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1. Main result

Let j(t) be the classical elliptic modular invariant, which is a holomorphic function
in the upper half-plane H, is invariant under the action of the modular group SL,(Z),
and has a simple pole at infinity. Let ¢,(/) be the monic polynomial in j= j(t) obtained
from j(t)— 744 by the action of the n-th Hecke operator (the precise definition of
which will be recalled later),

e (J)=n(j(x)=T44)|oT(n)  (n=1,2,3, ). ¢y
In this paper, we prove the following:

THEOREM 1. For each n, all the zeros of the polynomial ¢,(j) are simple and lie
in the interval (0, 1728).

As has been known since the work of F. K. C. Rankin and H. P. F. Swinnerton-
Dyer [8], the values of j(z) at the zeros in H of the Eisenstein series Ey(t) of any
weight k on SL,(Z) always lie in the interval [0, 1728], or equivalently, all the zeros
of E,(z) in the standard fundamental domain lie on the unit circle. This result was
generalized by R. A. Rankin [7] to certain Poincaré series. Furthermore, the zeros
of Atkin’s orthogonal polynomials, as well as of certain “hypergeometric modular
form”, both of which are studied in a joint paper by D. Zagier and Kaneko [5] and
have an intimate connection to the j-invariants of supersingular elliptic curves,
have the same property. (Here we mention that the Eisenstein series is also related
to the supersingular j-invariants [9].) Our Theorem 1 supplies another example with
this seemingly peculiar, and not yet fully understood property of zeros.

As an application of this theorem, we can give an interesting proof of the
following fact. Let J(g) denote the Laurent series in g=e>™" of the Fourier expanison

1
J(q)=— + 744+ 196884 + 2149376042 + 864299970¢° + - - - ,
q
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and r, the coefficient of ¢" of the reciprocal of J(g),
T]’(IqTZ Y r.g"=q—744q% +356652¢° — 140361152 * +49336682190g° — - - - .
nz1

COROLLARY 2. The signs of the coefficients of 1/J(q) are strictly alternating. In
other words, (—1)"~r, is always a positive integer.

We derive this from Theorem 1 using the following expansion formula of the
reciprocal of J(g)—j, where j represents a variable:

1
=Y o) 2

n ’ 5
J@—j n=1 n @

where the symbol " denotes differentiation with respect to j. The formula (2) is obtain-
ed as a corollary of a special case of an expansion formula for certain Green’s
kernel functions, which, as will be recalled in §3, has appeared in several places,
notably in R. Borcherds’s work on the Moonshine Conjecture in an equivalent
form as a product formula.

From Theorem 1 it is obvious that the sign of ¢,(0) is plus for odd » and minus
for even n, which readily proves Corollary 2 by virtue of formula (2). We note that,
as Borcherds and Zagier pointed out to us, the corollary can also be proven directly
by investigating asymptotic behaviour of r, through residue caluculation.

In the next section, we prove Theorem 1. In §3, we discuss the expansion formula
mentioned above, and also discuss briefly some results similar to Corollary 2.

2. The location of zeros of ¢,(j)

By definition, the Hecke operator T(n) (n=1, 2, 3, - - ) acts on a modular form
f(7) of weight k (on SL,(Z)) as

(f ] Tm)e) =1 d"‘f( ‘";” ) : (3)

or, in terms of Fouier series,
_ mn
(kTn)g) = ), < y d ’a(VZDq"‘, )
meZ \ 0<d|(m,n) d

where f(g)=Y,,.,a(mg™ is a Fourier expansion of f(z). (See for instance Serre
[10].) In this section we prove Theorem 1, which asserts that the zeros of ¢,(j)
(defined by (1)) are all real, simple, and moreover lie in the interval (0, 1728). To
illustrate, we give the first few ¢,(j) and their zeros:

@.(j)=j—T744 ; 744.000

@,(j)=j*—1428j+ 159768 ; 116.491, 1371.509 ,
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@3(j)=j>—2232j2+ 1069956/ — 36866976 ; 37.312, 632.482, 1562.205 .

