) =

1
12

(
E2(τ)2 − E4(τ)

)
, (3.2)

where

E4(τ) = 1 + 240
∞∑

n=1

(∑
d|n

d3
)
qn = 1 + 240q + +2160q2 + 6720q3 + · · ·

is the Eisenstein series of weight 4 on Γ, the equation (])k is transformed to the equation for
g(τ) as

g′′(τ) − 1
6
E2(τ)g′(τ) − k(k + 2)

144
E4(τ)g(τ) = 0. ([)k

Now, we find a solution g(τ) of the form

g(τ) = qα
(
1 +

∞∑
n=1

anqn
)
, (3.3)

where α is a rational number and an (n ∈ N) are positive integers.
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Remark 3.1. Recall that any q-graded character of a vertex operator algebra is of the form
(3.3) (with α = r − cV /24), because if V satisfies Zhu’s finiteness condition, the conformal
weight r and the central charge cV are rational numbers. Moreover, because the coefficients of
a q-graded character is dimensions of the homogeneous spaces, numbers an are non-negative
integers. The lowest part M0 of V -modules is assumed to be one-dimensional.

Before proceeding further, we state a duality between the solution spaces of (])k and
(])−2−k, from which we can restrict our discussion to the case k > −1.

Proposition 3.2. Suppose that f is a solution of (])k. Then, f/η4k+4 is a solution of
(])−2−k.

Proof. The proof is straightforward computation with (3.2).

The vector spaces Vk and V−2−k of solutions of (])k and (])−2−k respectively are mutually
isomorphic by the map

Vk 3 f 7→ f/η4k+4 ∈ V−2−k

and its inverse
V−2−k 3 g 7→ g/η4(−2−k)+4 = gη4k+4 ∈ Vk.

From this duality and the following equality

f/η2k = (f/η4+4k)/η2(−2−k), (3.4)

we conclude that, in order to study weight 0 functions f/η2k for f ∈ Vk, it is enough to
consider the case k ≥ −2 − k, i.e. k ≥ −1. The equation (])k with k = −1 becomes the
trivial one f

′′
= 0. Therefore, we assume k > −1 in the following.

3.2 Mathur-Mukhi-Sen classification

We resume our search for solutions g(τ) of the form (3.3) with a rational α and positive
integral an. Substituting (3.3) into ([)k and looking at the coefficient of the lowest degree,
we find that α satisfies the quadratic equation

α2 − 1
6
α − k(k + 2)

144
= 0, (3.5)

i.e. α = −k/12, (k + 2)/12.
We first consider the case α = −k/12. Rewrite the Fourier series of Eisenstein series as

Ek(τ) = 1 +
∞∑

n=1

ek,nqn (k = 2, 4), (3.6)

and set ek,0 = 1. Then, looking at the coefficients of qα+n of ([)k, we find the relation

(n + α)2an − 1
6

n∑
i=0

e2,i(n − i + α)an−i −
k(k + 2)

144

n∑
i=0

e4,ian−i = 0,
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or equivalently (α = −k/12)

n
(
n − k + 1

6

)
an =

1
6

n∑
i=1

{
e2,i(n − i − k

12
) +

k(k + 2)
24

e4,i

}
an−i (3.7)

for all positive integers n. In particular, for n = 1 we have(
1 − k + 1

6

)
a1 =

1
6
(
2k + 10k(k + 2)

)
, (3.8)

i.e.
a1 =

2k(5k + 11)
5 − k

. (3.9)

Note that when k = 5, we know from [3] that the equation (])k has no modular solutions (it
has a quasimodular solution that is studied in § 3.3). Hence, we can suppose k 6= 5.

Now, by our assumption, the quantity

m :=
2k(5k + 11)

5 − k
(= a1)

is a positive integer, and hence the equation

10k2 + (22 + m)k − 5m = 0 (3.10)

in k (which is rational) has an integral square discriminant:

(m + 2)2 + 200m = `2.

This equation can be rewritten as

(m + ` + 122)(m − ` + 122) = 14400.

