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The aim of this short note is to list several families of modular forms and
functions which exhibit certain common properties of zeros, both in charac-
teristic 0 and in characteristic p. Each of these families already appeared
and was studied in various places in the literature. However, the author be-
lieves it is worth recording the collection here with an awareness of the issues
which will be discussed in this paper, in order to attract wider attention to
a phenomenon which is not well understood. In the sequel, we exclusively
deal with the forms/functions on the modular group Γ = PSL2(Z), and so
we often make no reference to the group.

For an even integer k ≥ 4, let Mk be the space of holomorphic modular
forms of weight k (on Γ). The Eisenstein series

Ek(τ) = 1 − 2k

Bk

∞∑
n=0

(
∑
d|n

dk−1)qn, (q = e2πiτ , Bk = k-th Bernoulli number)

is a standard example of an element in Mk. Also fundamental are the dis-
criminant function

∆(τ) =
1

1728
(E4(τ)3 − E6(τ)2)

of weight 12 and the elliptic modular invariant

j(τ) =
E4(τ)3

∆(τ)
=

1

q
+ 744 + 196884q + 21493760q2 + · · ·

of weight 0 (having pole at ∞).
Since the automorphic factor (cτ + d)k = f

(
aτ+b
cτ+d

)
/f(τ) never vanishes

on the upper half-plane H, we can speak of Γ- equivalence classes of zeros
in H of f(τ) ∈ Mk, or equivalently, speak of zeros of f(τ) in the standard
fundamental domain of Γ. This also amounts to looking at the value of
j(τ) at each zero because the j-function maps bijectively the Γ- equivalence
classes of points in H to C. Namely, we can associate to each modular form
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f(τ) ∈ Mk a polynomial Ωf (j) in j whose roots are exactly the values of j(τ)
at the zeros of f . For this, write k (uniquely) in the form

k = 12m + 4δ + 6ε with m ∈ Z≥0, δ ∈ {0, 1, 2}, ε ∈ {0, 1} .

Then f(τ) is written uniquely as

f(τ) = ∆(τ)m E4(τ)δ E6(τ)ε f̃
(
j(τ)

)
for some polynomial f̃ of degree ≤ m in j(τ) (because f(τ)/(∆(τ)m E4(τ)δ E6(τ)ε)

is of weight 0 and holomorphic in H), the coefficient of jm in f̃ being equal
to the constant term of the Fourier expansion of f(τ). With this we put

Ωf (j) := jδ(j − 1728)εf̃(j).

1. The first theorem we mention is the following result in 1970 due to F.
Rankin and Swinnerton-Dyer ([5]).

Theorem 1 (F. Rankin and Swinnerton-Dyer). All the zeros of ΩEk
(j)

are real and lie in the interval [0, 1728].

In other words, all the zeros of Ek(τ) in the standard fundamental domain

lie on the unit circle. (Recall the values j(e
2π

√
−1

3 ) = 0 and j(
√
−1) = 1728.)

Their proof is, as Atkin put it, “embarrassingly simple” using only interme-
diate value theorem and elementary trigonometry. On the other hand, the
reduction modulo p of these zeros have nice arithmetical meaning, which was
noticed by Deligne in the 70s (see [6]).

Theorem 2 (Deligne). Let p ≥ 5 be a prime. Then the polynomial ΩEp−1(j)
has p-integral rational coefficients and the roots in F̄p of its reduction modulo
p are exactly the j-invariants of all the supersingular elliptic curves in char-
acteristic p.

The key fact in his proof, which requires certain amount of knowledge of
algebraic geometry, is that the Fourier series of Ep−1(τ) reduces to 1 modulo
p, thanks to the theorem of von-Staudt and Clausen. We can also give an
elementary proof using the same fact ([3]).

2. We have found another series of modular forms which satisfies both of
the properties in Theorems 1 and 2. To define them, recall that the graded
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ring of modular forms on Γ has a unique (up to constant multiple) derivation
of degree 2 which sends cusp forms to cusp forms. Specifically, the system of
operators {∂k}k≥4 defined by

∂k(f)(τ) :=
1

2πi

df

dτ
(τ) − k

12
E2(τ)f(τ)

for f(τ) ∈ Mk has the required property. Here, E2(τ) = 1
2πi

d
dτ

log ∆(τ) is the
“nearly modular” Eisenstein series of weight 2. If k + 4 6≡ 0 (mod 3), then
every element of Mk+4 is divisible by E4(τ), so we have an endomorphism
φk of Mk defined by φk(f) = E4(τ)−1∂k+2(∂k(f)). It can be shown that this
endomorphism φk has a unique (up to a constant multiple) eigenvector which
is not a cusp form (and the other eigenvectors come from lower weights, mul-
tiplied by powers of ∆). We choose certain normalization of this eigenvector
and denote it by Fk(τ).

