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1. Introduction. As a result of his extensive
computation of the classical modular polynomial,
Hideji Ito [5] found interesting congruence prop-
erties among coefficients of the polynomial mod-
ulo the squares of a certain finite number of
primes, and remarked that these primes are pre-
cisely the prime factors of the order of the simple
group "Monster".

In this note, we shall give an explanation for
his observation by employing the well-known
fact that the set of primes in question is identical
with the set of p’s with the property that all the
j-invariants of supersingular elliptic curves in
characteristic p belong to the prime field Fp.

2. Statement and Proof. Let p be a prime
number and let q)p(X, Y) denote the p -th modu-
lar polynomial, defined by the relation

,(X,j(v)) (X--j(pv))
=o

X--j p
-1

where j(v) q 4- 744 + 196884q -+- is, in
the standard notation, the classical elliptic modu-
lar function. The polynomial q)(X, Y)is sym-
metric in X and Y with integer coefficients of the
form

q)(X, Y) X+1 + Y+ + Y a,XY (a, ,
and satisfies the so-called Kronecker congruence
relation"
(1) (X, (X- (X-- Y) (modp).
From (1) we conclude

al a : 1 (modp),
(in fact, a 1) and
a, 0 (modp) for (m, n) (1,1), (p,p).

Ito computed an modpe and observed,
among others, the following

Fact. Let p be one of the primes in the set
M {p prime, p K 31 or p 41, 47, 59, 71}.
For 1,2, assume 0 < m, n < p and (m, n)

(1, 1). If m+ m+n(modp-- 1),

*) Note added in proof: Prof. T. Asai at Shizuoka
informed the author that his student Hirohito Ninomiya

independently obtained a similar proof.

then
a, _= a,, (modp).p p

He also found that for other primes up to 2617
there always exist pairs (rn, n) with rn -+- nl
m -+- n (modp- 1) for which the correspond-
ing congruence for the coefficients does not hold.
In the remainder of this paper we give a proof of
this Fact, without relying on numerical computa-
tion.

Consider the following polynomial in one
variable:

1
R(X) "= (X, X

By the congruence relation (1), we have R(X)
2+ bkXkZ[X]. Write R(X)= k=0 Let A be the

set of pairs (m, n) satisfying the condition
appearing in the statement of the Fact, i.e., A
((m, n) l0 < m, n < p, (m, n) =/= (1,1)}.

lmnLemma. For (m, n) A, we have p bk,

with k rn - np. In this case the index k belongs
to the set B (kip + 1 < k < p2, p X k), and
the map (m, n) rn-+-np gives a bijection be-
tween the sets A and B.

Proof. Note first that the image of the map
A (m, n)rn+np is indeed in B, and if
kB and k=rn+np with O<_m,n<_p,
then (m, n) A. The map is injective because rn
is uniquely determined by k mod p, and thus
n (k- m)/p is also unique. Since A and B
have the same cardinality, p2_ 2p, we obtain the
lemma.
Since the congruence rn -+- nl -= rn -+- n (mod
p- 1) is equivalent to rnx -+- np -= rn -+- np
(modp- 1), our proof of the Fact is reduced to
show the following

Proposition. Assume p M and let k
B. If k=- k(rnodp-- 1), then bl=- b.

(mod p).
Proof. Let R(X) R(X) modp Fp[X].

The degree of R(X)is at most (and exactly if
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p Z 744) p2 _+_ p 1, since app 1. The key
ingredient of our proof is the following lemma,
which is essentially contained in Prop. 1 in Koike
[6].

Key Lemma. We can write R (X) as
(x) (x x) (x)

+ (x x) .E x Jo’
where (X) Fp[X] is a polynomial of degree no
greater than p- 1, S is the set of supersingular
j- invariants in F. other than 0 and 17 2 8, and

For the reader’s convenience, we briefly sketch
the proof of this lemma (see [6] for the details).
Takin into account the deree of (X), the
asseYtion is equivalent to the followin fact:
(*) gpo c F.. I c- 0, 1728, o j-
invariaut of art ordinary e[[ipti rve, then R(o)
O.
Write j(pv) j(v) -[- " r(mod 2) with suitable
element 7 Q(J’(v)). By the Tylor expansion

(o -) q((), () / . r) q((), ())
/ ’r’--? q(J(), () mod,

we have

R(X) -= 7"- q(X, X) mod p

(r r(x), x j(v)).
Since the congruence relation (1) implies

8
Xyqp(X, ) -=Xp-X modp,

we see that (*) is then equivalent to 7 being reg-
ular at 0, 1728, and ordinary j-invariants in

Ff. This is well-known, and seems to originate
in the work of Igusa [3, p. 472 footnote]. (See
also e. g. de Shalit [1], Dwork [2], and Ihara [4]
for this and various intimately related subjects.)
Returning to the proof of the proposition, recall
that p M if and only if all the supersingular

j-invariants (which are a priori in F,) belong to

F (0gg [7]). For Jo F, Jo 0, set hjo(X)-
(X- X)/(X- Jo). This is a polynomial of de-
gree p- 1 having no constant term. (Note that 0
is excluded from the set S in the Key Lemma.)
With this we have
Xp- X p-1 2(P-l) p(p-1))
X_jo =hj0(X)(l+X +X +...+X

This expression, together with the vanishing of
the coefficients of X* (p < k < p2) in (Xf- X)

b(X), immediately yields the proposition and
hence completes the proof of Ito’s observation.

In conclusion, we remark that the other
observations made in 5 of Ito’s paper can also
be explained by using the above Key Lemma.
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