This shows that integers m ± ` + 122 are divisors of 14400, and it is not difficult to list all
possible solutions (m, `). For such (m, `), we find the following values of k with which the
coefficient a1 is a positive integers:

k =
1
5
,

1
2
, 1,

7
5
, 2,

5
2
,

13
5

, 3,
16
5

,
17
5

,
7
2
,

19
5

, 4,
41
10

,
21
5

,
22
5

,
9
2
,

23
5

,
47
10

,
24
5

,
49
10

. (3.11)

Setting n = 2 in (3.7), we have

(11 − k)a2 = (5k2 + 11k − 12)a1 + 45k2 + 93k.

Then among the values of k in (3.11), the followings give positive integral a2:

k =
1
5
,

1
2
, 1,

7
5
, 2,

13
5

, 3,
7
2
,

19
5

, 4,
22
5

,
47
10

.

We find by using (3.7) that k = 22/5 gives non-integral a4 and k = 47/10 gives non-integral
a3, so the final candidates for k are

k =
1
5
,

1
2
, 1,

7
5
, 2,

13
5

, 3,
7
2
,

19
5

, 4. (3.12)
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Remark 3.3. The list of k in (3.12) coincides with Table 1 in [6] where (c =)cV = 2k.

For each k in (3.12), the explicit solution g(τ) = f(τ)/η(τ)2k of ([)k can be obtained by
using results in [2] and [3]. To describe this, we need the following functions. Note that we
use a slightly different notation from that in [2].

Let

E
(2)
2 (τ) := 2E2(2τ) − E2(τ) = 1 + 24

∞∑
n=1

( ∑
d|n

d: odd

d
)
qn = 1 + 24q + 24q2 + 96q3 + · · ·

be the Eisenstein series of weight 2 and level 2, and

E
(3)
1 (τ) = 1 + 6

∞∑
n=1

(∑
d|n

(
d

3

))
qn = 1 + 6q + 6q3 + 6q4 + · · ·

the Eisenstein series of weight 1 and level 3, where
(

d

3

)
is the Legendre character. Further,

let

∆(3)
3 (τ) =

η(3τ)9

η(τ)3
= q + 3q2 + 9q3 + 13q4 + · · · ,

∆(4)
2 (τ) =

η(4τ)8

η(2τ)4
=

∑
n≥1

n: odd

(∑
d|n

d
)
qn = q + 4q3 + 6q5 + 8q7 + · · ·

be the cusp form of weight 3 and level 3, and of weight 2 and level 4, respectively. We also
use the theta series

θ3(τ) :=
∑
n∈Z

qn2
= 1 + 2q + 2q4 + 2q9 + 2q16 + · · ·

and
θ2(τ) :=

1
2

∑
n∈Z

q(n+ 1
2)

2

= q
1
4
(
1 + q2 + q6 + q12 + q20 + · · ·

)
.

Finally, we introduce the Ramanujan-Rogers modular functions of level 5:

φ1(τ) = q−1/60
∞∏

n=0

1
(1 − q5n+1)(1 − q5n+4)

,

φ2(τ) = q11/60
∞∏

n=0

1
(1 − q5n+2)(1 − q5n+3)

.

For each k in (3.12), we denote by gk(τ) the (unique) solution of ([)k of the form (3.3)
with α = −k/12.
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Theorem 3.4. For the values of k in (3.12), the functions gk(τ) are given by

g1/5(τ) = φ1(τ), g1/2(τ) =
θ3(τ)
η(τ)

, g1(τ) =
E

(3)
1 (τ)
η(τ)2

, g7/5(τ) = φ1(τ)7 + 7φ1(τ)2φ2(τ)5,

g2(τ) =
E

(2)
2 (τ)
η(τ)4

, g13/5(τ) = φ1(τ)13 + 39φ1(τ)8φ2(τ)5 − 26φ1(τ)3φ2(τ)10,

g3(τ) =
E

(3)
1 (τ)3 + 54∆(3)

3 (τ)
η(τ)6

, g7/2(τ) =
θ(τ)7 + 112∆(4)

2 (τ)θ(τ)3

η(τ)7
,

g19/5(τ) = φ1(τ)19 + 171φ1(τ)14φ2(τ)5 + 247φ1(τ)9φ2(τ)10 − 57φ1(τ)4φ2(τ)15,

g4(τ) =
E4(τ)
η(τ)8

.

