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ABSTRACT. We give a new series of “hypergeometric” modular forms which
bear a close relation to supersingular elliptic curves.

1. Introduction

At least for the moment, supersingular elliptic curves have little to do with
the monstrous moonshine. However, the two are not completely irrelevant, as the
famous observation of A. Ogg stated below suggests.

It is known since Deuring [D] that the j-invariant of any supersingular elliptic
curve in characteristic p, for any prime number p, lies in the field Fp2 of p? elements.
As it turns out, there are finitely many “special” primes p such that all j-invariants
of supersingular elliptic curves in characteristic p lie in the prime field F,, of p
elements. An equivalent form of Ogg’s observation [O] is then stated as:

Such special primes are exactly those prime numbers that divide
the order of the Monster simple group.

On the other hand, connections between supersingular elliptic curves and mod-
ular forms have been established in various ways and frameworks, examples of which
can be found in [DR,KZ,S].

In this paper, we shall give a new series of modular forms whose zeros are
closely connected to supersingular j-invariants, as a solution of certain differential
equations of hypergeometric type of third order. This is viewed as a continuation
of our previous work [KZ] where modular forms satisfying second order differential
equations were discussed.
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2. Preliminaries

Let T' = PSLy(Z) be the modular group. For an even integer & > 0, denote
by M} the space of holomorphic modular forms of weight k on I'. My is a finite-
dimensional C-vector space and its dimension is [k/12] + 1 if k # 2 (mod 12) and
[k/12] if £ = 2 (mod 12), as is well-known. The graded ring @, M of all
modular forms on I is isomorphic to the polynomial algebra C[Ey, EGT where

o0
Ey=Ey(r)=1+240 Z (Z d3> q", (¢=¢€>""",7 ¢ H: the upper half-plane)
n=1 “dln

and -
Eg = Eg(1) = 1 — 504 Z (Z d5> q"
dln
are the Fisenstein series of weights 4 and 6 respectlvely The discriminant function

A = A(7) € Mj2 and the elliptic modular invariant j(7) are defined respectively
by

AlT) = 33 ——(B4(1)® — Es(7)?) = q — 24¢° + 252¢° — 1472¢" + - --
and .
E 1
j(r) = a(7) = = 4 744 + 196884q + 21493760¢° + - - - .
A(r) ¢

We associate to each modular form f(7) € My a polynomial Q;(X) € C[X]
whose roots are exactly the values of j(7) at the (C-equivalence classes of) zeros of
f(r) in $. For this, write k (uniquely) in the form

k=12m + 46 + 6c with m € Z>g, 6 € {0,1,2}, €€ {0,1},
(with this notation, m = dim My). Then f(7) is written uniquely as
F(7) = Ea(r)°Es(r)°A(r)™ f (§(7))
for some polynomial f of degree < m in j(r) (because f(7)/ (E}(T)aEg(T)SA(T)m)
is of weight 0 and holomorphic in £), the coefficient of 7™ in f being equal to the
constant term of the Fourier expansion of f(r). The required polynomial is then
given by _
04(X) 1= X°(X — 1728)° f(X).

Recall that the graded ring €Dy, Mk has a unique (up to constant multiple)
derivation of degree 2 which sends cusp forms to cusp forms. Specifically, the system
of differential operators {J }x>o defined by

1 df
BT = 5= D (r) ~ & B(r)f(r),
for f(7) € My, has the required property (c.f. Serre [S]). Here, Ex(7)=qd/dqlog A(T)
=1-24%> (3% din 4)q" 1s the “quasi-modular” Eisenstein series of weight 2. We
denote this derivation on @, M} by 9. Note that, since A = 0, the action of 0

commutes with multiplication by A; Oxr2(Af) = Ady f for f € M.
For a prime p, let ssp(X ) be the polynomial having all supersingular j-invariants

‘as its roots:
s5p(X) = I[I &-i®)erx],

E/F,
E: supersingular
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the product running over the isomorphism classes of supersingular elliptic curves
over F,,.
Hypergeometric series sFy{ai, az,as; 01, F2;x) and oFi (o, ag; Br;2) are de-
fined by
(1)n(a2)n(az)n "

sFy(a, 00,0, 1, B2; 7) = Y AR

n=0
and
AN - (al)n(O‘Q)nﬁ
2F1(O[1,(]!2,,61,x)47;) ('Bl)n TL!’

respectively, where (a)g =1 and (&), =ala+1)---{a+n—1), (n >1).
3. Main Result

From & we can form two differential operators 8%(= Og44 © Ogs2 0 Ox) and
E40(= E4(7) - 8;) which send forms in My to Mgy If k+6 =2 (mod 4), then
(the € for k + 6 in the previous section should be 1 and so) every element of Mg
is divisible by Eg(7) (in this case dimr My = dimp My46). Thus we are led to
consider the third order equation

