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By symbolic computation, we have derived algebraic equations including ellip-
tic curves to obtain cell-diversity condition. The development of a multicellu-
lar organism is a marvelous phenomenon. Starting from one or a few cells, the
organism becomes a set of cells with diverse cell types to serve various func-
tions. To obtain conditions for cell-type diversity, we construct a model using
a Lindenmayer system. In virtue of symbolic computation,quantifier elimina-
tion, we have successfully derived explicit relations of cell-type diversity under
some constraints. The derived relations are, interestingly and remarkably,
yield points deeply related toFibonacci numbersand include elliptic curves
which have been provided by symbolic computation tools for the first time.
Survey of the rational points and quadratic irrational numbers on these curves
has revealed periodic and quasi-periodic structures, respectively, bringing us

possible relevance of these points to forms of organs.



In a multicellular organism, a single cell—an egg—or a group of cells develops into a multicell
with various different cell types. The multicells are thought to form according to specific rules,
wherein the first cell type transforms into one different cell type or into two or more different
cell types. Such cell-type transformation rules can be described as a tree diagram, termed
a cell-lineagediagram, while the developmental process of multicells is usually terre#éd
differentiation(1). In 1968, such a cell-differentiation process was modeled by Lindenmayer
(2,3).

For simplicity, the model proposed in this paper is described by one-dimensional cell chains,
and is based on laindenmayer systeliL-system), where the cell-lineage diagram is described
by relations betweerewriting rules. L-system models for developmental systems with cell
lineages and for biological tissues such as blood vessels of the eye have been studied over past
decades4-6). In these L-systemsiteractionsbetween cells have been ignored, forming a OL-
system, because of the complexity or difficulty in analysis. By contrast, in this paper, symbolic
computation based on the quantifier elimination (QE) method is presented for the derivation of
algebraic equations over an L-system with interactions (“IL-system” hereafter). Furthermore,
stochastic aspects can be introduced into an L-system, termed a stochastic L-3y8derfine
stochastic IL-system with interactions (sIL-system) can account for the influences of cell-type-
dependent proliferation and transition rat@} (

In this paper, we focus on the algebraic equations between the cell-type diversity and some
constraints on the cell chain. Further, we consider three basic cell-lineage diagrams: (i) the
branching cell-lineagdl = { B, C'} without the cell-type order conservation rule, (ii) the linear
diagramA = B =- C with the conservation rule and (iii) the linear diagram without the rule.

Through various symbolic approaches, we have successfully obtained five equations including



elliptic curves, for the first time. Analysis of these equations provides classification of the
multicell features under some conditions.

Throughout the previous and the present paper, we derived algebraic numbers or equations
instead of approximate values. The reason is illustrated by this simple example: consider the
algebraic numbef1 4 /5)/2 andits approximate valué.618. The former is one root of

2? —x — 1 = 0in z, which can be expressed as a continued fraction:

1
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Appearancef only 1 in the above formula reveals the relationship betwgen /5)/2 and
Fibonaccinumbers or self-similarity (quasi-periodicity) of the corresponding sequence (11,12
By contrast, from the latter,.618, we cannot submit such a strong proposal. This is why we

put a lot of effort into obtaining algebraic numbers by QE.

Lindenmayer system model. In this paper, we extract two basic and essential subgraphs of
general cell lineage diagrambnear andbranchingcell differentiations with three cell types.
This model is described by an slL-system for three cell tyged$? andC'. Although we study
the case of three cell types because more than three types bring us highly complicated and
intractable calculation, the present approach of discrete model and symbolic computation will
shed some light on the mechanism of cell-type diversity within multicellular organisms.

We assume the following two basic cell-differentiation graphs as subgraphs of the cell-
lineage diagramBranchingA = {B,C'} andLinear A = B = C. The proliferations and
the transitions between types are denoteddby> AA,B — BBor(C — CC andA — B,

A — C (in the branching) oA — B (in the linear), respectively. Further, the proliferation and



transitionrates of branching diagram are defined as follows:

AA P11,

B D12 {BB D22 {CC D33
A— 7 , B — - 0 — 7

c D13, B 1—pao, C 1-ps3

A 1—=pi1—pi2— D3,
with0 <p;; <1(1<i<j<3)andp;s +pi2+pi3 <1 TherulesA — A B — Bor

C — C represents that the type does not change.

Likewise, the rates of the linear diagram are defined as:

AA D11, BB D22,
A - B P1,2, 7B - O P23, 70 - {CCC ]_]E))’;’
A 1—pi1—pio, B 1—pys—pas, 53

with0 < p;; <1 (1 <i<j<3)andp;,;+p;i1 <1 (1 <:<2).Inaddition to the rewriting

rules above, we adopt another rewriting rule, termedlktype order conservation rule
AC — ABC, CA — CBA,

which guarantees the contiguity of cell types. When we adopt this conservation rule is applied
after each application of the Branching or Linear rewriting rules. The cell-type order con-
servation rule originates from the “intercalary regeneration” phenomenon in cockroach legs,
as illustrated in Fig. 1. When portions of the legs with non-contiguous positional values are
grafted together, new tissue is intercalated to fill the gap so that the non-contiguous positional
values disappead 8, 14. Such a regeneration phenomenon may be common in wound repair
in the early stages of the cell-lineage diagram (15). This is why we analyze the effect of the
conservation rule. In this paper, we analyze the three cases: (i) a branching cell-lineage diagram
without the cell-type order conservation rule, (ii) a linear cell-lineage diagram without the rule
and (iii) a linear diagram with the rule. We have not analyzed the case of a branching diagram
with the rule because we have not found a corresponding phenomenon in the actual cell lineage.
The one-dimensional cell chain becomes longer as these rules are applied. Using these two

models, we estimate the cell-type diversity by calculating the following composition in the cell
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chain:

