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Abstract. We formulate and prove reguralized double shuffle and derivation rela-
tions for multiple L-values. A description of principal part of a multiple L-function is
also given.

0. Introduction.

In the present paper, we study the regularized double shuffle and the derivation
relations of the multiple L-values and give some applications. A fair amount of work
related to the multiple L-values has already been done, e.g., A. Goncharov [GI], [G2],
G. Racinet [R] and the references therein. In particular, the regularization stuff is also
treated in a series of works of Goncharov and Racinet. Our approach here, which
largely follows the setup and method given in for multiple zeta values, is less
abstract and more directly aimed at obtaining relations among multiple L-values. In
particular, a generalization of the derivation relation of multiple zeta values, which as
shown in 1s in a sense equivalent to the regularized double shuffle relation, is
established by using the regularization and the method developed in [IKZ].

In §1 we present some basic definitions and algebraic setup introduced by M.
Hoftman which is suitable for our study. In §2, after the discussion on the finite
double shuffle relation (Proposition 2.1)), we give the regularized double shuffle relations
(Theorem 2.3, Mheorem 2.4). The derivation relation (Theorem 3.1) is formulated and
proved in §3. The final §4 is devoted to a couple of applications of the results and ideas
developed in the previous sections. Of them, the principal part of a certain multiple -
function is determined (Theorem 4.1) in terms of the polynomials defined algebraically
to describe the regularization procedure.

1. Definition and algebraic setup.

1.1. Definition.

We define two types of multiple L-values in a general context. Let m be a natural
number and R = R,, denote the Z-module Z/mZ. Let #(R;C) be the C-vector space
consisting of all mappings f : R — C. An element f € % (R;C) is viewed naturally as
a function on Z via the projection Z — R. We fix once and for all a primitive mth
root of unity { = (,, :=exp(2ni/m). For each ae R, let ¢, € Z(R;C) be defined by

9,(x) ={" (xeR).
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The set of functions {¢,},. z constitute a basis of the space # (R; C). The expression of
an element f € % (R;C) by this basis is the Fourier expansion of f:

(1) = fla)™ with f(a Zf
aeR yeR
the function f being referred to as the (finite) Fourier transform of f.
For fi,...,fn € Z(R;C) and positive integers ki,...,k,, we define the multiple
L-values Ly (ky,... .k fi,..., fu) and L.(ki,... . ku; fi,..., fa) by

(2) Lm<k17"'>kn;f17-"7fn)
_ 3 Silmy — o) - fu1 (M1 — my) fu(my)
my>my > >n1, >0 m{qmgz U mrllc,,

N - Silw) o(1a) - - - Jn(itn)
N Z (g + - ) (g - )" (1)

and
(3) L.(kyy....kn; fiyooos /)
Ji(m) fo(ma) - -+ fu(mn)
B m1>mz;>m,,>0 m{ﬂméﬁ m’l;n
< Nl 4+ ) ol + -+ ) - fap)
ﬂlz—l Z ,Lt]—|— +:un)kl(/’62++:un)k2(:un)kn ‘

If n=1, the two series coincide. When k; > 2, these infinite series are absolutely
convergent. When k; = 1, the series are understood to be the limits

Ly ko, o ks fiyooos f)
_ lim Z Silmy —ma) falmy —m3) - -+ fu (M1 — my) fu(my)

k2 « o kn ’
R>my>my>->m,>0 mpm, my

L*(l,kz,--~7kn;ﬁa--'7ﬁl)

R— 0

Silmy) fo(ma) - -+ fu(mn)

= lim T T ,

R .
- R>my>my>->m, >0 m1m2 my

provided they are convergent. As for the convergence, we have the following criterion.

ProposiTioN 1.1.  Suppose ky =1. The series Ly(l,ka,... ky; f1,...,fn) and
L.(1,ka,....ku; f1,. .., fa) are convergent if and only if f,(0) =0, (ie., > . fi(y) =0).

Proor. We give a proof based on the standard method of Abel’s summation for
L. The other case is similar or can be deduced from this using the next proposition.

Put S(n):=>.) _, fi(m), S(0) =0, and

S1() o() - Ju(tt)
L(R) :=
( ) R>m|>n%>:--->m,,>0 mlméq o _m’l;,,
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where w, =my —my, p,=my—ms,...,u, =m,. By the relation fi(z)=S(1y)—
S(y; — 1), we have

(S(py) = Sy = 1) o) - -+ ful )

m1m§2 . .m’{f”

S(uy) fo(1) - - fu(pt)
R p bty (M1 + o+ ,) (o + - + 1y,

=1

L(R) =

R>my>my>-->nm, >0

)kZ .. 'ﬂ}']l(”

_ Z S(p)fo(ma) - fa(i) (!
/ 1 ky kn H
Rl ittty ) (- 4 14,) ™ -

w2021 (j=2)

=u —1).

Noting S(0) =0 and dividing the first sum into two parts according as R =
py+ iy + -+, and R >y +pp + -+ + 1, + 1, we find
S(u)fato) - - fu(tty)

R=p+ip+--+u, (ﬂl +u+--+ 'un)('uz +- 4w,
,U/'ZI

L(R) =

)kz'u’l,f"

S() o) -+ fuu)

ks k,
R> pty i+ 41, +1 (o + ) e "

+

1 1 )
X — .
(u1+uz+---+un fy et 1

By the assumption f;(0) = 0, the sum S(n) is periodic and so bounded, hence there is a
constant M > 0 such that
IS <M, |fim)l <M (Vn,)).
From this and
1 | 1

- <
R I R e R e N S AR Ok

I

we have the estimate

Mn
|L(R)| = Z k> ky
Repty ey, (M o oo g, ) (g 4 )™ -
Mn
+ 2 o %
R >t g, (1 g )"y + - 4 )™ -
=1
Mn
<
= Kot l %
R—1> iy ++p, (i + -+ u,) AR " Hn
#i=1
Mﬂ
+

2 k; ky
Rt > s, (1 2+ ) (g - 4 )
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Both sums on the right converge as R — oo and so L(R) converges. If £,(0) # 0, then
S(n) is unbounded and the sum L(R) obviously diverges. O

From here on until we consider the regularization of divergent series, we always assume
£,(0) =0 if ky = 1.