(3.1) (8 4 cE40)F(7) = (constant) - Eg(7)F(7)

with a parameter ¢ (which may depend on k). In other words, we have an endo-
morphism ¢y, . of My, defined by ¢x.o(f) = E6(T) ™ (Ok+4 0 Okt20 Ok + cE4(7)0k)(f)
if k =0 (mod 4), and we want to look for an eigenform of ¢y . in M. Since the
constant term of ¢g o(f) is kk,c = —k(k+2)(k+4)/12% — kc/12 times the constant
term of f, this map ¢ . preserves the codiménsion 1 subspace of cusp forms and
induces on the quotient space the map multiplication by kg . It follows that kg .
is an eigenvalue of ¢y .. The following theorem gives us a corresponding eigenform
in an explicit way under a certain (mild) restriction on e.

THEOREM 3.1. Assume k=0 mod 4 and let m = [k/12]. Suppose that

1 2 2
= —— 12k —
c 576(9/\ + 3k + 12k — 4),
for some complex number A which satisfies the condition
(3.2) A# (8 — k—2) for any integeri, 1<i<m,

so that ke = —k(k +6 —3X)(k + 6 -+ 3X)/6912. Then:
(i) The following modular form Fy, o(T) is an eigenvector of ¢y . with eigenvalue
KE,ct
Fk,c(T) _ Z ("k/4)3€ E4(T)k/4—3€A(T)£
=0 yZ4
where

£
pe=2"0[Bi—k—2+N)Bi—k—2-)) (#0 by (3.2)),
=1 '
with the empty product being 1.
 Fo(T) can also be written using hypergeometric series as
k k-4 k-8 A-k+6 —A—k+6'1728)

F; = k/4F e —
belm) = Ba(r) "l ~ 5 = Ty T T8 )
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(ii) Let k = p— 1 where p is a prime congruent to 1 (mod 4). Take A €
Q N Z, which satisfies (3.2) and A = =1 mod p. Then the associated polynomial
QF,_, (X) for Fy_1,.(7) has p-integral rational coefficients and

QFP—I,C(X) = SSZ,(X) ) mOd p.

PRrROOF.

(i) We have found the formula for Fj, .(7) by inspection with the aid of com-
puter. Once a candidate of the exact form of the solution was found,
it is a routine task to verify that the form is indeed the solution of the
differential equation. We may instead proceed as follows. Since 4|k, any
form in M, can be written as 3, agEf/ 43 A? with some ap. The im-
age of EIAL (j = k/4 — 30) under ¢y equals A;ES A + B;EJA
with 4; = 645(j — 1)(j — 2) and B; = —j(j + 1)(24 + 1)/54 — jc/3.
(Use 8(A) = 0, d(Ey) = —Eg/3, 0(Fs) = —E3/2.) From this we
can find the values ap systematically to solve qSk,c(EZO agEf/ 4"3£A€) =
i e(Somo aeBy ' AL).

We note that

(0, =% () (52). (),

A—k+6 -A—k+6
=2~ 6p
pe=2 e‘( g )e( 8 ),;

hence our hypergeometric formula follows.
(ii) When X = £+1 mod p, we have

and

Since both (1), and (3/4); never vanish modulo p for £ in the range 0 <
£ < m = [k/12], we have

k k—4 k-8 A—k+6 —A—k+6 1728

127 12 12’ 8 8 X
1 5 33 _ 1728
— ym+é el e
X 3F2(12312’414a1v X ) mOdp
1 5 1728
— ym-+d P T
=X 2F1(12,12,1,—X ) modp’

It is a classical fact, reviewed in [KZ], that the last term is congruent to
$8p(X) modulo p when p=1 mod 4.

O

REMARK 3.2.

(i) The  other  eigenvectors of ¢ are the  functions
AFy_19; . with eigenvalues kr—12;c (1 < ¢ < m), provided the corre-
sponding condition (3.2) for each k£ —12¢ with the same c is satisfied. This
is because the relation 8 o A* = A? 0 9;_19; holds by the commutativity
of & and multiplication by A as mentioned earlier. The condition (3.2) is
equivalent to saying that ki ¢ is different from any xx_12;. for 1 <i <m.
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(ii) In [KZ], we investigated an eigenform of the endomorphism

f e Ba(r) 1012 (0:(£)),
of My when k44 # 0 (mod 3). The associated polynomial of a unique
(up to constant multiple) noncusp eigenform is

1-26  k+1 1728)

3’ 6 X
where k = 12m 4+ 40 + 6¢, and this reduces modulo p to ssp(X) when
k=p—1.
If furthermore & = 0 (mod 4), this eigenform can also be obtained from our
form by putting A = (k — 2)/3 (for this the condition (3.2) is satisfied).

X™H(X —1728)%, F) (mm, —m +
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