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Abstract. We formulate and prove reguralized double shu¿e and derivation rela-

tions for multiple L-values. A description of principal part of a multiple L-function is

also given.

0. Introduction.

In the present paper, we study the regularized double shu¿e and the derivation

relations of the multiple L-values and give some applications. A fair amount of work

related to the multiple L-values has already been done, e.g., A. Goncharov [G1], [G2],

G. Racinet [R] and the references therein. In particular, the regularization stu¤ is also

treated in a series of works of Goncharov and Racinet. Our approach here, which

largely follows the setup and method given in [IKZ] for multiple zeta values, is less

abstract and more directly aimed at obtaining relations among multiple L-values. In

particular, a generalization of the derivation relation of multiple zeta values, which as

shown in [IKZ] is in a sense equivalent to the regularized double shu¿e relation, is

established by using the regularization and the method developed in [IKZ].

In §1 we present some basic definitions and algebraic setup introduced by M.

Ho¤man [H] which is suitable for our study. In §2, after the discussion on the finite

double shu¿e relation (Proposition 2.1), we give the regularized double shu¿e relations

(Theorem 2.3, Theorem 2.4). The derivation relation (Theorem 3.1) is formulated and

proved in §3. The final §4 is devoted to a couple of applications of the results and ideas

developed in the previous sections. Of them, the principal part of a certain multiple L-

function is determined (Theorem 4.1) in terms of the polynomials defined algebraically

to describe the regularization procedure.

1. Definition and algebraic setup.

1.1. Definition.

We define two types of multiple L-values in a general context. Let m be a natural

number and R ¼ Rm denote the Z-module Z=mZ. Let FðR;CÞ be the C-vector space

consisting of all mappings f : R ! C . An element f A FðR;CÞ is viewed naturally as

a function on Z via the projection Z ! R. We fix once and for all a primitive mth

root of unity z ¼ zm :¼ expð2pi=mÞ. For each a A R, let ja A FðR;CÞ be defined by

jaðxÞ ¼ zax ðx A RÞ:

2000 Mathematics Subject Classification. Primary 11M41; Secondary 11M06.

Key Words and Phrases. multiple L-values, multiple zeta values, regularization.



The set of functions fjaga AR constitute a basis of the space FðR;CÞ. The expression of

an element f A FðR;CÞ by this basis is the Fourier expansion of f :

f ðxÞ ¼
X

a AR

f̂f ðaÞzax with f̂f ðaÞ ¼
1

m

X

y AR

f ðyÞz�ay;ð1Þ

the function f̂f being referred to as the (finite) Fourier transform of f .

For f1; . . . ; fn A FðR;CÞ and positive integers k1; . . . ; kn, we define the multiple

L-values L[ðk1; . . . ; kn; f1; . . . ; fnÞ and L�ðk1; . . . ; kn; f1; . . . ; fnÞ by

L[ðk1; . . . ; kn; f1; . . . ; fnÞð2Þ

¼
X

m1>m2>���>mn>0

f1ðm1 �m2Þ � � � fn�1ðmn�1 �mnÞ fnðmnÞ

mk1
1 mk2

2 � � �mkn
n

¼
Xy

m1¼1

� � �
Xy

mn¼1

f1ðm1Þ f2ðm2Þ � � � fnðmnÞ

ðm1 þ � � � þ mnÞ
k1ðm2 þ � � � þ mnÞ

k2 � � � ðmnÞ
kn

and

L�ðk1; . . . ; kn; f1; . . . ; fnÞð3Þ

¼
X

m1>m2>���>mn>0

f1ðm1Þ f2ðm2Þ � � � fnðmnÞ

mk1
1 mk2

2 � � �mkn
n

¼
Xy

m1¼1

� � �
Xy

mn¼1

f1ðm1 þ � � � þ mnÞ f2ðm2 þ � � � þ mnÞ � � � fnðmnÞ

ðm1 þ � � � þ mnÞ
k1ðm2 þ � � � þ mnÞ

k2 � � � ðmnÞ
kn

:

If n ¼ 1, the two series coincide. When k1b 2, these infinite series are absolutely

convergent. When k1 ¼ 1, the series are understood to be the limits

L[ð1; k2; . . . ; kn; f1; . . . ; fnÞ

¼ lim
R!y

X

Rbm1>m2>���>mn>0

f1ðm1 �m2Þ f2ðm2 �m3Þ � � � fn�1ðmn�1 �mnÞ fnðmnÞ

m1m
k2
2 � � �mkn

n

;

L�ð1; k2; . . . ; kn; f1; . . . ; fnÞ

¼ lim
R!y

X

Rbm1>m2>���>mn>0

f1ðm1Þ f2ðm2Þ � � � fnðmnÞ

m1m
k2
2 � � �mkn

n

;

provided they are convergent. As for the convergence, we have the following criterion.

Proposition 1.1. Suppose k1 ¼ 1. The series L[ð1; k2; . . . ; kn; f1; . . . ; fnÞ and

L�ð1; k2; . . . ; kn; f1; . . . ; fnÞ are convergent if and only if f̂f1ð0Þ ¼ 0, (i.e.,
P

y AR f1ðyÞ ¼ 0).

Proof. We give a proof based on the standard method of Abel’s summation for

L[. The other case is similar or can be deduced from this using the next proposition.

Put SðnÞ :¼
Pn

m¼1 f1ðmÞ, Sð0Þ ¼ 0, and

LðRÞ :¼
X

Rbm1>m2>���>mn>0

f1ðm1Þ f2ðm2Þ � � � fnðmnÞ

m1m
k2
2 � � �mkn

n
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where m1 ¼ m1 �m2, m2 ¼ m2 �m3; . . . ; mn ¼ mn. By the relation f1ðm1Þ ¼ Sðm1Þ�

Sðm1 � 1Þ, we have

LðRÞ ¼
X

Rbm1>m2>���>mn>0

ðSðm1Þ � Sðm1 � 1ÞÞ f2ðm2Þ � � � fnðmnÞ

m1m
k2
2 � � �mkn

n

¼
X

Rbm1þm2þ���þmn
mjb1

Sðm1Þ f2ðm2Þ � � � fnðmnÞ

ðm1 þ m2 þ � � � þ mnÞðm2 þ � � � þ mnÞ
k2 � � � mkn

n

�
X

Rbm
0
1
þ1þm2þ���þmn

m
0
1
b0;mjb1 ð jb2Þ

Sðm 0
1Þ f2ðm2Þ � � � fnðmnÞ

ðm 0
1 þ 1þ m2 þ � � � þ mnÞðm2 þ � � � þ mnÞ

k2 � � � mkn
n

ðm 0
1 ¼ m1 � 1Þ:

Noting Sð0Þ ¼ 0 and dividing the first sum into two parts according as R ¼

m1 þ m2 þ � � � þ mn and Rb m1 þ m2 þ � � � þ mn þ 1, we find

LðRÞ ¼
X

R¼m1þm2þ���þmn
mjb1

Sðm1Þ f2ðm2Þ � � � fnðmnÞ

ðm1 þ m2 þ � � � þ mnÞðm2 þ � � � þ mnÞ
k2 � � � mkn

n

þ
X

Rbm1þm2þ���þmnþ1
mjb1

Sðm1Þ f2ðm2Þ � � � fnðmnÞ

ðm2 þ � � � þ mnÞ
k2 � � � mkn

n

�
1

m1 þ m2 þ � � � þ mn

�
1

m1 þ m2 þ � � � þ mn þ 1

� �
:

By the assumption f̂f1ð0Þ ¼ 0, the sum SðnÞ is periodic and so bounded, hence there is a

constant M > 0 such that

jSðnÞjaM; j fjðnÞjaM ðEn; jÞ:

From this and

1

m1 þ m2 þ � � � þ mn

�
1

m1 þ m2 þ � � � þ mn þ 1
a

1

ðm1 þ m2 þ � � � þ mnÞ
2
;

we have the estimate

jLðRÞja
X

R¼m1þm2þ���þmn
mjb1

M n

ðm1 þ m2 þ � � � þ mnÞðm2 þ � � � þ mnÞ
k2 � � � mkn

n

þ
X

R�1bm1þm2þ���þmn
mjb1

M n

ðm1 þ m2 þ � � � þ mnÞ
2ðm2 þ � � � þ mnÞ

k2 � � � mkn
n

a

X

R�1bm2þ���þmn
mjb1

M n

ðm2 þ � � � þ mnÞ
k2þ1 � � � mkn

n

þ
X

R�1bm1þm2þ���þmn
mjb1

M n

ðm1 þ m2 þ � � � þ mnÞ
2ðm2 þ � � � þ mnÞ

k2 � � � mkn
n

:
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Both sums on the right converge as R ! y and so LðRÞ converges. If f̂f1ð0Þ0 0, then

SðnÞ is unbounded and the sum LðRÞ obviously diverges. r

From here on until we consider the regularization of divergent series, we always assume

f̂f1ð0Þ ¼ 0 if k1 ¼ 1.

