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Poly-Bernoulli numbers

par Masanosu KANEKO

RiEsuME. Par le biais des séries logarithmiques multiples, nous
définissons analogue en plusieurs variables des nombres de Ber-
noulli. Nous démontrons une formule explicite ainsi qu’un théo-
réme de dualité pour ces nombres. Nous donnons aussi un théo-
réme de type von Staudt et une nouvelle preuve d’un théoréme
de Vandiver.

ABSTRACT. By using polylogarithm series, we define “poly-Ber-
noulli numbers” which generalize classical Bernoulli numbers. We
derive an explicit formula and a duality theorem for these num-
bers, together with a von Staudt-type theorem for di-Bernoulli
numbers and another proof of a theorem of Vandiver.

For every integer k, we define a sequence of rational numbers B (n =
0,1,2,---), which we refer to as poly-Bernoulli numbers, by

"”Z (k)"’ )

z=]l—e~%
Here, for any integer k, Li;(2) denotes the formal power series (for the k-th
polylogarithm if £ > 1 and a rational function if k¥ < 0) Yo, 2™/mF".
When &k = 1, B® is the usual Bernoulli number (with B{" =1/2):
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and when k£ > 1, the lefthand side of (1) can be written in the form of
“iterated integrals”:
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In this paper, we give both an explicit formula for B{® in terms of the
Stirling numbers of the second kind and a sort of duality for negative index
poly-Bernoulli numbers. Both formulas are elementary, and in fact almost
direct consequences of the definition and properties of the Stirling numbers.
As applications, we prove a von Staudt-type theorem for di-Bernoulli num-
bers (k = 2) and give an alternative proof of a theorem due to Vandiver on
a congruence for BY.

1. Explicit formula and duality

An explicit formula for B is given by the following:
THEOREM 1.

B® = (-1)" Xn: (_1)(:::‘_'5;()72’ m) (n >0, Vk),

m=0

where
(=) & m\ .
S(n,m) = ——m!_l__i_o(_l)e(l>e

is the Stirling number of the second kind.
REMARK. When k£ = 1, the theorem and its many variants are classical
results in the study of Bernoulli numbers (cf. [1]).

Because the Stirling numbers are integers, we see from the formula that
B® for k < 0 is an integer (actually positive, as demonstrated in the
remark at the end of this section).

THEOREM 2. For any n,k > 0, we have

B(® = B{™.

PrOOF OF THEOREMS 1 AND 2. One way to define the Stirling numbers
of the second kind S(n,m) (n > 0,0 < m < n) is via the formula

&= 3" S(n,m)(@)m,

m=0

where, for each integer m > 0, we denote by (z),, the polynomial z(z —
1)(z—2)--- (@ —m+1) ((z)o = 1). Then they satisfy the following formulas
(when n = 0 in (3), the identity 0° = 1 is understood):
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3) Stnm) = i( 1)‘( )
@ Co - 3 stumy

For other definitions, further properties and proofs, we refer to [3].
Now Theorem 1 is readily derived from the definition (1) and the formula
(4). In fact,

s (1-e“‘°)m
z=l—e—% h ng-:g (m+1)k
- Z Neay ) E( HmStnm)

_ (-1)™ mS(n m) (—m)”
- Z(z (m+ 1)* ) n!

n=0 m=0

1_,
;le (2)

(= »’v)"

Hence the theorem follows.
To prove Theorem 2, we calculate the generating function of BC®):

iiBﬁ WLE - ZZ(l—e““)"‘(mH)’“
k=0 n=0 k=0 m=0
= Z(l — e7%)melm Y
mz=0

e*ty
e® + e¥ — e=ty’

The last éxpression being symmetric in z and y yields Theorem 2.
REMARK. Since

e® + ev — e*tv 1—(er—1)(ev —1)
= e+ (e®—1)(e¥=1)+ ((e* = 1)(e¥ = 1))2 +---),

the number B{™® (k > 0) is always positive.
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2. Denominators of di-Bernoulli numbers

Using Theorem 1, we can completely determine the denominator of di-
Bernoulli numbers as follows.
THEOREM 3.

(1) When n is odd, B® = —2BY, (n > 1). (Hence the descrip-
tion of the denominator reduces to the classical Clausen-von Staudt
theorem.)

(2) When n is even (> 2), the p-order ord(p,n) of B for a prime
number p is given as follows.

(a) ord(p,n) >0ifp>n+1.
(b) For5 <p<n+1, we have:
(i) ord(p,n) = -2 ifp—1jn.
(i) Ifp—1 jn, then:
(A) ord(p,n) >0 ifplégz, orn =n' mod p(p—1) for
somel<n' <p-1.
(B) ord(p,n) = —1 otherwise.
(c) ord(3,n) > 0ifn=2mod3 andn > 2. Otherwise ord(3,n) =
—2.
(d) ord(2,n) > 0 if n =2 mod 4 and n > 2. ord(2,n) = —1 if
n =0 mod 4. ord(2,2) = —
Before proving the theorem, we establish the following lemma, which will
be needed in the proof.