AA, AB, BA, (AC,CA), BB, BC,CB,CC,

where(AC, C'A) does not exist when the cell-type order conservation rule is adopted and ap-

plied in the elongation of a cell chain. We assume the following constraint:
gN(AA) = N(BB) = N(CC) AgN(AB) = N(BC), (1)

where A denotes “And,”g designates the parameter in this constraint, ArfY") denotes

the number of the two contiguous cell typ&s” in the cell chain. N(AB) = N(BA) and
N(BC) = N(CB) hold because of the mirror symmetry of the rewriting rulesi 1§ regarded

as the initial cell type,A corresponds to a stem cell, which is thought to be a minority in
real biological mature tissues but a majority in the early developmental stagerider these
constraints, in this paper, we have calculated the maximum vali&(dfB) /N (AA), which
represents the ratio of junctions to non-junctions between different cell types. We have adopted
this maximum as the measurea#ll-type diversityn the sense that the appearance frequencies

of cell types become uniform as the ratM{ AB)/N(AA) approaches under the constraint

(1).

Estimation of cell-type composition. We have calculated thgrowth matrixof the two con-
tiguous cell types, which enables us to estimate its composition aftgplications of the
Branching or Linear rewriting rules and the cell-type order conservation rule. In this paper,
we calculate three growth matrices for the branching cell lineage without the cell-type order
conservation rule and the linear diagram without and with the conservation rule (Table 1).

Let M be the growth matrix of the two contiguous cell types under some condition. Here,
we start withA A, that is, the axiom isl A, therefore, the composition at stegan be calculated

by (1,0,0, ...)M™ (16). In this paper, we study the compositionraapproaches infinity—in



otherwords, for sufficiently long cell chains. First, we derive the conditions for coexistence of
the two contiguous cell types from the eigenvalues and the eigenvectors of the growth matrices.
Second, under the constraint (1) and the coexistence condition, we estimate the composition us-
ing the growth matrix. Last, we derive the equation betw®&¢A B) /N (AA) and the constraint

parametey in (1) by QE.

Derivation of algebraic equations by QE. In this paper, we need to obtain the maximum
value of N(AB)/N(AA). For this purpose, we have used the quantifier elimination (QE)
method. QE is one of the main subjects in computer algebra (17, 18). In general, QE deals
with first-order formulas consisting of polynomial equations, inequalities, quantifiek§ (3,
and boolean operators such /&@nd), V(Or), and—(Negation). QE computes an equivalent
quantifier-free formula for a given first-order formula over the real field. For instance, for the
input”xz (22 + bx + ¢ > 0), QE outputs the equivalent quantifier-free formtia- 4c < 0. QE
obtains relations between unquantified variables that make the input formula true. We obtain
the maximum value of an objective polynomial under some constraints by adding one extra
variable, which is assigned to the objective polynomld&l)( For instance, in order to calculate

the maximum value of /(p + y) under the constraintg® + py? < 1 Ay < z?%, we provide QE

with the following input, adding an extra variable
Fya (x2+py2 <I1Ay<2*Ah(p+y) ::xAp+y7é0>.

For this formula, QE outputs < 0 V h%p? — p — h% < 0, which indicates that the maximum
value ofz/(p + y) is \/m whenp > 1 and does not exist{oo) whenp < 1. Thus,

even when parameters exist, we can obtain the maximum value, in other words, the equation
between the maximum and parameters by QE. We can u@izeCAD-Bor Mathematica

Ver. 6/7 as QE-implemented software.



Elliptic curves derived by QE. We first derive the coexistence condition of two contiguous
cell types. Analysis of the eigenvalues and their corresponding eigenvectors of the growth
matrix reveals the coexistence conditi@p; 1 — p1o — P13 > O0A2p1 1 — P12 — P13 > 2paaA

2p11 —p12 — D13 > 2ps 3 (See also (10, Section 5.2) for details). Under this condition and the

constraint (1), the following relations hold:

N(AB)/N(AA) = (P12(9(1 = pr2 — p13) — P13))/ (213 + g(P12 + P13)),
P11 = (—(1=p12—p13)2p1s+ 912 +p13)))/ 213 —9(1 —p12—p13))),
D22 = (9(=2+pi2+p13) (135 + 2p13) + 9P 5 + P o (=1 + Pr3) + P12

P+ 0i3)))/ 21+ g(=1+ pra +p13))(* (DT o + pra(—2+
p13) — p13) T P12p13 + 9(—=1 4 pi2)(pi2 + 2p13))),
D33 = (9p13(=2 + P12+ p13) (132 +p13) + 9(pra + praprs +is)))/
213 +9(=1+p1a+ p1,3))(92(Pi2 +p12(=2+p13) —p13) + p%,g
+9p13(—3 + 2p12 +p13))).

