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Abstract -

We shall give a closed formula for the Fourier coefficients of the elliptic modular
function j (7) expressed in terms of singular moduli, i.c., the values at imaginary quadratic
arguments. The formula is a consequence of a theorem of D. Zagier® which is intimately
related to a recent result of R. Borcherds® on a construction of modular forms as infinite
products.
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1. Introduection

The elliptic modular function 7(7), often referred to as the modular invariant, enjoys
many beautiful properties. In particular, each singular modulus, i.e., the value at an imaginary
quadratic argument (a CM point), is algebraic and generates a certain abelian extension called
the ring class field over the imaginary quadratic field of the argument. On the other hand, the
Fourier coefficients of j(7) have a mysterious connection with the degrees of irreducible
representations of the largest sporadic simple group “Monster”; this connection is known as
(a part of) the “moonshiae”, which was established by R. Borcherds®.

Since CM points are dense in the complex upper half-plane £, the domain of definition of
the j-function, j(7) as an analytic (or even continuous) function is completely determined by
its values at such points. It would therefore not be unreasonable to expect a formula for the
Fourier coefficients of j(7) expressed in terms of the singular moduli. The aim of the present -
paper is to show that there indeed exists such a formula. A different kind of exact formula
for the Fourier coefficients of j(7) has been known since H. Petersson? and H. Rademacher®,
which expresses the coefficients by an infinite series involving a Kloosterman sum and the
modified Bessel function of the first kind. Their formula is, it is said, analytical, whereas
ours is essentially arithmetical.

The idea of explaining the moonshine via complex multiplication theory might thus not
be sheer nonsense.
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2. Theorem

The elliptic modular function j( 7 ) is invariant under the action of the modular group
SLo(%7,); in particular, it has a Fourier series expansion:
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the first few coefficients being ¢ =196884, ¢;=21493760, ¢3=864299970, . . .; . all the ¢,
are positive integers.
After D. Zagier, we define for each natural number d > 0, d=0,3 (mod4), an integer
Ji(d) by
2

=2, —744),
ODOd

where the first sum runs over all imaginary quadratic orders O that contain the order Oy of
discriminant — d, wo is the number of units in O, and the second sum is over a
representative of the proper O-ideal class. Note that here j( 7 ) is viewed in the standard
manner as a function on the equivalence classes of lattices in C. In addition, we set

J1(0)=2,J1(—1)=—1 and J1(d)=0 for d <—1 or d = 1,2 (mod4).

That J1(d) is in fact an integer will be explained in remark 3) after the theorem. Our formula
is then given as

Theorem. For any n > 1,

{2]17» A+ 2 (— 1) T1(dn—P)— J1(16n— 72))}

rEZ r2>1,0dd

Examples.
a=2J10)—=J13)—J1 (15— J1(7)
=2X2—(—248)—(—192513)—(—4119)
=196884.

2= %‘(h N+ (—1)—h BH—h23)—/(7)
=(J1 (=)= J:131)— J1(23))/2
=(—1—(—39493539)—(—3493982))/2
=21493760.
Several remarks are in order:
1) Each sum in the formula is finite.
2) By using relation (3) in the next section, the formula can also be written as

(= )"J” (= )

1
= 2 {]1 (n—7") — ——h(4n—7)+

rEZ

J1(16n— 72)} 1)
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3) As is well known in the theory of complex multiplication, the sum 2, laol (7 (ao)—
744) in the definition of Ji(d) is the (absolute) trace of the algebraic integer 7 (0O)— 744, from
which it follows that the summand %OE taol (7 (ao)—744) is an integer if O# O3, Oy,
while the well known values j(03)=0, j(04)=1728, as well as wo,=6, wo,=4, and that
the class numbers of Oz and O4 are 1, give 7;,%2 taol (7 (ag)—744)=—248, 492 for O=
O3, Oy, respectively. Hence J1(d) is always a rartional integer. Values of J1 (d) up to d=100
are given in the table at the end of the paper.

4) The J1(d)'s can be calculated recursively and elementarily (without knowing anything

about complex multiplication) by

J1(dn—1)=—a,— > # J1 (dn—17),
28 y< Jdn+1

Jim=—2 > Ji(4n—7)
15¢< JAnt+1
for n2= 0, where ap=1, a,=240 2, 4|. a3 (mn > 1), and an empty sum is understood to be 0.
This is due to D.Zagier (see the next section).
5) In the language of binary quadratic forms, the definition of Ji(d) reads as follows:
2 .
J1@= 2, e (a0 ~744),

[Ql
where the sum is over a set of representatives of the SLz (Z) -equivalence classes of integral,

Aut(Q)| denotes
the order of the automorphism group of @ in SLy(7Z ), and @ ¢ is the imaginary quadratic

not necessarily primitive, positive-definite quadratic forms of discriminant—d,

irrationality in & that corresponds to Q.