Each of the two types of MLV’s (2) and (3) is expressed as a linear combination of

the other type of MLV’s.

Proposition 1.2. We have

L�ðk1; . . . ; kn; f1; . . . ; fnÞ

¼
X

a1;...;an AR

f̂f1ða1Þ � � � f̂fnðanÞL[ðk1; . . . ; kn; ja1 ; ja1þa2
; . . . ; ja1þ���þan

Þ

and

L[ðk1; . . . ; kn; f1; . . . ; fnÞ

¼
X

a1;...;an AR

f̂f1ða1Þ � � � f̂fnðanÞL�ðk1; . . . ; kn; ja1 ; ja2�a1
; . . . ; jan�an�1

Þ:

In particular, for a1; . . . ; an A R with a1 0 0, we have

L�ðk1; . . . ; kn; ja1 ; . . . ; janÞ ¼ L[ðk1; . . . ; kn; ja1 ; ja1þa2
; . . . ; ja1þ���þan

Þ;ð4Þ

L[ðk1; . . . ; kn; ja1 ; . . . ; janÞ ¼ L�ðk1; . . . ; kn; ja1 ; ja2�a1
; . . . ; jan�an�1

Þ:

Proof. This is an immediate consequence of (1), the special case being obtained by

setting fj ¼ jaj and noting ĵjaðxÞ ¼ 1 for x ¼ a and 0 otherwise. r

For the sake of simplicity we write L#ðk1; . . . ; kn; a1; . . . ; anÞ or L#ðk; aÞ with

ðk; aÞ ¼ ðk1; . . . ; kn; a1; . . . ; anÞ for L#ðk1; . . . ; kn; ja1 ; . . . ; janÞ ð# ¼ [ or �Þ. The index

set ðk; aÞ ¼ ðk1; . . . ; kn; a1; . . . ; anÞ for which the series L#ðk; aÞ is convergent is called

admissible. This is the case when k1b 2, or k1 ¼ 1 and a1 0 0 in Rm as Proposition

(1.1) shows. We also note that if a1 ¼ � � � ¼ an ¼ 0 in Rm both of our MLV’s coincide

with the multiple zeta value and the index set is admissible if and only if k1b 2:

L[ðk1; . . . ; kn; 0; . . . ; 0Þ ¼ L�ðk1; . . . ; kn; 0; . . . ; 0Þ ¼ zðk1; . . . ; knÞ:

In the theory of multiple zeta values, the iterated integral expression (the Drinfeld

integral) played an important role. The series L[ðk1; . . . ; kn; a1; . . . ; anÞ has a similar

integral expression as follows. Let

Iðe1; . . . ; ekÞ ¼

ð
� � �

ð

1>t1>���>tk>0

Ae1ðt1ÞAe2ðt2Þ � � �Aek ðtkÞ dt1 � � � dtk;

where ej ð1a ja kÞ are complex numbers with jejja 1 and

A0ðtÞ ¼
1

t
and AeðtÞ ¼

e

1� et
ðe0 0; jeja 1Þ:

We assume e1 0 1 and ek 0 0, which ensures the convergence of the integral.
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For positive integers k1; . . . ; kn and a1; . . . ; an A Rm, we see by expanding z=ð1� ztÞ

into the geometric series and performing the integral repeatedly the identity

Ið 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
k1�1

; za1 ; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
k2�1

; za2 ; . . . ; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
kn�1

; zanÞ

¼
Xy

m1¼1

� � �
Xy

mn¼1

za1m1za2m2 � � � zanmn

ðm1 þ � � � þ mnÞ
k1ðm2 þ � � � þ mnÞ

k2 � � � mkn
n

;

which is nothing but the multiple L-value L[ðk1; . . . ; kn; a1; . . . ; anÞ. Written as an

iterated integral, we have

L[ðk1; . . . ; kn; a1; . . . ; anÞ ¼

ð1

0

dt

t
� � �

ð t

0

dt

t|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k1�1

ð t

0

za1

1� za1 t
dtð5Þ

�

ð t

0

dt

t
� � �

ð t

0

zan�1

1� zan�1 t
dt

ð t

0

dt

t
� � �

ð t

0

dt

t|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
kn�1

ð t

0

zan

1� zan t
dt:

1.2. Algebraic setup.

To formulate the various relations of MLV’s, we adopt an algebraic setup

developed by Ho¤man [H] and used in [IKZ]. Consider the non-commutative poly-

nomial algebra

A :¼ Qhx; ya; a A Rmi

in mþ 1 indeterminates x; ya ða A RmÞ. We should remark that it is sometimes nec-

essary to enlarge the field of coe‰cients to a certain extension of Q, depending on the

class of functions fi involved in the definitions of L[ or L�. For our purpose, however,

the field Q is su‰cient. We also define subalgebras A
1 and A

0 of A by

A
1 ¼ Q þ

X

a ARm

Aya

and

A
0 ¼ Q þ

X

a ARm

xAya þ
X

a;b ARm

b00

ybAya:

For an integer kb 1 and a A Rm, put zk;a ¼ xk�1ya. Then the algebra A
1 is freely

generated by zk;a for all kb 1 and a A Rm. We write Am;A
0
m, and A

1
m for A;A0, and

A
1 respectively, if the index m should be specified.

Now define ‘‘evaluation’’ maps L� : A
0 ! C and L[ : A

0 ! C by

L�ðx
k1�1ya1x

k2�1ya2 � � � x
kn�1yanÞ ¼ L�ðk1; . . . ; kn; a1; . . . ; anÞ

and

L[ðx
k1�1ya1x

k2�1ya2 � � � x
kn�1yanÞ ¼ L[ðk1; . . . ; kn; a1; . . . ; anÞ;

both of which being extended Q-linearly. We define the harmonic product � on A
1

inductively by
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1 � w ¼ w � 1 ¼ w;

zk;aw1 � zl;bw2 ¼ zk;aðw1 � zl;bw2Þ þ zl;bðzk;aw1 � w2Þ þ zkþl;aþbðw1 � w2Þ;

for all k; lb 1, a; b A Rm, and any words w1;w2 A A
1, together with Q-bilinearity. In a

similar manner as in [H], the space A
1 equipped with this product is shown to become

a commutative algebra and A
0 a subalgebra. We denote these algebras by A

1
� and

A
0
� . As in the case of multiple zeta values, the multiplication law of the series L�ðk; aÞ

is stated as the evaluation map L� on A
0 is an algebra homomorphism with respect to

the harmonic product �:

L�ðw1 � w2Þ ¼ L�ðw1ÞL�ðw2Þ:ð6Þ

For instance, the harmonic product

xk1�1ya1 � x
k2�1ya2 ¼ xk1�1ya1x

k2�1ya2 þ xk2�1ya2x
k1�1ya1 þ xk1þk2�1ya1þa2

corresponds to

L�ðk1; a1ÞL�ðk2; a2Þ ¼ L�ðk1; k2; a1; a2Þ þ L�ðk2; k1; a2; a1Þ þ L�ðk1 þ k2; a1 þ a2Þ

for admissible index sets ðk1; a1Þ and ðk2; a2Þ.

The other product corresponding to the multiplication of the series L[ðk; aÞ (via

its iterated integral expression) is the shu¿e product, defined on all of A inductively by

setting

1[w ¼ w[1 ¼ w;

uw1[vw2 ¼ uðw1[vw2Þ þ vðuw1[w2Þ;

for any words w;w1;w2 A A and u; v A fx; ya ða A RÞg, together with Q-bilinearity.

This product gives A the structure of a commutative Q-algebra which we denote by A[.

The subspaces A
1 and A

0 become subalgebras of A[, denoted by A
1
[
and A

0
[
respec-

tively. By the standard shu¿e product identity of iterated integrals, the evaluation map

L[ is an algebra homomorphism:

L[ðw1[w2Þ ¼ L[ðw1ÞL[ðw2Þð7Þ

for all w1;w2 A A
0.