For the proof, we may assume n>2. Let D denote the standard fundamental
domain in the upper half-plane H under the action of the modular group:

D={teH:|t|>1, —1/2<Re(r)<1/2,and |t|>1 if —1/2<Re(r)<0}.
Then let C be a part of the boundary of D defined by
C={teH:|t|=1,0<Re(1)<1/2}.
In the following, we consider the function
F(1)=0,((1)

on the arc C. Recall that the map 7+ j(t) gives a 1-1 correspondence between C and
the interval [0, 1728]; in particular, the function F, (1) takes real values on C because
the polynomial ¢,(j) has rational integer coefficients. Since the degree of ¢,(j) is #,
it is sufficient to show that the function F,() has at least » distinct zeros on the arc C.

The essential point in the proof is the following estimate, which we refer to as
the Key Lemma.

KEey LEMMA. Let 1o=x,+iyo€ C. Then we have
[ F(to)e ™0 —2cos(2nnx,y) | <2 .

This lemma implies that the function F,(t) changes sign at least once in each part
of the arc C with -V%<Re(t)<% for v=1,2, -- -, n, and hence F,(1) has at least
n distinct zeros on C, as desired.

Proof of Key Lemma. By the definition (3) of the Hecke operators, we have

Fo= T ( j( ‘”;b )~744) . )
d—1

ad=n,
0<b<

Let M be the maximum of | j(t)—744 —e™ 2™*| in the closure of D:

M =max| j(r)— 744 — e~ 27| .
teD

The following estimate based on the positivity of the Fourier coefficients ¢, of j(7)
J3

provides the inequality M <1335 (note that Im(r)z-z— when teD):

lj(M)—T44—e72" < Y gl

n>1

— Z cne—-lnlm(t)n

nx1
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< Z Ce—zn(\ﬂ/z)n
— n

nz1

—

2

For any te H, let t* denote the unique point in D which is equivalent to t under
the action of the modular group. We claim that the following estimates concerning
the values of each summand in (5) hold for any t1y,=x,+iy,€ C and any n>2.

(1) |j(nte)—T744—e~ 2mimo|< M .

=1334.813---.

(ii) l j(’1)~744—e2“""f‘° <M.
n
(iii) Assume @o+b s distinct from nty, -2, and ©*t"=! Then
n n
b
|j( at"; )—744 <e™o+ M.

The inequality (i) is easily demonstrated because nt,—(nt,)* € Z, and thus
|j(nto)—T44 —e ™ 210 | = | j((n7o)*) — 744 — e 2O | <M,
the last inequality following directly from the definition of M, since (nty)* e D. The

inequality (ii) is similarly derived from ——L—(ﬁ»)*eZ and nip=":

o n To
ij(jo*>"744—92"i"?0 :lj(w_n__)_744_62ni(~n/ro)
n To

7o \* .
]<(_ > —T744—¢~ 2mi(ro/m)y*
n

b z
As for (iii), we proceed as follows. Put z=% and z*=3—:§~. We then have
Yz

<M.

hyo
|yaty +yb+dd |

Im(z*)=

In order to prove (iii), it is sufficient to show that Im(z*)s%"’— if (a, b, d) satisfies the

condition in (iii), because we have | j(z)— 744 | <e?™™C" 4 M by the definition of M
and the triangle inequality. Put L=|yat,+yb+ dd|; we now show that Lzﬁ. We
may assume y>0. If y=0, then §=+1 and L=|d|>2. If y>2 or a>2, then we
easily see that Lz\/? Suppose y=a=1. Then we have d=n and L=|1,+b+né|.
In this case, noting that b+nd is a non-zero integer because 1 <b<n—1, we have
Lz\/? unless b+nd= —1, which is possible only when b=n—1, the case being
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excluded by the assumption. This proves (iii). From (i), (ii), (ii1) and the trivial estimate

-1
‘ j<w>_ 744
n

for the excluded case, we obtain

| o) —(e™ 2770 4 ¢ 270%) | < 6, ()M + (3, () — 3)e ™ + €20

Se?.rmyo_'_ M

where a,(n) is the sum of positive divisors of n. Multiplying both sides by e~ 2™°,
we have

| F(to)e” ™0 —2cos(2nnx,)| < a,(m)Me ™ >™°+(g,(n)—3)e " ™"°+1.