Theorem 3 (Zagier-Kaneko). i) All the zeros of ΩFk
(j) are real and lie

in the interval [0, 1728].
ii) Let p ≥ 5 be a prime. Then the polynomial ΩFp−1(j) has p-integral rational
coefficients and the roots in F̄p of its reduction modulo p are exactly the j-
invariants of all the supersingular elliptic curves in characteristic p.

Details of this result are fully described in [3]. (In fact, i) is not discussed
in [3], but it is deduced from the description in [3, §8] of Fk(τ) in terms of
orthogonal polynomials.)

3. Thirdly, we introduce Atkin’s beautiful orthogonal polynomials which
he discovered in the mid 80s. He defines, on the space of all modular functions
(weight 0) holomorphic on H and having pole at ∞, an inner product with
respect to which the Hecke operators are Hermitian. This inner product,
being non-degenerate, gives us a set of orthogonal polynomials {An(j)}n≥0

(normalized to be monic) in j = j(τ) because the space under consideration
is identified with the polynomial ring C[j]. Specifically, this inner product is
defined as

(f(τ), g(τ)) = constant term of f(τ)g(τ)E2(τ) as a Laurent series in q
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and the first few of An(j) are

A0(j) = 1 ,

A1(j) = j − 720 ,

A2(j) = j2 − 1640j + 269280 ,

A3(j) = j3 − 12576

5
j2 + 1526958j − 107765856 ,

A4(j) = j4 − 3384j3 + 3528552j2 − 1133263680j + 44184000960 .

Atkin’s theorem is then stated as

Theorem 4 (Atkin). Let p be any prime and np be the number of (iso-
morphism classes of) supersingular elliptic curves in characteristic p. Then
the polynomial Anp(j) has p-integral rational coefficients and the roots in F̄p

of its reduction modulo p are exactly the j-invariants of all the supersingular
elliptic curves in characteristic p.

In [3], we gave two proofs which are “modular” and “hypergeometric” in
nature. However, it still seems, at least to the author, unclear why this theo-
rem should hold. While the existence of the Atkin polynomials solely depends
on that of the Hecke operators of weight 0 on C[j], the arithmetic-geometric
meaning of the Hecke operators of weight 0 is not as much expounded as that
of positive weight, and this may be the cause of opacity. Even strange is that
the Atkin polynomials also have the same property of zeros in characteristic
0 as Ek(τ) and Fk(τ).

Theorem 5. All the zeros of An(j) are real and lie in the interval (0, 1728).

Although we did not explicitly mention this fact in [3], it follows imme-
diately from another description of Atkin’s inner product as an integration
on the interval [0, 1728] (hence the inner product is positive definite on R[j])
and the standard theory of orthogonal polynomials.

4. Finally, we quote a theorem from [1] which supplies another example
of our zero-property theorems, and propose a couple of questions. Consider
the polynomials {Hn(j)}n≥1 in j = j(τ) obtained from j − 720 (= A1(j)) by
applying the Hecke operators:

Hn(j(τ)) = n (j(τ) − 720) |0T (n) (n = 1, 2, 3, . . . ),
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where |0T (n) stands for the action of the n-th Hecke operator of weight 0.

Theorem 6 (Asai-Ninomiya-Kaneko). All the zeros of Hn(j) are real
and lie in the interval (0, 1728).

We would like to stress that the theorem was proven again by an ad
hoc manner (although natural in a sense, it does not apply to, say An(j)).
Fundamental problem is then

Problem 1. Find a unified approach to theorems 1-6.

We remark here that, in an earlier work by R. Rankin [4], it was essentially
shown that if the Atkin inner product is not positive definite on R[j], then
the Eisenstein series Ek(τ) fails to have the property in Theorem 1 for all
sufficiently large weight k. Does this suggest a “unified approach”?

The following is a more specific question.

Problem 2. What is the value of the Atkin inner product (Hm(j), An(j))?
In particular, is the value always non-negative?

An explanation may be needed. The Atkin inner product can be regarded
as a weight 0 counterpart of the Petersson inner product. The Atkin poly-
nomials are then the “Hecke eigen forms” in weight 0 and especially An(j)
for n ≥ 1 are “cusp forms” whereas A0(j) = 1 is regarded as the normalized
Eisenstein series of weight 0. On the other hand, the polynomials {Hn(j)}n≥1

(which are in the space of “cusp forms” spanned by {An(j)}n≥1) are consid-
ered to be the Poincaré series (see e.g. [2]). In the classical case of positive
weight, corresponding values of Petersson inner products of Hecke eigen cusp
form and Poincaré series are always positive, which seems to be the case also
for weight 0 by a numerical check.

Of course, we may pursue generalizations of all the material discussed so
far to the case of any congruence subgroups.

Problem 3. Find any generalizations of the above theorems to the case of
congruence subgroups.
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