As an example of the shu¿e product, we give, for any admissible index sets

ðk1; a1Þ; ðk2; a2Þ,

xk1�1ya1[x
k2�1ya2

¼
Xk2�1

j¼0

k1 � 1þ j

j

� �
xk1þj�1ya1x

k2�j�1ya2 þ
Xk1�1

j¼0

k2 � 1þ j

j

� �
xk2þj�1ya2x

k1�j�1ya1

which corresponds to

L[ðk1; a1ÞL[ðk2; a2Þð8Þ

¼
Xk2�1

j¼0

k1 � 1þ j

j

� �
L[ðk1 þ j; k2 � j; a1; a2Þ

þ
Xk1�1

j¼0

k2 � 1þ j

j

� �
L[ðk2 þ j; k1 � j; a2; a1Þ:
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2. Finite and extended double shu¿e relations.

2.1. Finite double shu¿e relation.

To connect the two algebra homomorphisms (6) and (7), we define a Q-linear

endomorphism I of A
1. First we set

Iðxk1�1ya1x
k2�1ya2 � � � x

kn�1yanÞ ¼ xk1�1ya1x
k2�1ya1þa2 � � � x

kn�1ya1þ���þan

for any index set ðk; aÞ ¼ ðk1; . . . ; kn; a1; . . . ; anÞ, and then extend this to A
1 by Q-

linearity. In terms of the map I, the relation (4) in Proposition 1.2 is stated as

L� ¼ L[ �I, i.e.,

L�ðwÞ ¼ L[ðIðwÞÞ for all w A A
0:ð9Þ

Then the finite double shu¿e relation for MLV is stated as

Proposition 2.1 (Finite double shu¿e relation). For any w1;w2 A A
0, we have

L[ðIðw1Þ[Iðw2Þ �Iðw1 � w2ÞÞ ¼ 0:ð10Þ

Remark. When m ¼ 1, the map I is the identity and this relation is nothing but

the finite double shu¿e relation of the multiple zeta values.

Proof. By (6), (9) and (7), we have

L�ðw1 � w2Þ ¼ L�ðw1ÞL�ðw2Þ ¼ L[ðIðw1ÞÞL[ðIðw2ÞÞ ¼ L[ðIðw1Þ[Iðw2ÞÞ:

On the other hand, the left-hand side equals L[ðIðw1 � w2ÞÞ by (9) and hence the

proposition holds. r

2.2. Extension of the evaluation maps L� and L[.

In the next two subsections, we extend the double shu¿e relations by taking the

divergent series into the picture, namely by regularizing the divergent series. Since the

arguments involved are similar to those developed in [IKZ], all the proofs are sketchy

except where the map I plays a role.

Algebraically, the regularizations are the following extensions of homomorphisms

L[ and L� to A
1. Owing to the isomorphisms of Q-algebras A

1
� FA

0
� ½y0� and

A
1
[
FA

0
[
½y0� (the product of y0 and elements in A

0 being � and [ respectively), the

latter of which is standard and the former can be shown in a similar way as in [H], we

have, for # ¼ � or [, the following map L̂L# : A
1
# ! C ½T � uniquely characterized by the

properties

(i) L̂L# coincides with L# on A
0.

(ii) L̂L#ðy0Þ ¼ T .

(iii) L̂L# is an algebra homomorphism with respect to the product #.

Examples. For a0 0, we have y0 ya ¼ ya � y0 � ya y0 � xya and thus

L̂L�ðy0 yaÞ ¼ L�ð1; aÞT � L�ð1; 1; a; 0Þ � L�ð2; aÞ;

whereas from y0 ya ¼ ya[y0 � ya y0 we have

L̂L[ðy0 yaÞ ¼ L[ð1; aÞT � L[ð1; 1; a; 0Þ:
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As examples of degree 2, we have

y2
0 ya ¼

1

2
ya � y�20 � ðxya þ ya y0Þ � y0 þ

1

2
x2ya

�
1

2
xy0 ya þ xya y0 þ

1

2
yaxy0 þ ya y

2
0 ða0 0Þ

and hence

L̂L�ðy
2
0 yaÞ ¼

1

2
L�ð1; aÞT

2 � ðL�ð2; aÞ þ L�ð1; 1; a; 0ÞÞT þ
1

2
L�ð3; aÞ

�
1

2
L�ð2; 1; 0; aÞ þ L�ð2; 1; a; 0Þ þ

1

2
L�ð1; 2; a; 0Þ þ L�ð1; 1; 1; a; 0; 0Þ:

On the other hand, the equation

y2
0 ya ¼

1

2
ya[y

[2
0 � ya y0[y0 þ ya y

2
0ð11Þ

gives

L̂L[ðy
2
0 yaÞ ¼

1

2
L[ð1; aÞT

2 � L[ð1; 1; a; 0ÞT þ L[ð1; 1; 1; a; 0; 0Þ:

Analytically, these maps have the following interpretations. For R > 0 and an index set

ðk; aÞ ¼ ðk1; . . . ; kn; a1; . . . ; anÞ, put

LR
� ðk1; . . . ; kn; a1; . . . ; anÞ ¼

X

R>m1>m2>���>mn>0

ja1ðm1Þ � � � janðmnÞ

mk1
1 mk2

2 � � �mkn
n

:

If ðk; aÞ is admissible, then LR
� ðk; aÞ converges to L�ðk; aÞ as R ! y. Let L

�
k;aðTÞ A

C ½T � denote the polynomial L̂L�ðwÞ for the word w ¼ xk1�1ya1 � � � x
kn�1yan A A

1 corre-

sponding to the (not necessarily admissible) index set ðk; aÞ. Then, in a similar manner

as in [IKZ, §2], we see that L
�
k;aðTÞ is the unique polynomial in C ½T � such that

lim
R!y

RdðL�
Rðk; aÞ �L

�
k;aðlogRþ gÞÞ ¼ 0

for some d > 0. Here g denotes the Euler constant. We see by induction that, for the

index set ðk; aÞ ¼ ð1; . . . ; 1
zfflfflfflffl}|fflfflfflffl{s

; k 0
; 0; . . . ; 0
zfflfflfflffl}|fflfflfflffl{s

; a 0Þ with an admissible ðk 0
; a

0Þ,

L
�
k;aðTÞ ¼ L�ðk

0; a 0Þ
T s

s!
þ ðterms of lower degreeÞ:

More precisely, we can show also by induction that the coe‰cient of T i is in the Q-

vector space spanned by the L-values of weight k � i, k being the weight of k.

On the other hand, the polynomial L̂L[ðwÞ measures the divergence of the integral

(5). More precisely, for an index set ðk; aÞ ¼ ðk1; . . . ; kn; a1; . . . ; anÞ, define a multi-

logarithmic function by

Lik;aðtÞ ¼
X

m1>m2>���>mn>0

tm1ja1ðm1 �m2Þ � � � jan�1
ðmn�1 �mnÞjanðmnÞ

mk1
1 mk2

2 � � �mkn
n

;ð12Þ

which is absolutely convergent for jtj < 1. This is equal to the integral (5) with the

endpoint 1 of the outer integral replaced by t. Let L
[

k;aðTÞ A C ½T � denote the poly-
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nomial L̂L[ðwÞ for w ¼ xk1�1ya1 � � � x
kn�1yan A A

1. Then L
[

k;aðTÞ is the unique poly-

nomial satisfying

lim
t!1�0

ð1� tÞ�dðLik;aðtÞ �L
[

k;að�logð1� tÞÞÞ ¼ 0 for some d > 0:ð13Þ

Also, we have

L
[

k;aðTÞ ¼ L[ðk
0; a 0Þ

T s

s!
þ ðterms of lower degreeÞ;

where k
0; a 0 and s have the same meaning as above, and the coe‰cient of T i is in the

Q-vector space spanned by the L-values of weight k � i, k being the weight of k.

Proofs of these facts are again similar to the case of multiple zeta values.