Each of the two types of MLV’s (2) and (3) is expressed as a linear combination of
the other type of MLV’s.

ProrosiTioN 1.2. We have
L.(ky, ... ku; f1,.o 3 fn)

= Z _fi(al)”'f}:z(an)LLLl<k17"'7kn;q0a17¢a1+a27"‘7¢a1+---+a,,)

ap,....,an€R
and
Ly(kyy .. kn; fiyeooy fn)
= Z fl(al)"'fn(aﬂ)L*(kh"'7kn;(pa|a(pazfa17'~'7¢a,,7an,1)‘
ap,....,an€R
In particular, for ai,...,a, € R with a; # 0, we have
(4) Lo.(ki,....kn;04,-- - 0,) = Lu(k, .o ks 04 0y vays > Payota )

Lu(ki, . kn;0u- o 0,) = Lok, o ks 00, 0y —ars - Pay—ay )

Proor. This is an immediate consequence of (1), the special case being obtained by
setting f; = ¢, and noting ¢,(x) =1 for x =a and 0 otherwise. O

For the sake of simplicity we write Ly(ki,..., ks a1,...,a,) or Lyu(k;a) with
(k;a) = (ki,... . kpsar,...,ay) for Lu(ky,....kn;0,,...,0,) (#=1 or x). The index

set (k;a) = (ky,...,kp;a1,...,a,) for which the series Ly (k;a) is convergent is called
admissible. This is the case when k; > 2, or k; =1 and a; # 0 in R,, as Proposition
(1.1) shows. We also note that if ¢y = --- =a, =0 in R, both of our MLV’s coincide

with the multiple zeta value and the index set is admissible if and only if k| > 2:
Lm(kl,...,kn;o,...,()) = L*(kl,...,kn;O,...,O) = é(kl,,kn)

In the theory of multiple zeta values, the iterated integral expression (the Drinfeld
integral) played an important role. The series L (ky,...,ky;a1,...,a,) has a similar
integral expression as follows. Let

et e0) = JJ Ay, (1) A, (1) -+ Ay, (1) dlty - di,
I1>1>>1>0

where ¢ (1 < j<k) are complex numbers with [g] <1 and

1
Ao(t) = and As(t):%gt (e #0,le| < 1).

We assume ¢ # 1 and g # 0, which ensures the convergence of the integral.
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For positive integers ki, ...,k, and ay,...,a, € R,, we see by expanding {/(1 — (1)
into the geometric series and performing the integral repeatedly the identity

100,...,0,09,0,...,0,£“,...,0,...,0,(%)
~—— SN—— S~——

k-l k-1 k1
i i g .. g

pu— .« .. k k kn7
m=1 ”nzl(‘ul—i_‘”_'_:un)1(#2"’"'4‘,&")2---/1,1

which is nothing but the multiple L-value L (ky,...,k,;a1,...,a,). Written as an
iterated integral, we have

Yar  (tdr (t ¢
L ey Kps gy lp) = — — T a.
(5) m(kla 7k aj Cl) JO t JO t JOI_C 1tdt

k-1
t t an—1 t t t ay
Jkéjggadtjéjﬂj Z: 7 dz.
0t ol =C""t )t ot Jol—=C%t
—_—

ky—1

1.2. Algebraic setup.

To formulate the various relations of MLV’s, we adopt an algebraic setup
developed by Hoffman and used in [IKZ]. Consider the non-commutative poly-
nomial algebra

o = Q4X, yasa € Ry

in m+ 1 indeterminates x, y, (a € R,). We should remark that it is sometimes nec-
essary to enlarge the field of coefficients to a certain extension of Q, depending on the
class of functions f; involved in the definitions of L, or L,. For our purpose, however,
the field Q is sufficient. We also define subalgebras /! and .«7° of .« by

ﬂlZQ—{'Zﬂya

aceR,

and

A =Q+ > xAyat D yodVa

aeR, a,be R,
b#0

For an integer k > 1 and ae R, put z;, = x*"'y,. Then the algebra .' is freely
generated by z; , for all k > 1 and a e R,,. We write o7, ﬂrg, and yi,i, for o7, .o/°, and
/! respectively, if the index m should be specified.

Now define “evaluation” maps %, : «#° — C and &, : #/° — C by

iﬂ(xkl_lyalxkz_lyaz . -xk"_lyan) =L.(ki,....kp;ai,...,a,)
and
gm(xkl_l,yu]xkz_lyuz e xk"_l)’an) = Lm<k17 v 7kn; ag,... 7an)7

both of which being extended Q-linearly. We define the harmonic product % on .o7!
inductively by
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lxw=wx1=w,

Zk,aW1 * Z1 W2 = Zie, a(W1 % 2 pW2) + 21 b (Zk, aW1 * W2) + Zitd arb (W1 * W2),

for all k,/ > 1, a,b € R,,, and any words w;,w, € .7, together with Q-bilinearity. In a
similar manner as in [H], the space .« ! equipped with this product is shown to become
a commutative algebra and .#° a subalgebra. We denote these algebras by . and
/%, As in the case of multiple zeta values, the multiplication law of the series L, (k,a)
is stated as the evaluation map %, on /" is an algebra homomorphism with respect to
the harmonic product *:

(6) g*(wl * Wz) = J*(wl)g*(wz).
For instance, the harmonic product
xk]*lyal * xszlyaz — xk]*lyalxszlyaz + xszlyazxklflyal _|_ xkl+k271yal+a2

corresponds to
L.(ki;a1)L.(ky;ar) = L.(ki,ka;ar,a0) + Ly (ka, ki;az,a1) + Lo (ki + kayar + az)

for admissible index sets (kj;a;) and (ky;ap).

The other product corresponding to the multiplication of the series L, (k,a) (via
its iterated integral expression) is the shuffle product, defined on all of .&/ inductively by
setting

lmw = wiml = w,

uwitow, = u(witow,) + v(uwimw,),

for any words w,wi,wy e.o/ and u,ve {x,y, (a€ R)}, together with Q-bilinearity.
This product gives ./ the structure of a commutative Q-algebra which we denote by .o7,;.
The subspaces .o#! and .«/° become subalgebras of .7, denoted by .7} and .«/" respec-
tively. By the standard shuffle product identity of iterated integrals, the evaluation map
#u 1s an algebra homomorphism:

(7) Lu(wimwy) = Ly (wi) Lu(wa)
for all wy,w, € .7°.