Remark 3.5. Clearly, the Fourier coefficients of gk(τ) in the theorem are integers, and the
positivity of the coefficients are immediate from the definitions for g1/5, g1/2, g7/5, g2, g7/2

and g4. For g1 and g3, the positivity follows from the positivity of the coefficients of E
(3)
1 (τ)

and ∆(3)
3 (τ) which was shown in the proof of Theorem 3 in [3]. The rest, for g13/5 and g19/5,

at the moment, we are not able to show the positivity directly. It is enough to show that the
function φ5

1 − φ5
2 has positive coefficients, which is plausible from numerical experiments.

3.3 Beyond MMS classification

Next, we consider the case α = (k + 2)/12. In this case, instead of (3.7), we have

n
(
n +

k + 1
6

)
an =

1
6

n∑
i=1

{
e2,i(n − i +

k + 2
12

) +
k(k + 2)

24
e4,i

}
an−i, (3.13)

and in particular for n = 1(
1 +

k + 1
6

)
a1 =

1
6
(
−2(k + 2) + 10k(k + 2)

)
, (3.14)

i.e.
a1 =

2(k + 2)(5k − 1)
k + 7

. (3.15)

We require that this quantity is a positive integer, and obtain as before, a finite list (22 in
total) of possible values of k. Among them, the values that give positive integral a2 that is
determined by (n = 2 of (3.13))

(k + 13)a2 = (5k2 + 9k − 14)a1 + 45k2 + 87k − 6

are
k =

1
5
,

1
2
, 1, 2, 3, 5, 8, 11, 17, 23, 29, 53, 113. (3.16)

For k =
1
5
,

1
2
, 1, 2, 3, 8, we know from [3] and [2] that there are corresponding modular

functions as solutions of ([)k. They are described as follows. Denote by hk(τ) the (unique)
solution of ([)k of the form (3.3) with α = (k + 2)/12.
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Theorem 3.6. For k =
1
5
,

1
2
, 1, 2, 3, 8, the functions hk(τ) are given by

h1/5(τ) = φ2(τ), h1/2(τ) =
θ2(τ)
η(τ)

, h1(τ) =
η(3τ)3

η(τ)3
, h2(τ) =

η(2τ)8

η(τ)8
,

h3(τ) =
E

(3)
1 (τ)η(3τ)6

η(τ)8
, h8(τ) =

E
(2)
2 (τ)η(2τ)24

η(τ)28
,

which are respectively of level 5, 4, 3, 2, 3, and 2.

Remark 3.7. It is proved that the Fourier coefficients of these functions are positive integers.
For the remaining values of k in the list (3.16), the solutions hk(τ) are not modular but

“quasimodular”. Let fk(τ) be the normalized quasimodular solution of (])k given in Theorem
2 in [3]. Then, for k = 5, 11, 17, 23, 29, 53, 113, we have hk(τ) = fk(τ)/η(τ)2k. Apart from
the function

h5(τ) =
1

240
E′

4(τ)
η(τ)10

,

the explicit formula in [3] gives no clue how to prove the positivity of coefficients of hk(τ).
For instance, we are unable to prove the positivity of the coefficients of

h11(τ) =
1

462

(
η(τ)2 − 1

240
E′

4(τ)E6(τ)
η(τ)22

)
= q13/12 + 78q25/12 + 2509q37/12 + · · · .