The key identity of Zagier in [IKZ], which relates the two types of regularizations,

holds true for our setting, if modified by taking the map I into account. Define a

C-linear map r : C ½T � ! C ½T � by

rðT nÞ ¼ PnðTÞ ðn ¼ 0; 1; 2; . . .Þ

where

PnðTÞ ¼
Xn

j¼0

n

j

� �
Gð jÞð1ÞðT þ gÞn�j;

G ð jÞðsÞ being the jth derivative of the gamma function GðsÞ. By using generating

functions, the definition amounts to saying that the image of r of each monomials T n is

given by (the identity in C ½T �½½u��)

rðeTuÞ ¼
Xy

n¼0

rðT nÞ

n!
un ¼ Gð1þ uÞeðTþgÞu:ð14Þ

Theorem 2.2. On A
1, we have

L̂L[ �I ¼ r � L̂L�:ð15Þ

Proof. For a ¼ ða1; a2; . . . ; anÞ, put ~aa ¼ ða1; a2 � a1; . . . ; an � an�1Þ. Noting the

identities

Lik;aðxÞ ¼
Xy

m¼n

X

m>m2>���>mn>0

ja1ðm�m2Þ � � � jan�1
ðmn�1 �mnÞjanðmnÞ

mk1mk2
2 � � �mkn

n

 !
xm

¼
Xy

m¼n

X

m>m2>���>mn>0

ja1ðmÞja2�a1
ðm2Þ � � � jan�an�1

ðmnÞ

mk1mk2
2 � � �mkn

n

 !
xm

¼
Xy

m¼n

ðLmþ1
� ðk; ~aaÞ � Lm

� ðk; ~aaÞÞx
m

¼
Xy

m¼nþ1

ðxm�1 � xmÞLm
� ðk; ~aaÞ

¼ ðx�1 � 1Þ
Xy

m¼nþ1

Lm
� ðk; ~aaÞx

m;
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the argument in [IKZ] works almost literally and we obtain the identity

L
[

k;aðTÞ ¼ rðL�
k; ~aaðTÞÞ;

that is to say, for w ¼ xk1�1ya1 � � � x
kn�1yan A A

1, we have

L̂L[ðwÞ ¼ rðL̂L�ðx
k1�1ya1x

k2�1ya2�a1 � � � x
kn�1yan�an�1

ÞÞ ¼ rðL̂L�ðI
�1ðwÞÞÞ:

Replacing w by IðwÞ, we obtain the desired identity. r

Note that the identity (15) restricts to (9) on A
0.

2.3. Regularized double shu¿e relation.

With the help of Theorem 2.2 we can generalize the double shu¿e relation (Propo-

sition 2.1). The case for m ¼ 1 has been treated in [IKZ]. Let regT
[
: A

1
[
! A

0
[
½T �

be the Q-algebra isomorphism which is the composition of the isomorphisms A
1
[
F

A
0
[
½y0�FA

0
[
½T � which sends y0 to T and is identity on A

0
[
. Note that the map L̂L[

defined in the previous section is the composition of regT
[
and L[ (applied coe‰cient-

wise); L̂L[ ¼ L[ � reg
T
[
. In other words, an element w A A

1
[
is written uniquely in the

form

w ¼ w0 þ w1[y0 þ w2[y
[2
0 þ � � � þ wn[y

[n
0 ðwi A A

0
[
Þ

and then

regT
[
ðwÞ ¼ w0 þ w1T þ w2T

2 þ � � � þ wnT
n

and

L̂L[ðwÞ ¼ L[ðw0Þ þL[ðw1ÞT þL[ðw2ÞT
2 þ � � � þL[ðwnÞT

n:

Moreover we define reg
[
ðwÞ to be the constant term of regT

[
ðwÞ; reg

[
ðwÞ ¼ w0 in the

above notation. For example, from equation (11) we have reg
[
ðy2

0 yaÞ ¼ ya y
2
0 ða0 0Þ.

The composition L[ � reg[ is nothing but to take the constant term of L̂L[ðwÞ.

Theorem 2.3 (Regularized double shu¿e relations). For any w0 A A
0 and w1 A A

1,

we have

L[ðreg[ðIðw0Þ[Iðw1Þ �Iðw0 � w1ÞÞÞ ¼ 0:

When w1 A A
0, this becomes (10).

Proof. By Theorem 2.2 we have

L̂L[ðIðw1ÞÞ ¼ rðL̂L�ðw1ÞÞ:

Multiplying L[ðIðw0ÞÞ ¼ L�ðw0Þ A C ((9)) on both sides and using the C-linearity of r,

we have

L[ðIðw0ÞÞL̂L[ðIðw1ÞÞ ¼ L�ðw0ÞrðL̂L�ðw1ÞÞ ¼ rðL�ðw0ÞL̂L�ðw1ÞÞ

¼ rðL̂L�ðw0 � w1ÞÞ ¼ L̂L[ðIðw0 � w1ÞÞ:

The left-hand side equals L̂L[ðIðw0Þ[Iðw1ÞÞ and hence we obtain
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L̂L[ðIðw0Þ[Iðw1Þ �Iðw0 � w1ÞÞ ¼ 0:ð16Þ

By taking the constant term, we have

L[ðreg[ðIðw0Þ[Iðw1Þ �Iðw0 � w1ÞÞÞ ¼ 0: r

Substituting w1 ¼ yr
0 and using reg

[
ðyr

0Þ ¼ 0 (since y r
0 ¼ y[r0 =r!) in the theorem,

we obtain the following apparently weaker relations of MLV’s. Rather surprisingly

however, these relations imply Theorem 2.2 and hence Theorem 2.3. Also, the relation

(16) deduced in the above proof is a consequence of these (and vice versa).

Theorem 2.4. For all rb 1 and w0 A A
0, we have

L[ðreg[ðIðy r
0 � w0ÞÞÞ ¼ 0:ð17Þ

Moreover, we may deduce Theorem 2.2 from these relations. In other words, each of

Theorem 2.2, Theorem 2.3, and the current theorem give (together with Proposition 2.1)

the same set of linear relations of MLV’s.

Proof. The identity is readily shown by specializing w1 ¼ yr
0 in Theorem 2.3, as

indicated above. The proof of the latter half is carried out in the next section after

giving some algebraic preparations necessary.

Example. Let r ¼ 2 and w0 ¼ ya ða0 0Þ in the theorem. We compute the

harmonic product as

y2
0 � ya ¼ xya y0 þ y0xya þ y2

0 ya þ y0 ya y0 þ ya y
2
0

and so

Iðy2
0 � yaÞ ¼ xy2a þ y0xya þ y2

0 ya þ y0 y
2
a þ y3a :

By the regularizations

reg
[
ðy0xyaÞ ¼ �xy0 ya � xya y0; reg

[
ðy2

0 yaÞ ¼ ya y
2
0 ; reg

[
ðy0 y

2
aÞ ¼ �ya y0 ya � y2a y0;

we have

reg
[
ðIðy2

0 � yaÞÞ ¼ xy2a � xy0 ya � xya y0 þ ya y
2
0 � ya y0 ya � y2a y0 þ y3a :

Hence, we obtain the relation

L[ð2; 1; a; aÞ � L[ð2; 1; 0; aÞ � L[ð2; 1; a; 0Þ

¼ �L[ð1; 1; 1; a; a; aÞ þ L[ð1; 1; 1; a; a; 0Þ þ L[ð1; 1; 1; a; 0; aÞ � L[ð1; 1; 1; a; 0; 0Þ:

2.4. Proof of Theorem 2.4.

We extend to our A or A
1 various derivations and automorphisms used in [IKZ],

which played a vital role in the proof of the extended (regularized) double shu¿e

relations. Again, we omit the details when the argument is identical to the one given in

[IKZ].

Recall that we have set

zk;a ¼ xk�1ya A A
1
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for any positive integer k and a A Rm. Consider the space Z which is the Q-linear span

of the zk;a in A with kb 1, a A Rm. For each b A Rm let Ib denote the Q-linear map of

Z defined by

Ibðzk;aÞ ¼ zk;aþb ðkb 1; a A RÞ:

For z A Z the map dz : A
1 ! A

1 is defined by

dzðwÞ :¼ z � w� zw ðz A Z;w A A
1Þ:

We observe that dz is a derivation which commutes with one another, and moreover that

dz extends to a derivation of the non-commutative algebra A whose action on gen-

erators is given by

dzðxÞ ¼ 0; dzðyaÞ ¼ xIaðzÞ þ yaz ða A RmÞ:

It is convenient to define a multiplication � on Z with which the space Z becomes a

commutative and associative algebra:

z � z 0 :¼ z � z 0 � zz 0 � z 0z ðz; z 0 A ZÞ:

For instance, we simply have zk1;a1 � zk2;a2 ¼ zk1þk2;a1þa2 .