As an example of the shuffle product, we give, for any admissible index sets
(ki;ar), (ka; az),

xk]—lyalH_kaz—lya2
kr—1 k . 1 . k1—1 k . 1 .
1 + . e 2 + i i
= Z( - J)xm,, X e + Z( - ]>xk2+’ Yy,

which corresponds to
(8) Lm(kl;al)Lm(k2;a2)

ol — 1+

=Z< T J)Lm(k1+j;k2—j;al,a2>
= J

RGN

; )Lm(kz-l-j;kl — jyaz,ay).

J=0
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2. Finite and extended double shuffle relations.

2.1. Finite double shuffle relation.
To connect the two algebra homomorphisms (6) and (7), we define a Q-linear
endomorphism .# of ./!. First we set

ky ki

k1—1 kr—1 —1 o -1 kr—1 k,—1
I (X Y X Yay o X Va,) = X Yay X7 Vaytay X Yay+-+ay

for any index set (k;a) = (ki,...,ky;ai,...,a,), and then extend this to .#! by Q-
linearity. In terms of the map .7, the relation (4) in [Proposition 1.2 is stated as
Y= Luo g, ie.,

(9) L (w) = Lu(F(w)) for all we #°.
Then the finite double shuffle relation tfor MLV is stated as

ProposiTION 2.1 (Finite double shuffle relation). For any wi,w, € ./°, we have
(10) Pu(F(w)I (wr) — I (w1 xwy)) = 0.

REMARK. When m = 1, the map .# is the identity and this relation is nothing but
the finite double shuffle relation of the multiple zeta values.

Proor. By (6), (9) and (7), we have
LWy kW) = L(w)) Li(wa) = Lu(I(W1)) Lu( I (W2)) = Lu(F(wy)us (wy)).

On the other hand, the left-hand side equals Z,(.#(w; *w,)) by (9) and hence the
proposition holds. ]

2.2. Extension of the evaluation maps ¥, and %.

In the next two subsections, we extend the double shuffle relations by taking the
divergent series into the picture, namely by regularizing the divergent series. Since the
arguments involved are similar to those developed in [IKZ], all the proofs are sketchy
except where the map .# plays a role.

Algebraically, the regularizations are the following extensions of homomorphisms
%, and %, to .«/'. Owing to the isomorphisms of Q-algebras .7! ~.o°[y¢] and
o} ~ o/% o] (the product of yy and elements in .«/° being * and m respectively), the
latter of which is standard and the former can be shown in a similar way as in [H], we
have, for # = x or w, the following map Py : /4 — C[T] uniquely characterized by the
properties

(i) %% coincides with %y on 7.

(i) Lu(v)=T.

(i) Y is an algebra homomorphism with respect to the product #.

ExampLEs. For a # 0, we have yoy, = Vi * yo — Yayo — Xy, and thus

~

ZL.(voye) = L.(1;a0)T — L.(1,1;a,0) — L.(2;a),

whereas from ygy, = y,ly) — y,yo wWe have

A

Zu(¥0ya) = Lu(1;0)T = Lu(1,1;4,0).
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As examples of degree 2, we have

2 1 *2 1 2
YoYa =5 Va* Vo — (XVa + Yado) * Yo +5X

1 1 5
= 5XV0Ya + XYaVo 5 YaXVo + Va (a #0)

and hence

. 1 1
L(¥3ya) = EL*(I;a)TZ — (L.(2;a) + L.(1,1;a, 0))T+§L*(3;a)

1 1
—5Lu(2,150,a) + L.(2,130,0) + 5 L.(1,2:a,0) + Lu(1,1,1:,0,0).

On the other hand, the equation

1 111
(11) Vi Va = Eyamyoz — Yayollyo + Yayi
gives

. 1
Lu(Veva) = ELm(l;a)T2 — Ly(1,1;a,0)T + L4(1,1,1;4,0,0).

Analytically, these maps have the following interpretations. For R > 0 and an index set
(k;a) = (ky,... . kp;a1,...,a,), put
Pa (111) - - 9, (1)
Lf(kl,...,kn;al,...,an): Z - 5k 4 kn .

. n
R>my>nmy>-->m, >0 m;-m, my

If (k,a) is admissible, then L[(k,a) converges to L.(k,a) as R — oo. Let & (T)e
C[T] denote the polynomial %, (w) for the word w = x¥1~! k

Vay - xF 1y, € .o/ corre-

sponding to the (not necessarily admissible) index set (k,a). Then, in a similar manner

as in [IKZ, §2], we see that % ,(T) is the unique polynomial in C[7] such that
lim R’(Ly(k,a) — % ,(logR+ 7)) =0

R— 0

for some 6 > 0. Here y denotes the Euler constant. We see by induction that, for the
N N

. —_— , ) o ;o
index set (k;a) = (1,...,1,k’;0,...,0,a’) with an admissible (k';a’),

T
Lio(T) = Li(K',a") —

i (terms of lower degree).

More precisely, we can show also by induction that the coefficient of 77 is in the Q-
vector space spanned by the L-values of weight k — i, k being the weight of k.

On the other hand, the polynomial Qm(w) measures the divergence of the integral
(5). More precisely, for an index set (k;a) = (ki,...,kp;a1,...,a,), define a multi-
logarithmic function by

Z tml(oal (Wll - mz) o Oq, (ml’l—l - mn)(pa,, (mn)

)
m{q mé{z N mrll{”

(12) Liy 4(t) =

my>ny>-->my, >0

which is absolutely convergent for |¢f| < 1. This is equal to the integral (5) with the
endpoint 1 of the outer integral replaced by 7. Let %" (T)eC [T] denote the poly-
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nomial Z,(w) for w=xk=ly, ...xk1y, e.oz'. Then #",(T) is the unique poly-
nomial satisfying

(13) lim (1 - 1) (Lig.o(t) — & (—log(1 — 1)) =0 for some & > 0.
t—1— ’

Also, we have
s

T
Lio(T) = Lm(k/,a’)F + (terms of lower degree),

where k',a’ and s have the same meaning as above, and the coefficient of 77 is in the
Q-vector space spanned by the L-values of weight k —i, k& being the weight of k.
Proofs of these facts are again similar to the case of multiple zeta values.