3. Proof

What is crucial in the proof of the theorem is the following result due to Don Zagier.
Theorem (D. Zagier®). The series

a(t)y= 2 L@
4> —1
d=0,3(4)

' 3
is a modular form of weight 5 on To@)= {(*2))E SLZ), 4lc}| , holomorphic in $ and
mevomorphic at cusps. Specifically,
Eq47)01(7)

gl(T):_ 77(4.[.)6 ’ (2)
where Ex(T)= 2, 5=0 axq" is the mormalized Eisenstein sevies of weight 4 (a, being as in the
preceding remark 4)), T (T)=q#7 Il =1 (1 —q") is the Dedekind eta function, and 0 (T )=
S nes(— 1)”q"2 1s one of the standard theta sevies of Jacobi.
He proved this by showing
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> Jidn—A=0 nZ 0 ' (3)

rEZ
and

S m—A)J1n— A)=2a, n20. (4)
1E€Z
Since it is easy to check that the coefficients of the expression on the right-hand side of (2)
satisfy the same recursions, and since the recursions clearly determine the coefficients
uniquely, this proves (2) and hence the theorem. (See the book of Eichler-Zagier® for these
kinds of recursions and a connection with the theory of Jacobi forms.) The relations (3) and
(4) were deduced from a classical formula on the diagonal of the Kronecker modular equation
and from a similar formula of M. Eichler. See the forthcoming paper by ZagierG) for the
details and also for the discussion on the relation to a theorem of R.Borcherds®.
By virtue of this theorem, we can unify our formula, or rather the equivalent formula (1),
into an identity between modular forms (of weight 2) as

1 d 1 1 1
575 gz J(T)=&(T)0o(T) = 4 ((g101)] U4)(T+7)+~4—((g1191IUf)(T),

where 0o (T)= 2, nezqnz, and Uy is the operator 2, b.g"F 2 bsng", which, as well as the
translation 7> 7T +é—, sends a modular form to a modular form of the same weight (but
possibly on a different group). Hence, owing to the finite-dimensionality of the space of
modular forms of a given weight and a group holomorphic except possible poles of bounded
order at cusps, the equality holds if the first several Fourier coefficients coincide, which is
indeed the case and thereby completes the proof of our theorem.

Incidentally, the relations (3) and (4) give us a formula for quick and elementary
calculation of Ji(d) as already mentioned in the preceding section; we can also calculate J;(d)
by (2) or by the following formulas:

Ey(7)

w4 _
420,20(4)]1((1)(1 2 50(7)51(‘[)4’
a4 Eqy(7)
> —25]3%4()@‘] N 27 o(T)01(7)

12
where 05 (7)= 2 ,e2 q("+2) is the other standard theta series of Jacobi.
A more “natural” proof of the theorem is provided by taking account of the action of the
Hecke operators. Specifically, an argument like the one used to prove (3) shows that

S Jadn—~A=2nc,  (n20), (6)

rEZ
where, in general, we define

Jm (@) = E %6- 2 (G—744)| T,) (a o) (T, : the Hecke operator of weight 0)
- 0204 [ao] '

for any m = 1. The relation (6) is then transformed into our theorem using the relations
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Jold) = T2 () + (S5) 11 (@ + 201 () @)

and (3), where (—5~) is Kronecker’s symbol and ]1(%)=0 if *ff— is not an integer. The relation
(7) and the similar ones for J,.(d) can be interpreted as saying that the Hecke actions on g1(7)
and on j(7) are compatible, as discussed in Zagier@.

Table Values of J; (d) for —1 < d < 100.

d J1(d) d J1(d) d J1(d) d J1(d)

-1 -1 24 4833456 51 -5541103056 76 784073551152
0 2 27 -12288992 52 6896878512 79 -1339190286960
3 -248 28 16576512 55 -13136687601 80 1597178431536
4 492 31 -39493539 56 16220381536 83 -2691907586232
7 -4119 32 52255768 59 -30197680312 84 3196800943968
8 7256 35 -117966288 60 37017882624 87 -5321761716339

11 -33512 36 153541020 63 -67515206970 88 6294842638512
12 53008 39 -331534572 64 82226601996 91 -10359073015248
15 -192513 40 425691312 67 -147197952744 92 12207820353536
16 287244 43 -884736744 68 178211037024 95 -19874477925452
19 -885480 44 1122626864 71 -313645814923 96  23340149127216
20 1262512 47  -2257837845 72 377674773768 99 -37616060991672
23 -3493982 48 2835861520 75 -654403831496 |100  44031499225500
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