For z A Z, define Fz :
c
A

1
A

1 ! c
A

1
A

1 by

FzðwÞ :¼ ð1� zÞ
1

1� z
� w

� �
ðz A Z;w A

c
A

1
A

1Þ:

Here, cA1
A

1 is the completion of A1, i.e., the closure of A1 in the non-commutative power

series ring ÂA, and we denote the element 1þ zþ z2 þ z3 þ � � � in c
A

1
A

1 by 1=ð1� zÞ. The

map Fz is an automorphism of c
A

1
A

1 as non-commutative algebra and is related to the

derivation d above by the identity

FzðwÞ ¼ expðdtÞðwÞ;ð18Þ

where

t ¼ log�ð1þ zÞ :¼
Xy

n¼1

ð�1Þn�1

n
ð z � � � � � z|fflfflfflfflfflffl{zfflfflfflfflfflffl}

n

Þ:

Note that, because the dt is a derivation of ÂA which raises degree, its exponential

expðdtÞ ¼
Xy

n¼0

dnt
n!

is an automorphism of non-commutative algebra ÂA, as is seen from the Leibniz

rule. The identity (18) then shows that the Fz extends to an automorphism of non-

commutative algebra ÂA. We know from [IKZ] that

FzðxÞ ¼ x; Fzðxþ y0Þ ¼ ðxþ y0Þð1� zÞ�1:

We shall compute Fzðxþ yaÞ ða A RmÞ in the following.
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Lemma 2.5. For z A Z and a A Rm, we have

Fzðxþ yaÞ ¼ yað1� zÞ�1 þ xð1þ IaðzÞð1� zÞ�1Þ

¼ yað1� zÞ�1 þ xþ ðz � yaÞð1� zÞ�1:

Proof. Set t ¼ log�ð1þ zÞ. Since t � ya ¼ tya þ yatþ t � ya, we have

dtðyaÞ ¼ t � ya � tya ¼ yatþ t � ya:

We can easily prove by induction on n that

dnt ðyaÞ ¼ yat
�n þ wnð19Þ

with

wn ¼
Xn

r¼1

n

r

� �
ð t � � � � � t
zfflfflfflfflffl}|fflfflfflfflffl{r

� yaÞt
�ðn�rÞ:ð20Þ

We have, by (18) and (19),

Fzðxþ yaÞ ¼
Xy

n¼0

1

n!
dnt ðxþ yaÞ ¼ xþ ya þ

Xy

n¼1

1

n!
ðyat

�n þ wnÞ

¼ ya exp� tþ xþ
Xy

n¼1

1

n!
wn;

and by (20)

Xy

n¼1

1

n!
wn ¼

Xy

n¼1

1

n!

Xn

r¼1

n

r

� �
ð t � � � � � t
zfflfflfflfflffl}|fflfflfflfflffl{r

� yaÞt
�ðn�rÞ

¼
Xy

r¼1

Xy

n¼r

t�r � ya

r!

t�ðn�rÞ

ðn� rÞ!

¼ fðexp� t� 1Þ � yag
Xy

m¼0

t�m

m!

¼ ðz � yaÞ exp� t:

Since exp� t ¼ ð1� zÞ�1 and z � ya ¼ xIaðzÞ, we have the assertion. r

Next define the map d[ : A ! A by putting

d[ðwÞ ¼ y0[w� y0w ðw A AÞ:

This is a derivation on A and its exponential is given by (an identity in A½½u��)

expðd[uÞðwÞ ¼ ð1� y0uÞ
1

1� y0u
[w

� �
ðw A AÞ:ð21Þ
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Also the d[ is related to the regularization map L̂L[ by (Proposition 8 in [IKZ])

L̂L[

1

1� y0u
w0

� �
¼ L[ðexpð�d[Þðw0ÞÞe

Tu;ð22Þ

where w0 A A
0 and the identity is in C ½T �½½u��, the map L̂L being extended coe‰cient-

wise.

We now give a proof of Theorem 2.4. Set

Du ¼ expð�d[Þ �I �Fuy0 ;ð23Þ

where u is a formal parameter (the symbol � here denotes the composition of Q-linear

mappings). We should stress that, unlike the case of multiple zeta values, the map Du is

not an algebra homomorphism because of the insertion of I, but only a Q-linear map.

Replacing w with DuðwÞ in (21), we have

I �Fy0uðwÞ ¼ ð1� y0uÞ
1

1� y0u
[DuðwÞ

� �
:

Here the left-hand side equals

I ð1� y0uÞ
1

1� y0u
� w

� �� �
¼ ð1� y0uÞI

1

1� y0u
� w

� �
:

Therefore

I
1

1� y0u
� w

� �
¼

1

1� y0u
[DuðwÞ:ð24Þ

Note that, since the map Fy0u preserves A
0 and Iðym

0 wÞ ¼ ym
0 IðwÞ for any w A A, we

have Duðw0Þ A A
0 if w0 A A

0. Setting w ¼ w0 A A
0 in (24) and taking reg

[
of both

hand sides, we have

reg
[

I
1

1� y0u
� w0

� �� �
¼ Duðw0Þ:ð25Þ

Replacing w0 with IðFy0uðw0ÞÞ in (22), we get

regT
[

I
1

1� y0u
Fy0uðw0Þ

� �� �
¼ regT

[

1

1� y0u
IðFy0uðw0ÞÞ

� �

¼ expð�d[uÞðIðFy0uðw0ÞÞÞe
Tu

¼ Duðw0Þe
Tu:

This yields

L̂L[ �I
1

1� y0u
Fy0uðw0Þ

� �
¼ L[ðDuðw0ÞÞe

Tu:ð26Þ
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On the other hand, we have the identity (the equation (5.7) in [IKZ])

ðr � L̂L�Þ
1

1� y0u
Fy0uðw0Þ

� �
¼ eTuL�ðw0Þ:ð27Þ

Therefore by using (26), (27) and (25),

ðL̂L[ �I� r � L̂L�Þ
1

1� y0u
Fy0uðw0Þ

� �
¼ ðL[ðDuðw0ÞÞ �L�ðw0ÞÞe

Tu

¼ L[ reg
[

I
1

1� y0u
� w0

� �� �� �
�L�ðw0Þ

� �
eTu

¼ L[ reg
[

I

Xy

r¼0

urðy r
0 � w0Þ

 ! ! !
�L�ðw0Þ

( )
eTu

¼ L[ reg
[

I

Xy

r¼1

ðyr
0 � w0Þu

r

 ! ! !
þL[ðreg[ðIðw0ÞÞÞ �L�ðw0Þ

( )
eTu

¼
Xy

r¼1

L[ðreg[ðIðyr
0 � w0ÞÞÞu

reTu þ ðL[ �Iðw0Þ �L�ðw0ÞÞe
Tu:

Note that we have derived this identity in purely algebraic way. Therefore, since the

last term on the right vanishes by (9) and since yr
0Fy0ðw0Þ ðrb 0Þ generate A

1 if w0

runs through A
0, the relations (15) and (17) are equivalent. This proves Theorem 2.4.

r

Applying (9) to the second formula in the last equalities, we obtain the following

corollary which we will need later.

Corollary 2.6. For w0 A A
0 we have

L[ððDu �IÞðw0ÞÞ ¼ 0:

3. Derivation relations.

In this section z denotes xþ y0; z ¼ xþ y0. For an element f A XQ½½X ��, let qf be

the derivation on A defined by

qf ðxÞ ¼ x
f ðzÞ

z
y0;

qf ðyaÞ ¼ �x
f ðzÞ

z
ya þ ya

f ðzÞ

z
y0 � ya

f ðzÞ

z
ya ða A RmÞ:

8
>><

>>:

We often use the formula

qf ðxþ yaÞ ¼ ðxþ yaÞ
f ðzÞ

z
ðy0 � yaÞ:
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Let qn ðn ¼ 1; 2; . . .Þ be the particular derivation corresponding to f ¼ X n: qn ¼ qX n .

The action on the algebra generators is given by

qnðxÞ ¼ xðxþ y0Þ
n�1

y0;

qnðyaÞ ¼ �xðxþ y0Þ
n�1

ya þ yaðxþ y0Þ
n�1

y0 � yaðxþ y0Þ
n�1

ya ða A RmÞ:

(

Now we state the derivation relations of MLV’s*.

Theorem 3.1. For any w0 A A
0 and nb 1, we have

L[ðqnðw0ÞÞ ¼ 0:

Example. Before proving the theorem, we give some examples. Let a0 0 (in R).