The key identity of Zagier in [IKZ], which relates the two types of regularizations,
holds true for our setting, if modified by taking the map .# into account. Define a
C-linear map p: C[T] — C[T] by

p(T")=P(T) (v=0,1,2,...)
where

v

P =3 (1 )+,

=0
I'Y)(s) being the jth derivative of the gamma function I'(s). By using generating

functions, the definition amounts to saying that the image of p of each monomials 7" is
given by (the identity in C[T][[u]])

(14) plet) =31

v=0

TV
- )MV _ I—v(l + u)e(TJr"/)u‘

THEOREM 2.2. On /', we have

(15) jm0f:pog*.
Proor. For a= (aj,ay,...,a,), put a=(ay,ay —ay,...,a, —a,—1). Noting the
identities
*© m—nmy)--- m,_1 —m m
lea(x) _ ( Z (oal( 2) k(”ank;( n lk" n)wan( n)) x}n
m=n \m>my>-->n,>0 m lm2 Cr My
o i ( Z (pal (m>(pazfal (mz) T (panfan,l (mn)> x}n
- k kn
m=n \m>my>->m,>0 mk1m22 C My
o0
= (L"(k,&) — L™ (k,a))x™
m=n

(" = XL (K, )

I
1)

0

=(x"'=1) > LI'(kax",

m=n+1
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the argument in works almost literally and we obtain the identity
gku,la(T) = p(glj,d(T)%

ki1—1 ky

that is to say, for w=x 1y, € /', we have

Vi o X
L) = (e X Ny Xy ) = (257 ().
Replacing w by #(w), we obtain the desired identity. O]

Note that the identity restricts to (9) on .7°.

2.3. Regularized double shuffle relation.

With the help of we can generalize the double shuffle relation (Propo-
sition 2.1). The case for m =1 has been treated in [IKZ]. Let regl : .o/} — o/0[T]
be the Q-algebra isomorphism which is the composition of the isomorphisms .o7! ~
/[ yo] =~ .«/°[T] which sends yy to T and is identity on .«#°. Note that the map &,
defined in the previous section is the composition of reg? and %, (applied coefficient-
wise); .,?m =%, 0 regﬁ. In other words, an element w € &/Hll i1s written uniquely in the
form

w=wo + Wiy + womyt? + -+ w,myl  (w; € L)
and then
regﬁ(w) =wo+w T +wT*>+ -+ w,T"
and
Luw) = Lu(wo) + LuwW)T + Lu(w2)T? + -+ 4+ Ly(w,) T

Moreover we define reg,(w) to be the constant term of reg’ (w); reg,(w) = wp in the
above notation. For example, from equation we have reg, (¥3y4) = yayi (a #0).
The composition ¥, oreg, is nothing but to take the constant term of %, (w).

THEOREM 2.3 (Regularized double shuffle relations). For any wy € «/° and wy € o/,
we have

Qm(regm(f(wo)mf(wl) — f(W() * Wl))) =0.
When wy € o/°, this becomes (10).
Proor. By we have

Zu(I(w1) = p(L. (1))

Multiplying L, (F(wo)) = Zi(wo) € C ((9)) on both sides and using the C-linearity of p,
we have

A A

LI (W) Zu(I (1)) = Le(wo)p(L(w1)) = p(Le(wo) Le(w1))

= p(Zi(wo xwy)) = Lu(F(wo * wy)).

The left-hand side equals %, (.# (wo)m.# (w;)) and hence we obtain
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(16) gm(f(WO)Hlf(Wﬂ —f(WO*Wl)) =0.
By taking the constant term, we have
Lu(reg, (S (wo)ms (wi) — S (wo +wi))) =0. O

Substituting w; = y{ and using reg,(y;) =0 (since yj= y”/r!) in the theorem,
we obtain the following apparently weaker relations of MLV’s. Rather surprisingly
however, these relations imply and hence Theorem 2.3. Also, the relation
deduced in the above proof is a consequence of these (and vice versa).

THEOREM 2.4. For all r > 1 and wy e Z°, we have
(17) Zu(reg, (S (yg *wo))) = 0.

Moreover, we may deduce Theorem 2.2 from these relations. In other words, each of
Theorem 2.2, Theorem 2.3, and the current theorem give (together with Proposition 2.1)
the same set of linear relations of MLV’s.

Proor. The identity is readily shown by specializing w; = y{ in [Theorem 2.3, as
indicated above. The proof of the latter half is carried out in the next section after
giving some algebraic preparations necessary.

ExampLE. Let r=2 and wy=y, (¢ #0) in the theorem. We compute the
harmonic product as

Y3 * Ya = XVaY0 + Y0XVa + Vi Va+ Y0YaYo + Ya¥i
and so
(V5 * Va) = X9 + Y0XVa+ Yo Va + YoVe + Vi
By the regularizations
reg,, (J0Xpa) = —XVoYa — XVabo, 168, (V5Va) = Va¥is 1€8,(J0V2) = —YaYoYa — Vo,
we have
reg,, (S (¥5 * Ya)) = Xya = XY0¥a = XVa¥0 + VYo — Ya¥0Ya — Yado + Va-
Hence, we obtain the relation
L,(2,1;a,a) — Ly(2,1;0,a) — L(2,1;a,0)
=—-Ly(1,1,;a,a,a) + L,(1,1,1;a,a,0) + L,(1,1,1;a,0,a) — L,(1,1,1;4,0,0).

2.4. Proof of Theorem 2.4.

We extend to our ./ or /! various derivations and automorphisms used in [TIKZ],
which played a vital role in the proof of the extended (regularized) double shuffie
relations. Again, we omit the details when the argument is identical to the one given in

KZ]

Recall that we have set

Zka = xk’lya € .of!
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for any positive integer k and @ € R,,. Consider the space 3 which is the Q-linear span
of the zx , in o/ with k > 1, ae R,,. For each b € R, let I, denote the Q-linear map of
3 defined by

Ib(zk,a) = Zk,a+b (k >1l,ae R).
For ze€ 3 the map 0. : /! — /! is defined by
O.(w):=zxw—zw (ze3,we.).