Using the bound M <1335 and the trivial estimate o,(n)<n? (and so ¢ ,(n)—3<n?),

V3

as well as Yoz ¥ and the fact that n2e~™3 and n2 ™3/ are monotonically

decreasing for n>2, we finally obtain
| F(to)e ™2™ — 2 cos(2nnxo) | <n*(Me™ ™3 4~ ™ 3/2) 4 | (6)
<4(1335¢7 273 p o34
=1.1176--- <2,

which completes our proof of Theorem 1. 1

REMARK. Theorem 1 is valid when we replace j(t)— 744 in the definition (1) of
@.{j) by any j(r)—a with 0 <a < 1728; the proof is completely analogous. Moreover,
our method of proof implies that when we take any real number a, the zeros of the
resulting polynomials n( j(r)~a)|0 T(n) have the property stated in Theorem 1 for all
sufficiently large #. This is because n%(Me ™™ 3 4+ ¢~™Y3/2) in (6) tends to zero as n
becomes large.

3. Expansion formula for certain Green’s kernel functions

For each integer k in the set S:=1{0, 4, 6, 8, 10, 14} and each positive integer n,
let £®)(g) and g*)(¢) be the Fourier series of the unique meromorphic modular forms
on SL,(Z) of weight k and 2—k, respectively, characterized by the following
properties:

(i) They are holomorphic in t (g=e2") in the upper half-plane.

(i) fPg9)—q "eqZ[[4]], whereas g\(q)—q "€ Z[[q]]-

The uniqueness of f®(q) (resp., g®(g)) follows from the fact that no holomorphic

cusp (resp., modular) forms of weight k (resp., 2 —k) exist when k 1s in the set S. As

for existence, we can construct the forms f*Yg) and g%(g) in the manner described

below; the verification of the properties (i) and (ii) will then be straightforward.
For n=1, put
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fP@)= (J (9)—744 +&> “E(q), g™q)= Era-dg) ,
B A@)

where Ei(q) is the Eisenstein series of weight k (Ex(¢)=1),

Ef(g)=1 _}BE Y oy 1(n)g" (Bkzk-th Bernoulli number, 6, _(n)= ), d"")

k nz1 d|n

(note that the number —Zi is an integer when ke S), and A(g) is the discriminant
k

function of weight 12 defined by

EL(9)° — Eo(g)? '

A —3
@) 1728

For general n, we put

S8 @=n""" fEQPLTw), gP(g)=n*""+g¥g)|,-T),
where T(n) is the Hecke operator. Further, we put f%(g)= E,(g). Note in particular

that f(g)=@.(J(g)).
Now we have

THEOREM 3. Let ke S. Then

EdP)E 4 (q)Ag)” ! _ < &), n_ _ S (k)
T —Io) Z F®(p)q g

where p and q are independent formal variables.

This theorem is fairly well-known. When k>4, the function on the left-hand
side is essentially the Green’s function in the sense of Eichler [3], f%(¢) is a Poincaré
series and is the k—1-st derivative of g%*)(g) up to a constant. The case of k=0
constitutes a restatement of a product formula for the j-function (equivalently, the
denominator formula for the Monster Lie algebra) stated in the introduction of
Borcherds [2] and also appearing in Norton [6] and Alexander-Cummins-Mckay-
Simons [1]. Furthermore, the polynomials ¢,(j) (= f%(q)) are viewed as Faber
polynomials, the subject of vast study since the original work of G. Faber [4], mainly
from analytical points of view. We also mention that Zagier (in preparation) obtained
a similar formula which involves meromorphic modular forms of half-integral weight.
Here, for the reader’s convenience, we give a simple and elmentary unified proof for
all £ in question.