To obtain the maximum value df (AB)/N(AA) by QE, the following input is used:
Ip1.37p12 (7#(;0172,}7173, g) Nh == N(AB)/N(AA) N0 < p1 2/
0<piagNO<praNO<praAO0<p3sApii+pi2+tpiz< 1>,

wherey (p1 2, p1 .3, 9) is a formula derived by combining conjunctively all equations and inequal-
ities appearing in the coexistence condition and the constraint (1). Unfortunately, one cannot
obtain the maximum if one provides the QE comman@&PCAD-Bor Mathematica 6.0.1
with the above formula as it is. This is because the computation requires too much memory
and time. Therefore, we have transformed the above formula into the equivalent formulas of
reduced form as shown in Supporting Online Material. After Migthematica 6.0.1 out-
puts:0 < h < (v/8g + 592 — g)/(2(2 + g)). This reveals that the equation betweeand the
maximum valuef of N(AB)/N(AA)(=h)is (g +2)f*+gf —g=0.

Likewise, for thelinear cell-lineage diagram without and with the cell-type order conser-
vation rule, we have also exhaustively used the QE method to derive the algebraic equations

betweenf (the maximum ofV(AB)/N(AA)) andg, as shown in Table 2.



Classification of cell chains. So far, we have derived the algebraic equations between the
cell-type diversity measur¢ and the parameter under the constraint (1). We summarize in
Table 2 and illustrate in Fig. 2 the equations betwegamd f in the three cases: the branching
and linear cell-lineage diagrams with and without the cell-type order conservation rule.

Let us look closely at the values of the natural numptrat makef a rational number. The
rational numbers of the maximum value &{ AB)/N(AA) shows that the sequence becomes
periodic with respect to the two contiguous cell types as the cell chain becomes sufficiently
long. We have searched fgre N with corresponding rationaf on the three curves (Table
2 and Fig. 2). Interestingly, only on the curve of the branching diagram without the rule
(g +2)f2+gf — g = 0, there exist a pair satisfyinf(g, f) | g € N, f € Q}. The proof is
given in Supporting Online Material. On this curvg,s rational whery is in the following
set:{2, 18,128, 882,6050,41472, ...} = {gn|gn+2 = Tgn+1 — gn +4, go = 0,91 = 2,n > 1}.
Somewhat remarkably, the pdl,, f,,) can also be described &&F3 | Fs,/Fa,41), WhereF,
are Fibonaccinumbers defined a§F,, | F,io = Froo1 + Fo, Fo = 0,F; = 1, n > 1} =
{1,1,2,3,5,8,13,21,34,55,89,...}. The features of € N and their corresponding values of

f are summarized as follows.

(@) Wheng = 1, for the branching diagram without the rulg:= (/13 — 1)/6 ~ 0.434259;
linearwithout the rule:f = —1/2+{(9+2v/687)/3+(9—11/687)1/3} /12%/ ~ 0.557454;
andlinear with the rule;f = (1 +/17)/8 ~ 0.640388.

(b) Wheng > 2 andg € N, for the branching diagram without the rulg¢is a rational number
if gisin{2F} | n > 1}, otherwisef is a quadratic irrational number. For the linear
diagram without and with the rulef is always a quadratic irrational number (See also
Supporting Online Material). A quadratic irrational number is a solution to a quadratic

equationax?® + bx + ¢ = 0, wherea, b, c are integers, ant# — 4ac is positive and not



a perfect square. The cell chain associated with a quadratic irrational number is quasi-
periodic (L1, 12). Furthermore, based on (20), we can construct the rewriting rules that
produce the pattern associated with a given quadratic irrational or rational nyiber
Indeed, we have constructed the sequences in the cgse af f = (1 +1/17)/8 in the

linear diagram with the rule ang= 2, f = 1/2 in the branching diagram, respectively, as
shown in Fig. 3. In this figure, we laid the 2-dimensional space with 40000 colored cells
spirally, where red, green and blue boxes dendtes B— andC'— cell types. Figures 3

(B) and (C) show quasi-periodic and periodic structure, respectively.

From the viewpoint of the developmental process of multicelldype cells in the dia-
gram can be regarded as stem cells, BadndC-types can be regarded as differentiated
cells. In this schemg can be one measure of the ratio of stem cells to differentiated
cells. Therefore, the tissues according to the constraint (1) with lafgel) are thought

to be mature, and with smajl(< 1) to be in the early developmental stage. It has been
shown that only whep is one of some specific natural numbefss rational in the cell-
lineage diagrams we have analyzed. In other words, the cell chain is periodic only when

gn = 2F2, in the branching cell-lineage diagram.

Relationship between classification and various forms when is large: Mature multicells.