We observe that o0, is a derivation which commutes with one another, and moreover that
0. extends to a derivation of the non-commutative algebra .« whose action on gen-
erators is given by

0.(x) =0, 0.(yos) =xL,(z)+ ysz (a€Ry).

It is convenient to define a multiplication o on 3 with which the space 3 becomes a
commutative and associative algebra:

zozli=zxz —zZ' —Z'z (z,Z/ € 3).

For instance, we simply have zi, 4 © Zky 4y = Zk +hky, a1+ar-
For ze 3, define @, : /' — /! by

@.(0) 1= (1 -2) (12

— Z

*w) (ze3,weA).

Here, .o/! is the completion of 7!, i.e., the closure of .«7! in the non-commutative power
series ring </, and we denote the element 1 +z +2z2 4z +---in /! by 1/(1 —z). The
map . is an automorphism of .«#! as non-commutative algebra and is related to the
derivation 0 above by the identity

(18) @ (w) = exp(d) (w),
where

n—

00 (_1> 1
;T(zo---oz).

n

t=log, (1 +z):

Note that, because the d, is a derivation of ./ which raises degree, its exponential
o0 5]1

— _t

exp(51> - Z |

n=0 """

is an automorphism of non-commutative algebra o/, as is seen from the Leibniz
rule. The identity then shows that the @&. extends to an automorphism of non-
commutative algebra /. We know from [IKZ| that

O.(x) =x, B.(x+yo) = (x+ yo)(1—2)7

We shall compute @.(x+ y,) (a € R,) in the following.



On multiple L-values 979
LEMMA 2.5. For ze 3 and a € R,,, we have
D-(x + ya) = ya(l =2) "+ x(1+ L(z)(1 = 2) )
= ya(l — Z)_l +x+ (zoy,)(1 — Z)_l.
Proor. Set r=1log (1 +z). Since t* y, =1ty,+ yat +to y,, we have

5t(ya):Z*ya_tya:yat+toya-

We can easily prove by induction on 7 that

(19) 0/ (¥a) = yat™ + wy
with
“~(n /—’;
20 = oo lo ),
(20) m= (0 )T e

We have, by and [(19),

Po(x+ a) = Y 071 (X+ ya) = X at D — (val™ + )
n=0""" n=1""
<1
= YaCXp, I+ X+ — Wn,
i n!

and by

0 [*m
(e Doxd >

m=0""""
= (zo y,)exp,t.
Since exp,t= (1 — z)*1 and zo y, = xI,(z), we have the assertion. ]

Next define the map d, : &/ — o/ by putting
dy(w) = yomw — yow (w € ).

This is a derivation on .o/ and its exponential is given by (an identity in .o/[[u]])

(21) exp(dyu)(w) = (1 — yw)( HIW) (we o).

1 — you
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Also the d,, is related to the regularization map %, by (Proposition 8 in [TKZ])

) y( WO) = 2, (exp(—dy)(w0))e™,

1 — you

where wy € .7° and the identity is in C[T][[u]], the map & being extended coefficient-
wise.

We now give a proof of Theorem 2.4 Set
(23) Ay = exp(—dy) oI o Dy,

where u is a formal parameter (the symbol o here denotes the composition of Q-linear
mappings). We should stress that, unlike the case of multiple zeta values, the map 4, is
not an algebra homomorphism because of the insertion of .#, but only a Q-linear map.
Replacing w with 4,(w) in [21), we have

1
1 — you

70 @) = (1= yun) (1w, (w) )

Here the left-hand side equals

(0l )

1 1
(24) I xw | = wA, (w).
I — you I — you

Therefore

Note that, since the map @,,, preserves .«7° and .#(yJ'w) = yi'.#(w) for any w € .o, we
have A,(wo) € .° if wye.o#°. Setting w=wp e .’ in and taking reg, of both
hand sides, we have

(25) regu (# (7= ) ) = dulw)

Replacing wy with 7 (@, (wy)) in [22), we get

ree] (4 (1= @) ) ) = reeh (= S (@000 )
= exp(—dutt) (@)™

= Au(wo)eT“.

This yields

(26) Lo f(l%y()u EDyOu(wo)) = Lu(du(wo))e™.
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On the other hand, we have the identity (the equation (5.7) in [IKZ])

7) (00 2 (1= Palon) ) = ™2 )

1 — you

Therefore by using [26), and (25),

(gmof—pog*)(m

{ m(regm (j(l —lyobfk WO))) - ff*(Wo)}eTu
{gm (regm (f (ﬁ; u'(yg * W0)>> _ g*(wo)}eTu
Lo vaa (S0

o0
> Zulreg, (I (y5* wo)))u'e™ + (L o I (wo) — La(wo))e™.
r=1

CZSyou(WO>) = (Lu(du(wo)) — Li(wp))e™

Note that we have derived this identity in purely algebraic way. Therefore, since the
last term on the right vanishes by (9) and since y{®,,(wo) (r > 0) generate .o/ if wy
runs through .7, the relations and are equivalent. This proves [Theorem 2.4.

L]

Applying (9) to the second formula in the last equalities, we obtain the following
corollary which we will need later.

COROLLARY 2.6. For wye .oZ° we have

Lul(Au = 5)(w0)) = 0.

3. Derivation relations.

In this section z denotes x + yo; z = x+ yo. For an element f € XQ[[X]], let J, be
the derivation on .o/ defined by

Jr(x) = Xf(zz) Yo,
0r(Ya) = —x@ Ya+ ya@yo - ya@ya (a € Ry).

We often use the formula

) (0 = ya).

6+ ya) = (x + yu) LE
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Let 0, (n=1,2,...) be the particular derivation corresponding to ' = X": 0, = 0x.
The action on the algebra generators is given by

0n(x) = x(x + 0)" 0,
On(ya) = =x(x 4+ 10)" ya + yalx + 30)" vo — va(x + 1) 'yva  (a € Ry).

Now we state the derivation relations of MLV’s*.
THEOREM 3.1.  For any wye /° and n> 1, we have
ZLu(0n(wp)) = 0.