By

q1ðy
2
aÞ ¼ �xy2a � yaxya þ ya y0 ya þ y2a y0 � 2y3a

and

q2ðyaÞ ¼ �x2ya � xy0 ya þ yaxy0 � yaxya þ ya y0 y0 � ya y0 ya;

we have

L[ð2; 1; a; aÞ þ L[ð1; 2; a; aÞ

¼ L[ð1; 1; 1; a; 0; aÞ þ L[ð1; 1; 1; a; a; 0Þ � 2L[ð1; 1; 1; a; a; aÞ

and

L[ð3; aÞ þ L[ð2; 1; 0; aÞ þ L[ð1; 2; a; aÞ þ L[ð1; 1; 1; a; 0; aÞ

¼ L[ð1; 2; a; 0Þ þ L[ð1; 1; 1; a; 0; 0Þ

respectively.

To prove the theorem, we introduce the corresponding automorphisms. For

h A 1þ XQ½½X ��, let D̂Dh denote the automorphism of the non-commutative completed

Q-algebra ÂA defined by

D̂DhðxÞ ¼ x 1þ
hðzÞ � 1

z
y0

� ��1

;

D̂Dhðxþ yaÞ ¼ ðxþ yaÞ 1þ
hðzÞ � 1

z
ðy0 � yaÞ

� ��1

:

As in [IKZ, §7], the derivation qf and the automorphism D̂Dh are related by

D̂Dh ¼ expð�qf Þ with f ¼ logðhÞ:

Consider the specific automorphism D̂D1þuX (u being a parameter). By the identity

logð1þ uX Þ ¼
P

y

n¼1ð�1Þn�1
unX n=n, the automorphism D̂D1þuX and the derivations fqng

are related by

*The case n ¼ 1 and a part of n ¼ 2 were established by T. Koura [Ko].
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D̂D1þuX ¼ exp �
Xy

n¼1

ð�1Þn�1

n
unqn

 !
:ð28Þ

The key identity that enables us to connect the double shu¿e story in the last section to

the derivations qn is the following. Recall the definition (23) of Du.

Proposition 3.2. For any w A A, we have

DuðwÞ ¼ D̂D1þuX ðIðwÞÞ:

Here, the map I is extended to A by

Iðxk1�1ya1x
k2�1ya2 � � � x

kn�1yanx
lÞ ¼ xk1�1ya1x

k2�1ya1þa2 � � � x
kn�1ya1þ���þanx

l :

Proof. As remarked before, this is not an identity of homomorphisms and so

we have to check the images of general monomials in A on both sides coincide. The

identity for w ¼ x holds true since we have DuðxÞ ¼ xð1þ uy0Þ
�1 as in [IKZ]. Let

a A Rm. Lemma 2.5 implies

Fuy0ðxþ yaÞ ¼ yað1� uy0Þ
�1 þ xð1þ uyað1� uy0Þ

�1Þ:ð29Þ

Then,

IðFuy0ðxþ yaÞÞ ¼ yað1� uyaÞ
�1 þ xð1þ uyað1� uyaÞ

�1Þ

¼ ðxþ yaÞð1� uyaÞ
�1:

By the definition of Du, we find

Duðxþ yaÞ ¼ expð�d[uÞððxþ yaÞð1� uyaÞ
�1Þ:

It is easily shown from the identities d n
[
x ¼ n!xyn

0 and d n
[
ya ¼ n!ya y

n
0 that

expð�d[uÞðxÞ ¼ xð1þ uy0Þ
�1; expð�d[uÞðyaÞ ¼ yað1þ uy0Þ

�1:

Since expð�d[uÞ is an automorphism of the non-commutative algebra ÂA, we have

Duðxþ yaÞ ¼ ðxþ yaÞð1þ uy0Þ
�1ð1� uyað1þ uy0Þ

�1Þ�1

¼ ðxþ yaÞð1þ uðy0 � yaÞÞ
�1:

Here the last expression coincides with D̂D1þuX ðxþ yaÞ. Therefore we have

DuðwÞ ¼ D̂D1þuX ðIðwÞÞ

for w ¼ x; ya.

Let w ¼ xk1�1ya1 � � � x
kn�1yanx

l�1 be a monomial in A with k1; . . . ; kn; l positive

integers and a1; . . . ; an A Rm. Then, taking the identities

Fuy0ðyaÞ ¼ ð1þ uxÞyað1� uy0Þ
�1 ða A RmÞ and Fuy0ðxÞ ¼ x

into account, we have

Fuy0ðwÞ ¼ xk1�1Fuy0ðya1Þx
k2�1 � � � xkn�1Fuy0ðyanÞx

l�1:
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For simplicity write Ya ¼ ð1þ uxÞyað1� uyaÞ
�1 for a A Rm. Using this notation, we

have

IðFuy0ðwÞÞ ¼ xk1�1Ya1x
k2�1Ya1þa2 � � � x

kn�1Ya1þ���þanx
l�1:

Since

expð�d[uÞðYaÞ ¼ DuðyaÞ ¼ D̂D1þuX ðyaÞ ða A RmÞ;

DuðwÞ ¼ expð�d[uÞðIðFuy0ðwÞÞÞ

¼ expð�d[uÞðx
k1�1Þ expð�d[uÞðYa1Þ � � �

expð�d[uÞðx
kn�1Þ expð�d[uÞðYa1þ���þanÞ expð�d[uÞðx

l�1Þ

¼ D̂D1þuX ðx
k1�1ÞD̂D1þuX ðya1Þ � � � D̂D1þuX ðya1þ���þanÞD̂D1þuX ðx

l�1Þ

¼ D̂D1þuX ðx
k1�1ya1x

k2�1ya1þa2 � � � x
kn�1ya1þ���þanx

l�1Þ

¼ D̂D1þuX ðIðwÞÞ: r

Proof of Theorem 3.1. By Proposition 3.2 and (28), we have

Du ¼ ðD̂D1þuX �IÞ ¼ exp �
Xy

n¼1

ð�1Þn�1

n
unqn

 !
�I

and hence

�
Xy

n¼1

ð�1Þn�1

n
unqn ¼ logðDu �I

�1Þ ¼ logð1þ Du �I
�1 � 1Þ

¼
Xy

n¼1

ð�1Þn�1

n
ðDu �I

�1 � 1Þn:

Corollary 2.6 gives

L[ððDu �I
�1 � 1Þnðw0ÞÞ ¼ 0

for all nb 1 and w0 A A
0 and therefore we conclude

L[ðqnðw0ÞÞ ¼ 0: r

Remark. In [G2, Proposition 2.13] Goncharov gives the ‘‘distribution relations’’,

which reads for ljm and ai A lRm

L[ðk1; k2; . . . ; kn; a1; a2; . . . ; anÞ

¼ l k1þk2þ���þkn�n
X

bi ARm; lbi¼ai

L[ðk1; k2; . . . ; kn; b1; b2; . . . ; bnÞ

(when each L-value converges). The authors do not know whether there is some exact

relationship between these and the relations discussed in our paper or not.
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4. Applications.

4.1. Principal part of multiple L-functions.

For any index set ðk; aÞ ¼ ðk1; . . . ; kn; a1; . . . ; anÞ not necessarily admissible, we

define ‘‘multiple L-functions’’ L�
k;aðsÞ and L[

k;aðsÞ of single complex variable s by the

Dirichlet series

L�
k;aðsÞ ¼

X

m1>m2>���>mn>0

ja1ðm1Þja2ðm2Þ � � � janðmnÞ

mk1þs
1 mk2

2 � � �mkn
n

and

L[
k;aðsÞ ¼

X

m1>m2>���>mn>0

ja1ðm1 �m2Þ � � � jan�1
ðmn�1 �mnÞjanðmnÞ

mk1þs
1 mk2

2 � � �mkn
n

:

The series are absolutely convergent for ReðsÞ > 0 and can be extended to a mer-

omorphic function of s in a similar fashion as in [AK]. If the index ðk; aÞ is admissible,

then both functions are holomorphic at s ¼ 0 having the values

L�
k;að0Þ ¼ L�ðk; aÞ and L[

k;að0Þ ¼ L[ðk; aÞ;

while for non-admissible index they have a pole at s ¼ 0. As a matter of fact, the two

functions are essentially the same and related with each other by

L[
k;aðsÞ ¼ L�

k; I�1ðaÞðsÞ;ð30Þ

where I is the bijection on the set Rn
m defined by Iða1; a2; . . . ; anÞ ¼

ða1; a1 þ a2; . . . ; a1 þ a2 þ � � � þ anÞ. If a ¼ ð 0; 0; . . . ; 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n

Þ, then both L�
k;aðsÞ and L[

k;aðsÞ

give the same function which is denoted by zðk1 þ s; k2; . . . ; knÞ.