It seems reasonable to suppose that multicell structures are classified as periodic and quasi-
periodic structures when is a natural number. Figure 4 shows the schematic structures of
various organs inside a human body (A-D). The structure of muscular cells seems periodic
(Fig. 4(A)), while that of lung cells seems quasi-periodic (B). Interestingly, the cochlea of
the inner ear forms a golden spiral derived fréibonaccirectangles (21) (C). The finger is

also characterized byibonaccinumbers so that the motion path of the digits follows a golden

spiral 22) (D).



Relationship when g is small: Early stage. Now, let us consider the region of small< 1
in the cell-lineage diagrams with and without the cell-type order conservation rule. The curve
1 in Table 2 is transformed into the minimal modef + zy = 23 — 72 + 9, by bi-rational

transformation:

{f = (r=2)/(z +2), {33 =201+ /)/(1=f),
9 =Q2-2)B+y)/2x2+1), \y =(=3f+3f—4g9—4fg9)/(1-f)]).

Likewise, the curve is transformed intoy? + zy +y = 23 — 22 — 92 + 9, by:

{f =Bzr+y—-1)/(x+y—3),
g =Br+y—1)*2*—-4z+3-29)/2x+y—-3)(z—y+5Q2r+y—2),’

{37 = (PGS + 1) +2(f+ D(f =2)9)/(f*(f = 1)),
y =20+ 1= (f=2)(f =39/ (f(f 1))

These curves are, interesting®liptic curves(23, Ch. 3). These two curves have Mordell-Weil
rank= 1 and no torsion points ové&). Using the features of an elliptic curve (We can calculate
all the rational points by using the fact that the paiht= (2, 1) generates all the points under
the group operation on the curve), we easily find the rational pointg,gf) (0 < ¢ < 1,0 <

f < 1) on the elliptic curve:

(9.f) = (1/4,1/3), (725/3588, 145/483), (8832/9019493, 552,/25201),

(3466764335501/11363197974660, 127769297 /347639747),

848587149331039323906560512 525449923546336144
207198954360715901710175668905 7 11833844877112783169 ) ’

30262546812928060768945737753693138205817 302713566908857083166867201
82250471749798419221515485788002745970564 7 751660468695296029317353763

We can prove that the rational points are dense. Further, focusing on points suthythalN

andf € Q(¢g > 0,0 < f < 1), we have proved that there does not exist such a point in
the branching diagram and that there exist ofyyf) = (1/7,1/4) and (1/4,1/3) on the
curvet (the linear diagram without the rule) and the cuivghe linear diagram with the rule),
respectively. The finiteness of these points follows from Siegel’'s theorem on the finiteness of
integral points 23, Ch. 9. In the above cases, we transformed the curves into quartic elliptic

equations on which we can compute all integral points base@4r29.
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After all, wheng < 1 and1/g € N, the corresponding is usually not rational, indicating
that the resultant cell chain is usually aperiodic. This indicates that there are few periodic

structures of multicells in the early developmental stage over this sIL-system.

Conclusion. In this paper, by symbolic computation, we have derived Fibonacci-number and
Elliptic-curve relations between a measure of cell-type diversity and the cell-type ratio con-
straint. We have focused on patterns of cell chains with the “maximum” value. It is not certain
that living things aim at the “maximum?” structure. However, the form of living things can often

be explained well by the optimality principle (26). For this reason, we have tried to obtain the
equations between the maximum valug §hd the constraint on the structurg.( A survey

of rational numbers and quadratic irrational numbers on these equations revealed remarkable
features: rard-ibonaccirelated periodicity and frequent quasi-periodicity. A more elaborate
study on the relationship between these features and actual algae or organs may provide us with

a more profound understanding of multicells.
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Table 1: The three growth matrices; we have calculated the matrices to estimate the compo-
sition of two contiguous cell types at step The top and middle matrices are ©fx 9 form
(AA,AB,BA, AC,CA, BB, BC,CB,C(C) because of the non-existence of the cell-type con-
servation rule, while the bottom is Gfx 7 form (AA, AB, BA, BB, BC,CB,CC) with the

rule.

Branchingdiagram without the cell-type order conservation rule
mi1 Mmi2 M3 M12 p%_yg P1,2P1,3 M1,3 P1,2P1,3 P%}g
P11 M22 0 0  pi12+p22 0 0 P1,3 0
P11 0 mopg 0 0 P1,2 0 0 P1,3 + 3,3
P1,1 0 0  mog2 p12+p22 D1,3 0 0 0

0 0 0 0 1+42p2o 0 0 0 0

0 0 0 0 P22 1 0 0 P3,3
p1,1 0 0 0 0 0 ma 2 P1,2 P1,3 + P3,3

0 0 0 0 p2.2 0 0 1 D33

0 0 0 0 0 0 0 0 1+ 2p33

with mi1 = 2p11+ (1 —p12 — p13)%, mi2 = pr2(1 — p12 — p13),
mi13=p13(l —p12—p13),mo2=1-p12—p13.
Lineardiagram without the rule

mh o om, 0 mh, Pl 0 0 0 0
P11 m/272 P2,3 — P1,2P2,3 0 m’2,5 P1,2P2,3 0 0 0
P11 0 1—pi2 0 0 p1,2 0 0 P3,3
P11 0 0 m/272 m'2,5 0 P2,3 — P1,2P2,3 DP1,2P2,3 0