ExampLE. Before proving the theorem, we give some examples. Let a # 0 (in R).
By

01(¥2) = —Xp2 = YaXVa + YaYoVa + ¥2yo — 2]

and
02(Ya) = =X"Va = XP0Va + YaXV0 = VaXVa + YaV0Y0 = VaV0Vas
we have
Ly,(2,1;a,a) + Ly(1,2;a,a)
=Ly(1,1,1;a,0,a) + L,(1,1,1;a,a,0) — 2L (1,1,1;a,a,a)
and
Ly(3;a) + Ly(2,1;0,a) + Ly(1,2;a,a) + Ly(1,1,1;a,0,a)
=Ly(1,2;a,0)+ L,(1,1,1;4,0,0)
respectively.

To prove the theorem, we introduce the corresponding automorphisms. For
hel+ XQ[[X]], let 4, denote the automorphism of the non-commutative completed
Q-algebra .o/ defined by

~

it ) = (e ) 1+

-1
h(Z)Z— 1 (o — ya)) |

As in [IKZ, §7], the derivation d, and the automorphism A, are related by
Ay, = exp(—d;)  with f =log(h).

Consider the specific automorphism A,y (u being a parameter). By the identity
log(1 +uX) =327 (=1)" 'u"X" /n, the automorphism 4,y and the derivations {,}
are related by

*The case n =1 and a part of n=2 were established by T. Koura [Ko].
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(28) AAH—MX = exp <— i (_1n>"—1 u”8n> .

n=1

The key identity that enables us to connect the double shuffle story in the last section to
the derivations 0, is the following. Recall the definition of 4,.

/l

ProposiTION 3.2. For any we .o/, we have
A400) = Arsux (5 ().
Here, the map .9 is extended to </ by

kn— kl

ki—1 kr—1 1 ! -1 kr—1 k,—1 /
I(XT Y X Yay e X Va,X') = X Vay X Vayray 0 X Yaj+-+a, X -

PrOOF. As remarked before, this is not an identity of homomorphisms and so
we have to check the images of general monomials in .7 on both sides coincide. The
identity for w = x holds true since we have A,(x) = x(1+uyy)” ' as in [TIKZ]. Let
aeR,,. implies

(29) Doy (x + a) = yall —uyo) ™ + x(1 + upa(1 = upo) ™).
Then,
I (@uy (X + 1)) = a1 = wpa) ™"+ x(1+ upa(1 = up,) ™)
= (x4 ya) (1 —upa) ™.
By the definition of 4,, we find
A(x+ ya) = exp(—=duu)(x + ya) (1 = upa) ™).
It is easily shown from the identities d)x = n!xy; and d}y, = nly,y; that
exp(—duu)(x) = x(1 +uyo) ™', exp(=dut)(ya) = ya(1+uyo) "
Since exp(—d,u) is an automorphism of the non-commutative algebra </, we have
Au(x+ ya) = (x+ ya) (14 upo) " (1 = uya(1 + upe) ™)™
= (x4 ya) (1 u(yo = ya) "
Here the last expression coincides with zfl+ux(x+ Va). Therefore we have
Au(w) = A1ux (F(w))

for w = x, y,.
Let w=xk-1y, ...x%=1y x'=1 be a monomial in .o/ with ky,..., k,,[ positive
integers and ay,...,a, € R,. Then, taking the identities

ki ky

By, (ya) = (1 +ux)ya(l —upo)™' (a€R,) and By, (x) = x
into account, we have

@uyo(w) = xkl_l¢uyo(ya1)xk2_l o 'xk"_lqjuyo(J’an)xl_l-



984 T. ArRAKAWA and M. KANEKO

For simplicity write Y, = (1 + ux)y,(1 — uya)_1 for a € R,,. Using this notation, we
have

F( By () = X5 Y VY Y
Since
exp(—dutt)(Ya) = Au(ya) = divux(va) (a € Ry),
Au(w) = exp(—duut) (I (DPuy, (w)))
= exp(—dyu)(x"1 1 exp(—dyu)(Yy,) - - -
exp(—duu) (x" V) exp(—dutt)( Yy, 1. ta, ) exp(—dyu)(x'1)
= Zf1+uX(Xkl_1)Zf1+uX(yal) e ‘Zfl+uX(Ya1+---+a,,)lil+uX(Xl_1)
kz*lyaﬁraz o 'xkrlJ’a1+~-+anxlil)
= dirux (). O
PrOOF OF THEOREM 3.1. By [Proposition 3.2 and [28), we have

n ki1—1
= A14ux (X yg x

o  1yn-1
Au:<AA1+uXOf):€Xp<—Z( 1) u"8n>of

n=1 n

and hence

© . (—1 n—1
—Z( ) u"d, =log(d, 0.9 ") =log(1+ 4,071 1)

_ i (—ln)n—l (4,051 1)
n=1

Corollary 2.6 gives
Lu((Ay0 57" =1)" () = 0
for all > 1 and wy e .«#° and therefore we conclude
Zu(0n(wo)) = 0. O

REMARK. In [G2, Proposition 2.13] Goncharov gives the “distribution relations”,
which reads for /|m and q; € IR,

Lm(kl,kz,...,kn;al,az,...,an)

k +k +"‘+kn_ )
= e " E LLH(kluk27'~'Jkn7b17b27""bn)
b,’ERm,lb,':ai

(when each L-value converges). The authors do not know whether there is some exact
relationship between these and the relations discussed in our paper or not.
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4. Applications.

4.1. Principal part of multiple L-functions.

For any index set (k;a)= (ki,...,kn;a1,...,a,) not necessarily admissible, we
define “multiple L-functions” L; ,(s) and L} (s) of single complex variable s by the
Dirichlet series

L . ?a, (m1>¢a2(m2) o '(pa,,(mn)
k,a(s) - Z ki+s.  ky kn
my>np > >m, >0 ml m2 Cr My
and
- i (oal (ml - l’}12) T (l’a,,,l (mn,1 - mn)(pa,, (Wln)
Lkva(s) o Z kl‘i‘-Y kZ kn '
my>my > >n1, >0 my my= -« My

The series are absolutely convergent for Re(s) >0 and can be extended to a mer-
omorphic function of s in a similar fashion as in [AK]. If the index (k;a) is admissible,
then both functions are holomorphic at s =0 having the values

L1 o(0) = Li(k;a) and Ly ,(0) = Lu(k; a),

while for non-admissible index they have a pole at s = 0. As a matter of fact, the two
functions are essentially the same and related with each other by

(30) Lyt o(8) = L 110 (9),

where [ is the bijection on the set R/ defined by I(ai,a,...,a,) =
(ar,a1 +az,...,ay +ax+---+a,). If a=(0,0,...,0), then both L; ,(s) and L} ,(s)
N\ / b b

give the same function which is denoted by C(k’: + 85, ko, ky).