Proof. First we note that any meromorphic modular form on SL,(Z) of weight

2 which is holomorphic in H is a derivative (with respect to 7) of a polynomial in

j(@). In particular the constant term of the Fourier series of such a form always
d

vanishes (recall: -m—d——q *) Now let us put
T
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a0 O o0
J@=q""+ Y cq", fPlo=q '+ Z aPqm, gP@=q '+ ) b¥q"

n=0 n=1 n=0
From (4), we have
f¥P=q"+n**aPg+---  Vnx>1.

As a consequence of the preceding remark, looking at the constant terms of
S¥Ag)9¥(g) and g{(q)Ei(q), we obtain
b= —p! "kq® Vn>1, @)
and
2k
b=~ ®
k

Since the forms J(p)f ¥ p) and J(q)g¥(q) are uniquely determined by their principal
parts (terms with non-positive exponents), we obtain, by comparing the coefficients

and using relations (7) and (8) as well as the fact that the constant terms of g®(q)
is b¥a, _,(m), the recurrence relations

IOIPP=12P+ T e/ PP=b0 P W20, ©)
and

2%k
J@g®(g)=9%; () + Z Cm—19 @+ 0 (mgPlq)  Ym=1. (10)
k

Multiplying both sides of (9) (resp., (10)) by g" (resp., p™) and summing, we have
KPR 9= (Rp. )~ f""(p))+( q)-—»—)Ftp, +f8"(p)<—g‘1"’(q)+$)
(resp.,
J(9)G(p, ) =— (G( p. @)~ 9Pap)+ ( (p) ——%)G( P, @) +9%Aq)1~ Ex(p),

where F(p, q)= o SO(p)g" (resp., G(p, )= =_, g% (g)p™. This can easily be
transformed into the formula in Theorem 3. ]

COROLLARY 4. Let ke S. Then

El 4 - k(Q)A(‘]) -t i &) ; Ek
=), 0, ()", and Z vP(Ng"
Jg)—Jj n=0 J—i =
where ¢ ¥(j) and Y ®(j) are monic polynomials of respective degrees n and n—1 which
are determined by
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S P@)=0PU(9)E(9)
and

9D =9 PUGNE DA ™" .

In fact, the polynomials ¢{¥(j) and ¥ ¥(j) are determined inductively using the
relations (9) and (10). In particular, ¢ {?(j)is identical to ¢,(j) in §1, and y {V(j)= ip%!l.
The latter is because we have

“qj_<(ﬂ,.(-](q»)= eulJ(q) Eiulq)
dg n n A(g)

and the left-hand side of this clearly satisfies the conditions that characterize g'°(g).
We therefore obtain the formula (2) in §1.

b

If we substitute j=1728 in the formula (2), we can derive a result for the

4 demonstrating that they are all positive. Similarly,
J(@—1728 EZ

substituting j=0 or j=1728 into the formula

E14(Q)A(‘J)~1 _ - N on
Ja)—j Py 0.J)q

which represents the case k=0 of the first formula in the Corollary 4, we conclude

coeflicients of

o . . Es . .
by Theorem 1 that the sign of the coefficient in the Fourier expansion of —E‘i 1s strictly
4

2
alternating, while that of —i—‘— is always positive; the latter case is, however, obvious

6
from the expansions of E, and Eg.
We note that the statement of Theorem 1 also holds for all ¢®(j) and ¥ ¥(j)
with ke S, which is proved along the same line, though each evaluation becomes

rather complicated. We can therefore obtain similar results for the signs of the Fourier

. . . 1 A EA
expansions of various meromorphic modular forms, such as 2 E E
4 4 4

’

. A EA EA
(alternating type) and —, —* p

—— -+ (always positive).
£ B R (always p )
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