0 0 0 0 mfy mhg 0 mj g P33

0 0 0 0 p22 1—p23 0 0 2,3 + 3,3
P11 0 0 0 0 0 1—pi2 D1,2 3,3

0 0 0 0 p2,2 0 0 1—p23 p23+p33

0 0 0 0 0 0 0 0 14 2p3 3

with m} 1 = pi1 + (1 —p12)%,mi o = pra(l = pi2),mhy = (1 —pi2)(1 —pa3),
M5 = P12+ P22 — Prapes, Mhs = 2pa2 + (1 — pas)?, mh s = pas(l — pa3).
Lineardiagram with the rule

m’1'71 m/1/,2 m/1/,2 p%z 0 0 0
P11 1—pipg 0 m’2’74 P23 0 0
D11 0 1—pra myy 0 D2,3 0
0 0 0 mh mh mh 2.
3,4 3,5 3,5 P23
0 0 0 P22 1—pa2gs 0 P23 + D33
0 0 0 D2,2 0 1—p23 p23+p33
0 0 0 0 0 0 1+ 2p33

withm{ ; = 2p11 + (1 —p12)®,mf 5 = (1 — pra)p12,my 4 = P12 + P22 — P1,2P2,3,
my 4 =2p22+ (1 —pag)? mls = (1 - pas)pas.
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Table 2: The algebraic equations betweeand f; g denotes the parameter in the constraint
(1) andf the measure of cell-type diversitypot_; denotes the largest real root of the equation
200+ D f*+g(g+ 1) —g(29 +5)f* — ¢*f +2¢9*> = 0in g. g, is nearly1.29661, which

is exactly the intersection of the two curves witliinc ¢,0 < f < 1, the largest real root of

1—67g+1224¢g% — 4008¢% + 4599¢* — 1701¢° = 0. Likewise, g, is nearlyl.14254 and exactly

the real root oft — 3¢ + 11¢2 — 8¢ = 0.
Branchingwithout the cell-type order conservation rule
(9+2)f*+g9f—g=0
Linearwithout the rule
{g =root2(g+ 1)f* + g(g + 1) f° — g(29 + 5)* = ¢°f +2¢*", (0<g<q)
2(3g —1)f*+ (39 —1)f —3g =0 (9> g1)
Linearwith the rule
{2(9— Df*=g(g+3)f>+gf+g*=0" (0<g<g)
29f*+(g—1)f —g=0 (9> g0)
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Figurelegends

Figure 1. Intercalary regeneration in cockroach legs (27). When mismatched portions of the
growing legs are grafted together, new tissue is intercalated to fill the gap so that the non-

contiguous positional values disappear. In this figure, we exemplify thelyle:— Igl;Is151,.

Figure 2: The equations betwegrand f. The gray line denotes the equation in the branching
cell-lineage diagram without the cell-type order conservation rule. The black and broken lines
denote the equations in the linear diagram with and without the rule, respectively. The derivative
discontinuities are nearly. 14254 (go) and1.29661 (g, ). The intersection of the broken and gray
lines is nearly3.28773 (g2 ), and that of the black and gray lines is neal§3118 (g3). The f-

value of the broken and black lines approaché3 asg — oo, while that of the gray line

approaches the reciprocal of the golden rafigp ~ 0.61803 (g& =(1+ \/5)/2) asg — oo.

Figure 3: Spiral tiling of cells. (A) Schematic illustration of spiral tiling of one-dimensional
cell chain. (B)g = 1, f = (1 ++/17)/8 in the linear diagram with the rule. (@)= 2, f = 1/2

in the branching diagram.
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Figure4: The structures of the organs. (A) Muscular cells seem periodic. (B) Lung cells seem
guasi-periodic. (C) The cochlea of the inner ear forms a golden spiral relatéithdnacci

numbers. (D) The motion paths of the digits also form a golden s@gal (
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Supporting Online Material

We show the reduced form of complicated formulas in the case of Branching and Linear
diagrams. Via factorization, we have derived the formulas with respect to the branching cell-

lineage as follows:

Ip137p1a (0 <piaNO<pisA —h(2pis+g(pr2+p13) ==p12p1s+ (=1 +p12+p13)A
e1 <O0Neya <0ANes3<0OANeg <O0Aes <O0Aeg <0)

with:
€1 = pr3+g(=1+pi2+pi3),
€2 = (92(29%,2 +p12(=2+p13) —p13) +Pr2pis + 9(—1+pr2) (P12 + 2p13))

(P13(PF 2+ 2p13) +9(PF 5 + T o(—1 4 prs) + prapis +i3)),

€3 = (QQ(P%,Q +p12(—2+p13) —pi3) + p%,;; + gp13(—3 4 2p12 +p13)),
€4 = (4p13 +9(—2 +3p12 + 3p13)),
€5 = 92(1?%,2 +p12(—2+pi3) —p13) +p1201s + 9(—1 + pr2) (P12 + 2p13),
€ = 92(17%,2 +pia(=2+p13) —pi3) + pi:& + gp13(=3 4 2p12 + p13),

under the physiological conditio: < » < 1,g > 0. After all, Mathematica 6.0.1 outputs:
0 < h < (v/8g+5g%2—g)/(2(2+g)). This reveals that the equation betweeand the maximum
value f of N(AB)/N(AA)(=h)is(g+2)f*>+gf —g=0.