There is one more aspect concerning to these quasimodular solutions. Let us consider
solutions of ([)k of the form

g = g1 log q + g2, (3.17)

g1 = qα
(
1 +

∞∑
n=1

anqn
)
, g2 = qβ

∞∑
n=0

bnqn. (3.18)

Substituting (3.17) into ([)k, we obtain(
g1

′′ − 1
6
E2 g′1 −

k(k + 2)
144

E4 g1

)
log q + 2g1 + g2

′′ − 1
6
E2(g1 + g′2) −

k(k + 2)
144

E4 g2 = 0,

and we see that g1 is a solution of ([)k. Hence, if we require the coefficients an being positive
integers, the weight parameter k must be in one of the lists (3.12) and (3.16).

However, we know from [3] and [2] that the only values of k in the lists that allow solutions
with log q terms are k = 5, 11, 17, 23, 29, 53, 113. More explicitly, it is shown in the final
section of [3] that if we write the quasimodular solution fk(τ) of (])k (which is proved to be
non-zero) as

fk(τ) = f
(1)
k (τ)E2(τ) + f

(2)
k (τ)

where f
(1)
k (τ) and f

(2)
k (τ) are modular forms of weights k− 1 and k +1 respectively, then the

function
fk(τ) log q + 12f

(1)
k (τ) (3.19)

is a solution of (])k.
Remark 3.8. When k is a natural number satisfying k ≡ 5 mod 6, the differential equation (])k

always has a quasimodular solution, and hence a solution of the form (3.19) with fk(τ) 6= 0.
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3.4 The MMS equation and the K-Z equation

In this section, we reveal a relationship of the MMS equation to the K-Z equation.
Recall that the MMS equation is

d2g

dτ2
(τ) − 1

3
πiE2(τ)

dg

dτ
(τ) + µπ2E4(τ)g(τ) = 0. (3.20)

The solution in question is of the form

g(τ) = qα
( ∞∑

n=0

gnqn
)

. (3.21)

Substituting (3.21) into (3.20), we find

µ = 4α2 − 2
3
α. (3.22)

Let V =
⊕∞

n=0 Vn be a vertex operator algebra satisfying Zhu’s finiteness condition
and ` = dimV/C2(V ) − 1, where C2(V ) is the vector space linearly spanned by elements
a(−2)b (a, b ∈ V ). Note that the quotient space V/C2(V ) is finite-dimensional because of
Zhu’s finiteness condition. Then, it was proved by M. Gaberdiel and A. Neitzke [1] that

chV qL0 =
∞∑

n=0

(dimVn)qn ≤
∞∏

n=1

(1 + qn)` (` = dim V/C2(V ) − 1). (3.23)

Now, the right-hand side of (3.23) converges for 0 < |q| < 1 and clearly

chV qL0 ∼ 1 (3.24)

as τ → i∞. Therefore, we find
chV qL0−c/24 ∼ q−c/24 (3.25)

and thus we have α = −c/24. By solving (3.22), we find

α =
1 ±

√
1 + 36µ

12
. (3.26)

Because α = −c/24 is a rational number, the number 1 + 36µ must be a perfect square, say,
1 + 36µ = (k + 1)2. Then, the MMS equation (3.20) becomes

g′′(τ) − 1
6
E2(τ)g′(τ) +

k(k + 2)
144

E4(τ)g(τ) = 0 . (3.27)

4 Application to non-rational vertex operator alge-

bras

We give an application of the discussions in § 3.3.
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Theorem 4.1. Let V be a vertex operator algebra satisfying Zhu’s finiteness condition. Sup-
pose that the space of pseudo-characters is two-dimensional. If the value of the central charge
c is given by c = 2k, or − 4 − 2k with k ≡ 5 (mod 6), k ∈ N, the vertex operator algebra V
is not rational.

Proof. Suppose on the contrary that V is rational. Then, it is known that any pseudo-
character is a linear combination of q-graded characters of simple modules, and that these
q-graded characters are holomorphic functions of q on the domain |q| < 1 ([8]). However, for
k satisfying the condition in the theorem, the equations (])k have solutions involving log q as
shown in § 3.3.

Conjecture. For the values of c = 2k,−4 − 2k with k = 5, 11, 17, 23, 29, 53, 113, there is
a non-rational vertex operator algebra V with central charge c.
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