In the following, we show that the principal parts at s ¼ 0 of L�
k;aðsÞ and of

Gðsþ 1ÞL[
k;aðsÞ are completely determined by the polynomials L

�
k;aðTÞ and L

[

k;aðTÞ

defined in §2.2. (Recall the descriptions of the coe‰cients of these polynomials given

there.)

Theorem 4.1. (i) Write the polynomial L
�
k;aðTÞ as

L
�
k;aðTÞ ¼

Xn

j¼0

bj

j!
ðT � gÞ j;

where g is the Euler constant. Then the principal part of L�
k;aðsÞ at s ¼ 0 is given by

L�
k;aðsÞ ¼

Xn

j¼0

bj

s j
þOðsÞ ðs ! 0Þ:

(ii) Write the polynomial L
[

k;aðTÞ as

L
[

k;aðTÞ ¼
Xn

j¼0

cj

j!
T j:
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Then the principal part of Gðsþ 1ÞL[
k;aðsÞ at s ¼ 0 is given by

Gðsþ 1ÞL[
k;aðsÞ ¼

Xn

j¼0

cj

s j
þOðsÞ ðs ! 0Þ:

Remark. As for the precise order of pole at s ¼ 0, we only know it is at most t,

where t is the number given by ðk; aÞ ¼ ð 1; . . . ; 1
zfflfflfflffl}|fflfflfflffl{t

; k 0
; 0; . . . ; 0
zfflfflfflffl}|fflfflfflffl{t

; a 0Þ with an admissible

ðk 0
; a

0Þ. When L�ðk
0; a 0Þ0 0 (resp. L[ðk

0; a 0Þ0 0), the order of pole at s ¼ 0 of L�
k;aðsÞ

(resp. L[
k;aðsÞ) is exactly t. If a

0 ¼ ð0; 0; . . . ; 0Þ, this is the case, but in general, we do

not know when the L-values vanish.

Proof. We first establish the assertion (ii). When k ¼ ð 1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n

Þ and a ¼

ð 0; 0; . . . ; 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n

Þ, the polynomial L[

k;aðTÞ is equal to T n=n! (since yn
0 ¼ y[n0 =n!) and thus the

formula becomes

Gðsþ 1Þzðsþ 1; 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
n�1

Þ ¼
1

sn
þOðsÞ ðs ! 0Þ;ð31Þ

which was proved in [AK, Proposition 4 (ii)]. The general case is obtained from this as

follows.

From the definition of the function Lik;aðtÞ given in §2.2, it is immediate to see that

GðsÞLk;aðsÞ ¼

ð
y

0

t s�1Lik;aðe
�tÞ dt:ð32Þ

As stated in (13), we have the estimate

jLik;aðe
�tÞ �L

[

k;að�logð1� e�tÞÞj < Cð1� e�tÞd

as t ! þ0 with some constants C; d > 0. With this, we may conclude that the principal

part of Gðsþ 1ÞLk;aðsÞ ¼ sGðsÞLk;aðsÞ at s ¼ 0 coincides with that of

s

ð
y

0

ts�1
L

[

k;að�logð1� e�tÞÞ dt ¼ s
Xn

j¼0

cj

j!

ð
y

0

ts�1ð�logð1� e�tÞÞ j dt:

Since ð�logð1� e�tÞÞ j=j! ¼ Li1;...;1|{z}
j

ðe�tÞ (cf. [AK, Lemma 1 (ii)]), we have by (32) and

(31),

s

ð
y

0

ts�1 ð�logð1� e�tÞÞ j

j!
dt ¼ Gðsþ 1Þzðsþ 1; 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}

j�1

Þ ¼
1

s j
þOðsÞ ðas s ! 0Þ:

We therefore have

s

ð
y

0

ts�1
L

[

k;að�logð1� e�tÞÞ dt ¼
Xn

j¼0

cj

s j
þOðsÞ ðas s ! 0Þ

and the assertion (ii) is proved.
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For (ii), we note the relation which follows from (30):

L�
k;aðsÞ ¼ L[

k; IðaÞðsÞ ¼
1

Gðsþ 1Þ
Gðsþ 1ÞL[

k; IðaÞðsÞ:

By (i), the principal part of Gðsþ 1ÞL[
k; IðaÞðsÞ corresponds to L

[

k; IðaÞðTÞ, which is equal

to ðL̂L[ �IÞðwÞ with w ¼ the word corresponding to ðk; aÞ in the previous notation. By

Theorem 2.2, this in turn equals ðr � L̂L�ÞðwÞ. Recalling the definition (14) of r, we see

by a routine computation which we omit that this gives the assertion (i). r

Remark. Tracing the above calculations carefully, we may deduce Theorem 2.2

from equation (31).

4.2. Some examples of relations among multiple L-values.

We restrict ourselves to the cases m ¼ 3 and 4 and give results having a flavor of

‘‘sum formula’’. Let w3 and w4 be the unique non-trivial Dirichlet characters mod 3 and

mod 4 respectively. The following result was first proved by M. Nishi [N] by a method

of manipulating the defining series.

Proposition 4.2 (Nishi). For any integer nb 2, we have

Xn�1

i¼1

ð2 i þ 2ÞL[ði; n� i; w3; w3Þ þ 2L[ð1; n� 1; w3; w3Þ þ 2L[ðn� 1; 1; w3; w3Þ

¼ ðn� 1ÞL[ðn; w
2
3Þ ð¼ ðn� 1Þð1� 3�nÞzðnÞÞ

and

Xn�1

i¼1

2 iL[ði; n� i; w4; w4Þ þ 2L[ð1; n� 1; w4; w4Þ

¼ ðn� 1ÞL[ðn; w
2
4Þ ð¼ ðn� 1Þð1� 2�nÞzðnÞÞ:

Proof. We give a proof of the second identity, the first being obtained similarly.

First we note that from the shu¿e product identity similar to (8), we have

L[ði; f1ÞL[ðn� i; f2Þ

¼
Xn�1

j¼i

j � 1

j � i

� �
L[ð j; n� j; f1; f2Þ þ

Xn�1

j¼n�i

j � 1

j � nþ i

� �
L[ð j; n� j; f2; f1Þ

and by summing up

Xn�1

i¼1

L[ði; f1ÞL[ðn� i; f2Þ ¼
Xn�1

i¼1

2 i�1ðL[ði; n� i; f1; f2Þ þ L[ði; n� i; f2; f1ÞÞ

for any f1; f2 with f̂f1ð0Þ ¼ f̂f2ð0Þ ¼ 0. By this we find

Xn�1

i¼1

2 iL[ði; n� i; w4; w4Þ ¼
Xn�1

i¼1

L[ði; w4ÞL[ðn� i; w4Þ:ð33Þ
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The product on the right is rewritten by the harmonic product as

L[ði; w4ÞL[ðn� i; w4Þ ¼ L�ði; w4ÞL�ðn� i; w4Þð34Þ

¼ 2L�ði; n� i; w4; w4Þ þ L�ðn; w
2
4Þ:

Hence the left-hand side of the equation to be proved is equal to

2
Xn�1

i¼1

L�ði; n� i; w4; w4Þ þ L[ð1; n� 1; w4; w4Þ

 !
þ ðn� 1ÞL�ðn; w

2
4Þ;

so we have to show

Xn�1

i¼1

L�ði; n� i; w4; w4Þ þ L[ð1; n� 1; w4; w4Þ ¼ 0:

Now since ŵw4ð1Þ ¼ 1, ŵw4ð3Þ ¼ �1 ð ŵw4ð0Þ ¼ ŵw4ð2Þ ¼ 0Þ, Proposition 1.2 gives

L�ði; n� i; w4; w4Þ ¼ �
1

4
ðL[ði; n� i; j1; j2Þ � L[ði; n� i; j1; j0Þð35Þ

� L[ði; n� i; j3; j0Þ þ L[ði; n� i; j3; j2ÞÞ:

Specializing k1 ¼ 1, k2 ¼ n� 1 in (8) and using

L[ð1; ja1ÞL[ðn� 1; ja2Þ ¼ L�ð1; ja1ÞL�ðn� 1; ja2Þ

¼ L�ð1; n� 1; ja1 ; ja2Þ þ L�ðn� 1; 1; ja2 ; ja1Þ þ L�ðn; ja1þa2
Þ

¼ L[ð1; n� 1; ja1 ; ja2Þ þ L[ðn� 1; 1; ja2 ; ja1Þ þ L[ðn; ja1þa2
Þ;

we have

Xn�1

i¼1

L[ði; n� i; ja1 ; ja2Þð36Þ

¼ L[ð1; n� 1; ja1 ; ja1þa2
Þ þ L[ðn� 1; 1; ja2 ; ja1þa2

Þ

þ L[ðn; ja1þa2
Þ � L[ðn� 1; 1; ja2 ; ja1Þ:

Suppose n > 2. Then we may put a2 ¼ 0 in (36) and from equations (33), (34), (35),

and (36) we obtain

Xn�1

i¼1

L�ði; n� i; w4; w4Þ ¼ �
1

4
ðL[ð1; n� 1; j1; j3Þ � L[ð1; n� 1; j1; j1Þ

� L[ð1; n� 1; j3; j3Þ þ L[ð1; n� 1; j3; j1ÞÞ

¼ �L[ð1; n� 1; w4; w4Þ:

This gives the desired equation. For n ¼ 2, what we have to show is the equation

4L[ð1; 1; w4; w4Þ ¼ L[ð2; w
2
4Þ:
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Since

L[ð2; w
2
4Þ ¼ L�ð2; w

2
4Þ ¼ L�ð1; w4Þ

2 � 2L�ð1; 1; w4; w4Þ

¼ L[ð1; w4Þ
2 � 2L�ð1; 1; w4; w4Þ ¼ 2L[ð1; 1; w4; w4Þ � 2L�ð1; 1; w4; w4Þ;

we need to show L�ð1; 1; w4; w4Þ ¼ �L[ð1; 1; w4; w4Þ: Now by (35), we have

L�ð1; 1; w4; w4Þ ¼ �
1

4
ðL[ð1; 1; j1; j2Þ � L[ð1; 1; j1; j0Þð37Þ

� L[ð1; 1; j3; j0Þ þ L[ð1; 1; j3; j2ÞÞ:

Applying Theorem 3.1 for n ¼ 1, w0 ¼ ya ða0 0Þ, we get

L[ð1; 1; ja; j0Þ ¼ L[ð1; 1; ja; jaÞ þ L[ð2; jaÞ:

Using this and (36), we see the right-hand side of (37) is equal to

�
1

4
ð�L[ð1; 1; j1; j1Þ � L[ð1; 1; j3; j3Þ þ L[ð1; 1; j1; j3Þ þ L[ð1; 1; j3; j1ÞÞ

¼ �L�ð1; 1; w4; w4Þ: r

We have found numerically the following rather curious identities. (The first was

found by Nishi [N].) In particular, the sums on the left are suggested to belong to the

ring generated by the Riemann zeta values.

Set z2ðsÞ ¼ ð1� 2�sÞzðsÞ and z3ðsÞ ¼ ð1� 3�sÞzðsÞ. For odd n, we conjecturally

have

Xn�2

i¼2

L[ði; n� i; w3; w3Þ ¼
?

�
n� 3

2
z3ðnÞ þ

Xðn�3Þ=2

m¼1

32m � 3

32m � 1
z3ð2mÞz3ðn� 2mÞ;

Xn�1

i¼1

L[ði; n� i; w4; w4Þ ¼
? 1

2
z2ðnÞ þ

Xðn�3Þ=2

m¼1

1� 21�2m

22m � 1
z2ð2mÞz2ðn� 2mÞ:

As for a general ‘‘sum formula’’, only we could show is the following relation, which

can be deduced by applying shu¿e product identity on the right-hand side. For any f

with f̂f ð0Þ ¼ 0, we abbreviate L[ðk1; k2; . . . ; kn; f ; f ; . . . ; f Þ as L[ðk1; k2; . . . ; kn; f Þ.

Proposition 4.3. Let k; n be positive integers with 1a na k. Then we have

X

k1þ���þkn¼k

L[ðk1; . . . ; kn; f Þ ¼
Xn�1

j¼0

ð�1Þnþj�1

j!
L[ð1; f Þ

j
L[ð 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}

n�1�j

; k þ 1� n; f Þ;

where the summation on the left is taken over all positive integers k1; . . . ; kn with

k1 þ � � � þ kn ¼ k.

4.3. A connection to the Drinfeld associator.

As is fairly known, the regularized multiple zeta values are closely related to the

so-called Drinfeld KZ associator. We recall briefly the definition of the Drinfeld KZ
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associator [D]. For more detail, see e.g., [Ka, Chapter XIX]. Consider the linear

di¤erential equation

G 0ðtÞ ¼
X

t
þ

Y

1� t

� �
GðtÞð38Þ

and its unique solutions G0ðtÞ and G1ðtÞ such that

G0ðtÞ@ tX ðt ! 0Þ and G1ðtÞ@ ð1� tÞ�Y ðz ! 1Þ:

The Drinfeld KZ associator FKZðX ;YÞ is an element in RhhX ;Yii defined by

FKZðX ;YÞ ¼ G1ðtÞ
�1
G0ðtÞ:

The alleged relation to MZV’s is then stated as follows: The coe‰cient of each word

W in FKZðX ;YÞ is equal to the regularized zeta value of w. Here w is the word

obtained from W by replacing X with x and Y with y. Here, the regularization means

to take the constant term of w, viewed as an element in the shu¿e algebra Qhx; yi
[

which is isomorphic to the polynomial algebra h0
[
½x; y� over h0

[
¼ Q þ xQhx; yiy, and

then take the corresponding multiple zeta value of this constant term Ah0
[
(see [IKZ] for

algebraic computations of the regularizations).

Now consider the following generalization of (38):

H 0ðtÞ ¼
X

t
HðtÞ þ

X

a ARm

zaYa

1� zat
HðtÞ:ð39Þ

By using the function Lik;aðtÞ defined in (12), we can construct a solution H0ðtÞ to

(39) such that H0ðtÞ@ tX ðt ! 0Þ as followsy.

Let w A A
1 be the word which corresponds to the index ðk; aÞ and write Lik;aðtÞ as

LiwðtÞ. Recall the map w 7! LiwðtÞ is a [-homomorphism from A
1
[
to the algebra of

analytic functions near t ¼ 0. We extend this homomorphism (uniquely) to the whole

A[ by setting LixðtÞ ¼ logðtÞ. Then the series

H0ðtÞ ¼
X

w AA

LiwðtÞW ;

where W is the capitalized word corresponding to w, is a solution of (39). We may

write out more explicitly the coe‰cient LiwðtÞ when w B A
1 as in the explicit regu-

larization formula in [IKZ, Corollary to Proposition 10], but we omit it here.

The following question arises naturally and would be very interesting.

Problem. Is there an analogous theory of the Drinfeld associator for this dif-

ferential equation which is closely connected to the regularized multiple L-values?z

Acknowledgement. The authors would like to thank the referee for several useful

comments and suggestions.

yWe have made an erroneous statement on the solution in [AK2]. The authors would very much like

to thank Hidekazu Furusho and Jun-ichi Okuda, who independently pointed out the error and supplied the

correct form of the solution.
zRecently Okuda announced such a theory exists at least for small m. See his forthcoming article for

the details.
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[G2] A. B. Goncharov, Multiple polylogarithms and mixed Tate motives, preprint (2002), arXiv:math.

AG/0202154.

[H] M. Ho¤man, The algebra of multiple harmonic series, J. Algebra, 194 (1997), 477–495.

[IKZ] K. Ihara, M. Kaneko and D. Zagier, Derivation and double shu¿e relations for multiple zeta values,

preprint (2004).

[Ka] C. Kassel, Quantum Groups, Grad. Texts in Math., 155, Springer-Verlag, 1995.

[Ko] T. Koura, On linear relations of multiple L-values derived from derivations, Master’s thesis (in

Japanese), Kyushu Univ., 2002.

[N] M. Nishi, On relations of multiple L-values, Master’s thesis (in Japanese), Kyushu Univ., 2001.

[R] G. Racinet, Doubles mélanges des polylogarithmes multiples aux racines de l’unité, Publ. Math.
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