Likewise, for thelinear cell-lineage diagram without and with the cell-type order conser-
vation rule, we have also successfully used the QE method to derive the algebraic equations
betweenf (the maximum ofN(AB)/N(AA)) andg, as shown in Table 2. The procedure for
deriving these equations follows. The eigenvalues of the growth matrix in the middle row of

Table 1 are:

1—pio, 1+2p11 —pro,(1 = p12)%1 —pas, 1+ 2pas — pags,
(1 —p12)(1 = pa2g), (1 —pa3)? 14 2pss.

The coexistence condition is calculated as:

2p110 > P12 A2p1g — P12 > 2p22 — P23 AN 2p1g — Pi2 > 2pss-
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Underthe constraint and the coexistence condition, we obtain the following relations:

N(AB)/N<AA) = ((1 - P1,2)p1,2)/(2p1,1 + (1 - p1,2)p2,3>7

D22 = (P11(2p11 — P12+ p2,3)(P%2(_2p1,1 — (=1 +p12)(=2+p23))g
(4p3 1 + —2p11 (=3 + p23)p2s + Pr2(l + p23)) + p23(pls — (—

24+ p23)p2s + Pr2(—1 —2py3 +p§,3)))))/((—1 + p12)p1a(—4

pi1 + (=1 + pr2)p1op23 — 2011 (Pr2(—1 + p23) + p23))29p11(

Apt 1 — 2p11((=3 + p23)pas + p12(1+ pag3)) + p2s(py — (—2+

P23)P23 + Pra(—1 — 2p23 + p33)))),

P33 = ((L42p1i1 = pr2) (=1 +p12)piaps s + gp1a(8pi, — 41, ((—2+
P2,3)P2s + P12(2 4 pas)) + 2011 (=P + DT (1 + 2p2s) + propas
(=3 + pg,:a)) + p2,3(_pi2 +(=2+ P2,3)p%,3 + piz(l + P23 — P%;’))_

P12p2,3(1 — 3p23 +p%,3))))/((2p1,1 + P23 — Propes)(—(—1+ pio

)P12P2,3 + 29p11(2P1,1 — Pr2 + 2p23 — P%g)))

To obtain the maximum value of (AB)/N(AA), we provide QE with the following input:
p117p127p23 (¢/(P1,1,p1,27p2,3, g)ANh == N(AB)/N(AA) N0 < p1o < 1A
0<pe3<1IANO<piaiANO<praAO<p3z<1Apr1+pi2<lApr2+p3< 1)»
wherev’(p1 1, p12, 023, ¢9) is a formula derived by combining conjunctively all equations and
inequalities appearing in the coexistence condition and the constraint. The above formula was,

unfortunately, too complicated to analyze by the QE program (QEPCAEMBAthematica).

Therefore, we transform the formula in the following manner.
e Fromh = N(AB)/N(AA),

o (1— p1,2)(p1,2 - hpz,:s)
Pig = o (2)

holds.Using 2, we eliminate one variablg, ;.

o Next, via factorization, the inequalities with ; eliminated, can be transformed into the

following formulas:

e) <O0Ney <O0ANey3 >0Ney <0ONes <O0Neg<0Ael <0 (3)
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e = —p1,2 + hpa s,
ey = (1—h—pi2+hps)(—2h°p12+ gp12 — hgpis — hpiz - gpiz + hgpas + 2h°
Pr2p2s + hgprapas — hgps 3)(—hpt 5 + h2pl o — gpi o + hgpt o + hpt o + gpi
+h2pl,2p2,3 - 2h3p1,2p273 - h29p172p2,3 - 3h2pigp273 - thp%gpz,:a + h2gp§,3
+20°p1 9p3 5 + hgpraps 5 + D2 gp1aps 5 — h2gps 5),
¢ = gy —2hgpis + hPgpt oy — 2901 5 + 2hgpi o + 9Pt o — 2hgpt opas + 3R gpi
D23 — h3gp%2p2,3 + 5hgpizp2,3 - 4h29p?,2p2,3 - 3hgpil,2p2,3 - 2h4p1,2p%,3
—h2gp1ap3 s — WPgpraph s — 20°D7 5p3 5 — hgpi op3 5 — 3h2gpi op3 5 + 217
9PY 2P + hapiapss + 3h7gp1ops s + 2h7gph s + 207 p1 9p3 s + 307 gp1aps
—2h%gpT P55 — WGPt aphy — 207Gy 5 + hPgp1aps s,
¢y = —20pi,+ 20°pi, — 2hgpi s + 2h7gpt, + 20°p 5 + gpi s + hPgpi s — hpi
+3h°pt 5 — 2gp1 5 + 2hgpi 5 + hpl 5 + gpt 5 + 2hPp1apas — AW Py opa s — 2P
gp12p2,3 + 2h2pT opas — 6BP3 opa s — 2h*pT opa s + 2hgps op23 — ShPgp3 ,
P23 — h3gpi apas + WPl opas — ThPp} opa s 4 hgpl opas — 4h*gpt opas — 4
h2pi P2 — 3hgpi o2 s + 20°gps 5 — 2h°p1aps 5 + 8h'p1aps 5 + hPgp1aps 5
+5h3gp1 a5 5 + 4RPDT 903 5 + ARMPT o5 5 — hgpi o5 5 + ShPgpT ops 5 + 27
9pTop3 5 + SRPPT oph 5 + hgpi op3 5 + 3h2gpt op3 5 — AhPgps 5 — Ah*prapsd
—h?gp12p3 3 — 4h3gp1aph 5 — 207 PT ops 5 — 207 gpT op3 5 — hPgpT op3 5 + 2
h3gps.3 + h*gp1 2p3 3,
€5 = —1 + h +p1,2 - hpgyg,
e = —hpio+hpTy — gpi o+ hgpio + hpts 4 gpt o + hPpiapas — 2h7piapas — h?
gD1,2P2,3 — 3h2p%72p2,3 - thp%,zpz,s + h2gp§73 + 2h3p172p§’3 + hgp1’2p§73+
h2gp12p3s — h2gp3 5,
e = —gpiy+hgpia +gpia — WPpiapas — hPgpiopas — 2hgpi opas + hPgps 5+
hgp12p3 3 + h*gp12p5 3 — h2gp3 5.