In the following, we show that the principal parts at s =0 of L ,(s) and of
I'(s+ 1)Ly ,(s) are completely determined by the polynomials % ,(T) and &' (T)
defined in §2.2. (Recall the descriptions of the coefficients of these polynomials given
there.)

THEOREM 4.1. (i) Write the polynomial < (T) as

(=30

]:

where y is the Euler constant. Then the principal part of Ly ,(s) at s=0 is given by

Li) =325 06) (s-0)
=0

(i) Write the polynomial %', (T) as

i Cj j
ogk,a(T> = Z_]'T]
=0 /*
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Then the principal part of I'(s+ 1)L} ,(s) at s =0 is given by

v

s+ 1)L} (s) = ZSJ +0(s) (s—0).
j=0

REMARK. As for the precise order of pole at s =0, we only know it is at most ¢,
t t

where ¢ is the number given by (k;a) = (1,...,1,k’;0,...,0,a’) with an admissible
(k';a’). When L.(k',a’) # 0 (resp. Ly(k',a’) # 0), the order of pole at s =0 of L; ,(s)
(resp. Ly ,(s)) is exactly ¢. If @’ = (0,0,...,0), this is the case, but in general, we do
not know when the L-values vanish.

Proor. We first establish the assertion (ii). When k= (1,1,...,1) and a=
——

(0,0,...,0), the polynomial £;",(T) is equal to T"/n! (since yj = y;"/n!) and thus the
———— ’

n
formula becomes

1
(31) F(s+1)§(s+1,l,...,1):S—n—i—O(s) (s — 0),

n—1

which was proved in [AK, Proposition 4 (ii)]. The general case is obtained from this as
follows.
From the definition of the function Li ,(¢) given in §2.2, it is immediate to see that
o8}

(32) () Li als) = L 5 Lig (™) dt.

As stated in (13), we have the estimate
|Lika(e™) = Lu(~log(1 =) < C(1 =)’

as t — +0 with some constants C,6 > 0. With this, we may conclude that the principal
part of I'(s+ 1)Ly o(s) = sI'(s)Lg 4(s) at s =0 coincides with that of

SJ ls*lffk”fa(—log(l —e ') dt = SZ J £~ (—log(1 — ™))’ d.

0

Since (—log(1 —e™*))’/j! = Liy..1(e™") (cf. [AK, Lemma 1 (ii)]), we have by and

(31), j

o | ] —e! J 1

SJ g1 (Z1og — Dt = F(s+ s+ 1,1, 1) =24 0(s) (as s — 0).
0 ] —— s/
j—1
We therefore have
” 1 t - G
SJ £ g (—log(l —e ™)) dt = Z§+ O(s) (as s — 0)

0 /=0

and the assertion (ii) is proved.
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For (ii), we note the relation which follows from (30):

th,a(s) = L;I(J,I(a)(s) = F(S+ 1>L;I(J,I(a)<s)'

1
I'(s+1)

By (i), the principal part of I'(s + 1)Ly ;. (s) corresponds to Z;";, (7)), which is equal
to (& o #)(w) with w = the word corresponding to (k;a) in the previous notation. By

Mheorem 2.2, this in turn equals (p o %, )(w). Recalling the definition of p, we see
by a routine computation which we omit that this gives the assertion (i). ]

ReMARK. Tracing the above calculations carefully, we may deduce Theorem 2.2
from equation [31).

4.2. Some examples of relations among multiple L-values.

We restrict ourselves to the cases m = 3 and 4 and give results having a flavor of
“sum formula”. Let y; and y, be the unique non-trivial Dirichlet characters mod 3 and
mod 4 respectively. The following result was first proved by M. Nishi by a method
of manipulating the defining series.

PropPOSITION 4.2 (Nishi). For any integer n > 2, we have
n—1 )
Z(zl + 2)Lﬂl(i’n - i;X37X3) + 2Lm(1,7’l - 1;X37X3) + 2LHI(n - 17 1;)(37)(3)
i=1

= (n—1)Lu(mz3) (= (n—1)(1—37")(n))

and

n—1
> 2 Luli,n — i yasa) + 2Lu(1,n = 1 14, 14)
i=1

= (n—DLu(n;3) (= n—1)01=27)(n)).

ProOOF. We give a proof of the second identity, the first being obtained similarly.
First we note that from the shuffle product identity similar to (8), we have

Ly(i; fi)Lu(n—1i; f2)
n—1 ]_1 ‘ ‘ n—1 ]_1 ‘ ‘
= Z(j_i>Lm(J;n—J§fl7f2)+ 'Z'(j_n_i_i)Lm(];n—];fz,fl)

J=t Jj=n—i

and by summing up

n—1 n—1

N Lulis ) Luln— i f2) = 327 (Lulin — s fi, f2) + Lulisn — i f5, /1))
i=1

i=1

for any fi, f» with £,(0) = /,(0) =0. By this we find

n—1 n—1
(33) D 2 Lulisn =i a) = Y Lulis xa) Lu(n — i 14)-
i=1 i=1
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The product on the right is rewritten by the harmonic product as
(34) Lo (i 04) Lu(n — 15 x4) = Lo (8 24) Lo (n — 15 14)

Hence the left-hand side of the equation to be proved is equal to

n—1
2<ZL*(i,n — 65 /45 X4) + Lu(1,n — hmm)) + (n = 1) Lu(n;23),
i=1

so we have to show

n—1
ZL*(i,n — G045 04) + Lu(l,n— 1524, 24) = 0.
i—1

Now since y4(1) =1, 34(3) = =1 (74(0) = 74(2) = 0), [Proposition 1.2] gives

. . 1 . . . .
(35) L*(l,l’l - Z;X47X4) = _Z(Lm(l;n - léfﬂl,(ﬂz) - Lm(l,n - l;(ﬂl,(P())