LEMMA 1. Assumen > 2 is even and p > 5 is a prime number such that
m+1=2p. Then

(=1)™m!S(n,m) = 0 mod p?,

and hence (—1)™m!S(n,m)/(m + 1)* is p-integral.
Proor. By (3),

(=1)™m!S(n, m) 2:\‘;1( 1) (2p 1)
- ef2r—1) ap—t[2P —1 n
= Sicr(P e o (2 -0

+(-1) (2p » l)p”’

Eg{(—1)£<2p; 1)£"+(‘“ )¢ (25 1)( 2npl* ! + ")} mod p’.
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2p—1 + 2p—1 =ggz 2p—1
' L {—-1 L\L-1)

the last sum is equal to

20(1 — n)Z( -1) (zp ll)zn—l.

Since

Noting that
(72 = oot
we see that
p—1 -1
2p—1 _ —
Z(—l)"(f_l)fn '=->"""1'=0 modp,
=1 £=1

because p — 1 fn — 1 (recall that n is even and p is odd). This proves the
lemma.

PrOOF OF THEOREM 3. 1. Let B, = B forn # 1 and B; = —1/2. Then
Yomeo Baz™/nl =z /(e® — 1). By (2) in the introduction, we have

> oL - & g
n=0 n! e”—1 £=0 4
o st £
= B(l)ﬁ__ 3B, -=
:4__,:0 ™ ml gz:; e+
From this we see that
B,B
@) . e
B. g (Z) L+1°
Since BSY = B, = 0 for odd £ > 3, we have for odd n
-2
B = 250, B, + BB, , = -2 g0,

2. We make use of Theorem 1. Part (a) is obvious because the Stirling
numbers in the formula in Theorem 1 are integers. For the remainder of
the proof, first we note that the expression m!/(m+1)? in the summand of
the formula is an integer except when m+1 = 8,9, a prime number, or 2x
a prime number, as can be checked in an elementary way. Now, Lemma 1
tells us that any prime number p > 5 satisfying m+1 = 2p does not appear
in the denominator of B®.
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Qur next task is to consider the case m + 1 = p, where p is a prime
number > 5. In this case

p—1 p— 1
m —_ £ n
(-=1D)™m!iS(n,m) = ;(»1) ( ’ )£ .
The righthand side is congruent modulo p to —1 if p — 1jn and to 0 if
p—1 [n. Thus if p — 1|n, the p-order of (—1)™m!S(n,m)/(m + 1)? is ~2.
Since the other summands in the formula in Theorem 1 are p-integral, we
have shown part (b)-i. Suppose p — 1 Jn and calculate modulo p®. Using

(pel)"( D+ (-D* 1pz~ mod p?,

=1

we see that
p—1 p— 1 p-1
(- 1)‘( )Z”—Zﬁn—-psz‘Z—- mod p°.
=1 i=1

It is known that (cf. Cor. of Prop. 15.2.2in [2]) if nis even and p — 1 [n,
then

p~1
> £ =pBY modyp’.
=1

On the other hand, when we put n modp—1=1n',1 <n' < p—1 (since
both n and p — 1 are even, n' is also even), we find

ZZ" Z- mod p

i=1

p—1

ZK“Z-*

= B,(zl,) mod p (see (63) of Vandiver [4] and Section 3 below).
We therefore have
(=1)™m!S(n,m) = p(BY — BY)) mod p?,

where m+1=pandn’'=n modp—-1,1<n' <p-1.Sincep -1 fn,
the number BY /n is p-integral and BY = n/BM /n mod p (Prop. 15.2.4
and Th.5 following it in [2]). Thus

B
(=1)™m!S(n,m) = p(n — n’)—;;— mod p?.

This readily gives part (b)-ii of the theorem.

The only summands in Theorem 1 which may not be 3-integral are
21S(n,2)/32%, —5!S(n,5)/6%, and 8!S(n,8)/9?. By direct calculation using
the formula (3), we obtain part (c). In a similar manner, we can determine
the 2-order as well, but we omit the details here.
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3. A theorem of Vandiver

As an application of Theorems 1 and 2, we prove the following proposi-
tion originally due to Vandiver.
PROPOSITION. Let p be an odd prime number. For 1 <i<p-—2,

p—2

1 1 )
BYV=Y (144 +— 1) d p.
b m=1(+2+ +m)(m+) mod p

PrOOF. By Theorem 1 and Fermat’s little theorem, we see that
B® = B mod p.

Theorem 2 says that the righthand side is equal to B{_3, which by Theorem
1 is equal to — 322 (=1)™m!S(p — 2,m)(m + 1)°.

m=0

LEMMA 2. Suppose p is an odd prime, and1 < m <p—2. Then

(—‘1)m‘1m!S(p -2,m)=1+ % +-o 4 _r}n_ mod p.
ProOOF. The Stirling numbers satisfy the recurrence formula
S(n,m)=8Sn—-1,m—-1)+mS(n—-1,m) (n >1) (see [3]).
Thus if we put (—1)™'m!S(p — 2,m) = by,, we get
(=)™ 'mliS(p — 1,m) = m(~bpm_1 + by) (m > 2).
But by (3),

£=1

= —i(—l)‘(?) mod p

= 1 mod p,

D™ mIS(p~1,m) = - Y (—1)‘(?)3"’1

and we thus conclude that
1
bm = bp—1 + — mod p.
m

This together with the relation b, = S(p — 2,1) = 1 gives the lemma and
hence completes the proof of the proposition.

REMARK. If ¢ > 1, the righthand side of the proposition is congruent
modulo p to

p—-1

1 1 .
S+ +-+=)mi,
= 2 m



228 Masanobu KANEKO

and this being congruent to B; (even when ¢ = 1) is a special case of
Vandiver’s congruence (63) in [4].
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