Notice that in the above formulas, we show only those inequalities that maximize
N(AB)/N(AA); itis relatively easy to find these via polynomial factorization and con-

firmation by QE input for fixed values af.

e Furthermore, the equalityN (AB) = N(BC) in the constraint condition yields:

0 = —4gpi pia+29p1107 5 +49P7 1075 — 29P1107 5 + 49D (P23 — 29D11P1 2
D23 + P%,2p2,3 + 2}?1,1]9%72]92,3 + 29171,1]9%,2]92,3 - 2]9?72]72,3 - 2p1,1pi1372p273 + Piz
D23 + 29171,1]?%,3 - 49])%,1]9%,3 - 29191,1]?1,2]9%,3 - 29])1,1]9%,3 + 29291,11?1,2173,3-

Substituting 2 into the above equality yields:

hp12p23(—h — pra + hpa3)
—p12 + hpa3) (P12 — hpro — p%,z — P23 + hp1opos + P33)

g= ( (4)
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We therefore eliminate one more variahje,

¢ By eliminatingg from the equalities and inequalities and factorizing, we obtain the following

reduced formulas suitable for QEPCAD-B:
237 p12(0 < h < 1AG > OA0 < pra < 1A0 < oz < 1Ae,0 == 0Aep < OAe < 0)

with:

€p0 = hp1,2p2,3(—h — P12+ hp2,3) - 9(_291,2 + hp2,3)(p172 — hpio — piQ
—p23 + hp1apas + P%,g)
€p1 = th%,z - 2h2p%72 + p?g - 3hp‘;’72 - piz — 3hp1op23 — hPp1ap2 s+
2h3p1 9p23 — 21?%,2292,3 - hp%ng,g + 7]122732]92,3 + pi)’,ng,g + 4hp:1”72
D23+ th%,za + 5hp1,2p§’3 - 4h3p172p%73 + p%,ng,:a - 2hp%2p§’3 — 5h”
P2 oD% s — 2h7p3 5 — 2hpy op 5 + WPp1api s + 20 praph 5 + hPps 5,
Ep2 = —p12 + hpio + piz + hpas + 2h*pa 3 — hpropas + hp§73.

e Last, because of the RAM limitation (up to 4 GB) of 32-bit software, we provide the above
formulas for the QE program (We us€EPCAD-BVer. 1.48 withmeasure-zero-error
and+/N 670000000 option. It took fromd.5 to 12 hours and.7 GB RAM with anintel
Xeon CPU 2.33 GHz processor), withspace divided intg0, 1/7], (1/7,1/4], (1/4,1),
[1,2],(2, 00).

Summing up, with respect to tHmear cell-lineage diagram without the rule, we obtain the

following equivalent quantifier-free formulas as QE outputs:

g > ooty h*g* — 2h*g* — hg® + 2¢° + 2h*g + h*g — 5h?g + 21
For (0, 1/7],
1/7,1/4], (1/4,1),
<h392 = 2h%g* — hg® + 2° + 2h'g + hPg — 5h*g + 2" > 0 " Fc{r 31(2]/ )
A6h%g 4+ 3hg — 39 — 2h?> —h <0 » 4l
6h%g + 3hg — 3¢ — 2h% — h < 0 For (2, 00),

whereroot_; denotes the largest real root of the equafidg@® — 2h%¢> — hg® + 2¢% + 2h'g +
h3g — 5h%g + 2h* = 0in g. The middle row of Table 2 has been constructed from the above

QE output. The equation for the linear diagram with the rule is the same 48)in (
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Proof of the existence or non-existence of rational numberg.

e For the branching cell-lineage diagram without the cell-type order conservation rule, we ob-

tain the equation betweehandgy:

(9+2)f*+gf—g=0. (5)

The discriminant of the above equationiis = 59 + 8g. We survey(g,, f,,) such
that g, and f,, are natural and positive rational numbers, respectively. If and only if
D = m?,m € N, fisrational. D = m? yields (59 + 4)? — 5m? = 4% Let X

be 5g + 4. Then the equatiotX? — 5m? = 4% is a Pell's equation. It follows that
X+Vhm=44((3++5)/2)",n=0,1,2,- - yields a paif (X, m)| X € Z,m € Z}.
Therefore, fromX = 59 + 4, g + vV/5m/ = 4{((3 + \/5)/2)2n — 1} /5, m=1,2,3,...
yields a natural number sequengeg, | g, € N}. Moreover,g,, can more explicitly be
described ag {((3 + \/5)/2) "y ((3 - \/5)/2)2n - 2} /5. It follows from the golden
ratio o = (1 +/5)/2 thatg, is 2 (p*" + ¢~ — 2) /5. BecauseFibonaccinumberF,

can be described 8" — (—¢)™) /V/5, gn = 2F}, q.e.d.

The recurrence formula af, can be derived as follows:

Int2 = 2F22(n+2) = 2(Fony3 + Fonin))?

= 2(2F5(n41) + Fony1)?
2(3F5(n11) — Fon)?
— 2(9F22(n+1) + F22n - 6F2(n+1)F2n)
From the formul& [, 1) Fa,, = Fg(nﬂ) + FZ —1,

= 2TF 40 — F3, +2)
= TGn+1 — gn + 4. q.e.d.

The corresponding,, with respect tgy,, on the curve (5) is calculated as:
FZn (\/4+5F22n_F2n>
2(1+ F3) '

The formulae orFibonacciandLucasnumberst,, andL,,:

fn:

Fo By — F? = (=1)"5F — L =4(-1)""" F, + L, = 2F,
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reveal thatf,, = Fy,/Foni1 g.e.d.
e With respect to the cell-lineage diagram without the rule, we obtain:
239 — 1)+ (3¢ —1)f — 39 = 0. (6)

The discriminant of the above equation/is = 81g* — 30g + 1. We survey(g,, f»)
such thaty,, and f,, are natural and positive rational numbers, respectively. If and only
if D =m? m € N, fisrational. D = m? yields (27¢g — 5)* — (3m)? = 42, which
can be factorized a®7g + 3m — 5)(27g — 3m — 5) = 4%. Fromg > 1 andm > 1,

27g + 3m — 5 > 52, Therefore, there exists no ration@lfor natural numbey,, q.c.d.
e For the linear diagram with the rule, we obtain:

20>+ (g—1)f —g=0. 7

We survey(g,, f,,) such thaty,, and f,, are natural numberg (> 0) and positive rational

numbers({ < f < 1), respectively.

We prove the non-existence of such pairdink ¢,0 < f < 1. Assume thatf =
n/m ,gcdm,n) =1, m € N,n € N because it is a positive rational number. Then, the

equation (7) can be transformed into:
g(2n —m)(m +n) = mn. (8)

From0 < g and0 < f < 1, it follows thatm/2 < n < m. Furthermore, from (8),
2n?g = 0mod m, and m*g = 0mod n. It follows from gcd(m,n = 1 that2g = 0
(mod m) andg =0 (mod n), revealing2g = 0 (mod mn). This fact, together with
g=mn/((2n —m)(m +n)),m/2 < n < m, implies that the only possible value gfs
mn/2. g = mn/2 yields an equatio2n — m)(m + n) = 2, which has a single solution

m = n = 1, contradicting the assumptigh=n/m < 1 q.e.d.
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Figurel: Intercalary regeneration in cockroach legs (27). When mismatched portions of the

growing legs are grafted together, new tissue is intercalated to fill the gap so that the non-
contiguous positional values disappear. In this figure, we exemplify thelglle:— Igl;Is151,.
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Figure2: The equations betwegnand f. The gray line denotes the equation in the branching
cell-lineage diagram without the cell-type order conservation rule. The black and broken lines
denote the equations in the linear diagram with and without the rule, respectively. The derivative
discontinuities are nearly. 14254 (go) and1.29661 (g1 ). The intersection of the broken and gray
lines is nearly3.28773 (g2 ), and that of the black and gray lines is neal§3118 (g3). The f-

value of the broken and black lines approach¢s asg — oo, while that of the gray line

approaches the reciprocal of the golden rafigp ~ 0.61803 (90 =(1+ \/5)/2) asg — oo.
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Lfimmn Limmd et

B g=1 (Linear with the rule)

C g=2 (Branching)

Figure 3: Spiral tiling of cells. (A) Schematic illustration of spiral tiling of one-dimensional
cell chain. (B)g = 1, f = (1 ++/17)/8 in the linear diagram with the rule. (@)= 2, f = 1/2
in the branching diagram. 26
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Figure4: The structures of the organs. (A) Muscular cells seem periodic. (B) Lung cells seem
quasi-periodic. (C) The cochlea of the inner ear forms a golden spiral relatéithdnacci
numbers. (D) The motion paths of the digits also form a golden s@gal (
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