— Lu(i,n—i503,00) + Lu(i,n — i;03,0,)).
Specializing k; =1, ko, =n—1 in (8) and using
Lu(1; 90 ) Lu(n = 1;0,,) = Li(1; 04 ) La(n = 15 0,,)
=L.(1,n=1:04,04,) + Li(n = 1, 1504, 94,) + L (1594 10,)

= Lm(lan - 1;(pa17(pa2) +Lm(n - 17 1;¢a27(pa1) +Lm(n;g0a1+a2)7

we have

n—1

(36) ZLm<i7n_i; ¢a17¢a2>

i=1
- Lm(17n - 1;¢a17¢a1+a2> +Lﬂl(n - 17 l;wazv¢a1+a2>
+Lﬂl(n; ¢a1+a2) - Llll(n - 17 1;¢a27¢a1)'

Suppose n > 2. Then we may put a; =0 in and from equations [33), [34), [35),
and we obtain

n—1

. . 1
ZL*(lan - Z;X47X4) - _Z(Lm(lan_ 1;(ﬂ1,(ﬂ3) _Lm(lvn - 1;¢1,(P1)
i=1

— Lu(l,n = 1593,03) + Lu(l,n = 1;03,01))
= —Lm(l,l’l - 1;%47)(4)‘
This gives the desired equation. For n =2, what we have to show is the equation

4Lm(1a 1;X4aX4) = Lm<27xz)
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Since
Lu(223) = Lu(2:23) = Lo(L; 24)> = 2L (1, 1 14, 2a)

= Lm(1§)(4)2 - 2L*(17 1;)(47)(4) = 2Lm(17 1§X4aX4) - 2L*(1a 1;)(4,)(4)7

we need to show L.(1,1;x4,%4) = —Lu(1,1;24,%4). Now by [35), we have

1
(37) L*<l7 1;X47X4) = _Z(Lm(lv 1;(ﬂ1,(ﬂ2) - Lm(la 1;(ﬂ1,(ﬂ0)

- Lm(17 1;(”37(00) + LLU(17 1;(037(02>>'
Applying [Theorem 3.1 for n =1, wy = y, (a #0), we get
Llﬂ(la 17 (paa (P0> = Lm(17 1: (0a7 (”a) + LLU(27 (pa)'
Using this and [36), we see the right-hand side of is equal to

1
_Z(_LUJ(L 1§§01a€01) - Lm(17 1;(03,(ﬂ3) +Lm(17 1;§013§03) +LUJ<17 1;(03,(01))

L (1 1,X47X4) D

We have found numerically the following rather curious identities. (The first was
found by Nishi [N].) In particular, the sums on the left are suggested to belong to the
ring generated by the Riemann zeta values.

Set {5(s) = (1 —27%){(s) and (3(s) = (1 —37%){(s). For odd n, we conjecturally
have

N
|
S}

? 3 (”*3)/232m -3
LLU( Ln 7%37%3) = C3(l/l) + 32m—_1C3<2Wl)C3<I’Z - 2]’}’1),
i=2 m=1
n—1 (n—=3) /21 _pl-2m
LLU( - aX47X4) - 552 Z sz — C2(2m)C2(n - 2}’}’1)

i=1

As for a general “sum formula”, only we could show is the following relation, which
can be deduced by applying shuffle product identity on the right-hand side. For any f
with f(0) =0, we abbreviate L (ki,ka,....ku; f, f,.... f) as Ly(ki,ka,... kp; f).

ProrosITION 4.3.  Let k,n be positive integers with 1 <n < k. Then we have

n— 1 I’H—j 1
Z (k17"' 1f>jLHI(1 717k+1_n7f)>
fey -tk =k j=0 : ——
n—1—j
where the summation on the left is taken over all positive integers ky,...,k, with

ki+ -+ k= k.

4.3. A connection to the Drinfeld associator.
As i1s fairly known, the regularized multiple zeta values are closely related to the
so-called Drinfeld KZ associator. We recall briefly the definition of the Drinfeld KZ
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associator [D]. For more detail, see e.g., [Ka, Chapter XIX]. Consider the linear
differential equation

(38) G'(1) = (£+i> G(1)

t 1—1¢
and its unique solutions Gy(#) and G;(¢) such that
Go() ~t*¥ (t—0) and Gi()~(1 =0 (z—1).
The Drinfeld KZ associator @g(X,Y) is an element in RKX, Y)) defined by
Drz(X,Y) = Gi(2)"' Go(1).

The alleged relation to MZV’s is then stated as follows: The coefficient of each word
W in @kz(X,Y) is equal to the regularized zeta value of w. Here w is the word
obtained from W by replacing X with x and Y with y. Here, the regularization means
to take the constant term of w, viewed as an element in the shuffle algebra Q<{x, y),
which is isomorphic to the polynomial algebra bg [x, y] over I),?J = Q0+ xQ{x, y>y, and
then take the corresponding multiple zeta value of this constant term Ebg (see for
algebraic computations of the regularizations).
Now consider the following generalization of [38):

) X ('Y,
(39) H'(1) = tH(z)+a;;ml —Zr H ().
By using the function Lix () defined in [I12], we can construct a solution Hy(7) to
such that Hoy(¢) ~t* (¢t — 0) as follows'.
Let w e .o/! be the word which corresponds to the index (k,a) and write Liy ,() as
Li,(f). Recall the map w Li,(¢) is a m-homomorphism from .o/} to the algebra of
analytic functions near t =0. We extend this homomorphism (uniquely) to the whole

o/, by setting Li.(¢f) =log(¢). Then the series
Ho() = Y _ Lin ()W,

where W is the capitalized word corresponding to w, is a solution of [39]. We may
write out more explicitly the coefficient Li, () when w ¢ .o/! as in the explicit regu-
larization formula in [IKZ, Corollary to Proposition 10], but we omit it here.

The following question arises naturally and would be very interesting.

PrOBLEM. Is there an analogous theory of the Drinfeld associator for this dif-
ferential equation which is closely connected to the regularized multiple L-values?*

AcCkNOWLEDGEMENT. The authors would like to thank the referee for several useful
comments and suggestions.

"We have made an erroneous statement on the solution in [AK2]. The authors would very much like
to thank Hidekazu Furusho and Jun-ichi Okuda, who independently pointed out the error and supplied the
correct form of the solution.

fRecently Okuda announced such a theory exists at least for small m. See his forthcoming article for
the details.
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