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In this note we give a direct proof using the theory of modular forms of a beautiful
fact explained in the preceding paper by Robbert Dijkgraaf [1, Theorem 2 and Corollary].
Let M̃∗(Γ1) denote the graded ring of quasimodular forms on the full modular group Γ1 =
PSL(2, Z). This is the ring generated by G2, G4, G6, and graded by assigning to each Gk

the weight k, where

Gk = −Bk

2k
+

∞∑
n=1

(∑
d|n

dk−1

)
qn (k = 2, 4, 6, . . . , Bk = kth Bernoulli number)

are the classical Eisenstein series, all of which except G2 are modular. (See §1 for a more
general and more intrinsic definition of quasi-modular.) We define a generalization of the
classical Jacobi theta function by the triple product

Θ(X, q, ζ) =
∏
n>0

(1 − qn)
∏
n>0

n odd

(
1 − en2X/8 qn/2 ζ

)(
1 − e−n2X/8 qn/2 ζ−1

)
, (1)

considered as a formal power series in X and q1/2 with coefficients in Q[ζ, ζ−1]. (We can also
consider q and ζ as complex numbers, in which case the coefficient of Xn is a holomorphic
function of these variables for each n, but we cannot consider the product as a holomorphic
function of the third variable X because it diverges rapidly for any X with non-zero real
part.) Let Θ0(X, q) ∈ Q[[q,X]] denote the coefficient of ζ0 in Θ(X, q, ζ), considered as a
Laurent series in ζ, and expand Θ0 as a Taylor series

Θ0(X, q) =
∞∑

n=0

An(q)X2n , An(q) ∈ Q[[q]] (2)

in X. (It is easy to see that there are no odd powers of X in this expansion.) The result in
question is then

Theorem 1. An ∈ M̃6n(Γ1) for all n ≥ 0.

The coefficient of X2g−2 in log Θ0, which as explained in [1] is the generating function
counting maps of curves of genus g > 1 to a curve of genus 1, is then also quasi-modular of
weight 6g − 6, but we will not discuss this connection further.

The proof of Theorem 1 will be given in §2. In §3 and §4 we compute the “highest
degree term” (coefficient of G3n

2 ) in An and comment on the relationship to Jacobi forms.
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§1. Quasimodular forms. We denote by H = {τ ∈ C | =(τ) > 0} the complex upper
half-plane and for τ ∈ H write q = e2πiτ and Y = 4π=(τ), while D denotes the differential

operator D =
1

2πi

d

dτ
= q

d

dq
. (The factors 4π and 2πi are included for convenience and

to avoid unnecessary irrationalities later.) Recall that a modular form of weight k on a
subgroup Γ of finite index of Γ1 is a holomorphic function f on H satisfying

f
(aτ + b

cτ + d

)
= (cτ + d)k f(τ) ∀τ ∈ H,

(
a b
c d

)
∈ Γ

and growing at most polynomially in 1/Y as Y → 0. If
(

1 λ

0 1

)
∈ Γ, then these conditions

imply that f has a convergent Fourier series expansion f(τ) =
∑∞

n=0 a(n) qn/λ at infinity.
The space of holomorphic modular forms of weight k on Γ is denoted by Mk(Γ) and the
graded ring

⊕
k Mk(Γ) by M∗(Γ).

As well as the holomorphic modular forms, there are also functions F (τ) which satisfy
the same transformation properties and growth conditions as before but which belong to
C[[q1/λ]] [Y −1] instead of C[[q1/λ]], i.e. which have the form

F (τ) =
M∑

m=0

fm(τ)Y −m (fm(τ) holomorphic for m = 0, 1, . . . ,M) (3)

for some integer M ≥ 0 (and necessarily ≤ k/2). We call such a function an almost-
holomorphic modular form of weight k and denote the vector space of them by M̂k(Γ),
while the holomorphic function f0(τ) obtained formally as the “constant term with respect
to 1/Y ” of f will be called a quasi-modular form of weight k and the space of such functions
denoted by M̃k(Γ). It is clear that the spaces M̂∗(Γ) =

⊕
M̂k(Γ) and M̃∗(Γ) =

⊕
M̃k(Γ)

are graded rings and the map M̂∗(Γ) → M̃∗(Γ) is a ring homomorphism.

As the basic example, if Γ = Γ1 and we think of the power series Gk ∈ Q[[q]] defined
in the introduction as functions of τ ∈ H, then Gk(τ) is a holomorphic modular form of
weight k for k > 2 but G2(τ) satisfies instead

G2

(aτ + b

cτ + d

)
= (cτ + d)2 G2(τ) − c(cτ + d)

4πi
∀τ ∈ H,

(
a b
c d

)
∈ Γ1 . (4)

(A standard proof is to notice that G2 is a multiple of the logarithmic derivative of the
Ramanujan function ∆(τ) = q

∏
(1 − qn)24, which is a modular form of weight 12.) It is

easy to check that (4) is equivalent to the assertion that the function G∗
2(τ) = G2(τ)+1/2Y

is an almost-holomorphic modular form of weight 2, so G2 itself is indeed quasi-modular.
Another easy consequence of (4) is that the expressions D(G2) + 2G2

2 and D(f) + 2kG2f
(f ∈ Mk) are holomorphic modular forms (of weights 4 and k + 2, respectively), from
which it follows that the ring of quasi-modular forms is closed under differentiation and, in
particular, that all derivatives of holomorphic modular forms or of G2 are quasi-modular. A
converse to this and some other simple properties of quasi-modular forms are contained in
the following proposition, whose proof (by induction on the degree of almost-holomorphic
forms with respect to 1/Y ) we omit.
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Proposition 1. Let Γ ⊂ Γ1 be a subgroup of finite index of the full modular group. Then:
(a) The “constant term map” M̂∗(Γ) → M̃∗(Γ) is an isomorphism of rings;
(b) M̃∗(Γ) = M∗(Γ)⊗ C[G2], i.e. every quasi-modular form on Γ can be written uniquely

as a polynomial in G2 with coefficients which are modular forms on Γ;
(c) For (even) k > 0 we have M̃k(Γ) =

⊕
0≤i≤k/2 DiMk−2i(Γ) ⊕ 〈Dk/2−1G2〉, i.e., any

quasi-modular form has a unique representation as a sum of derivatives of modular forms
and of G2.

§2. Expansions of Θ(X, q, ζ). As well as the variables X, q, and ζ, we introduce further
variables w and Z defined by w = eX , ζ = eZ . We will also follow the physicists’ practice
of using the same letter to denote a function expressed in terms of different independent
variables, denoting for instance the Eisenstein series Gk by either Gk(τ) or Gk(q) and the
Dedekind eta-function q1/24

∏
(1 − qn) by either η(τ) or η(q), and writing Θ(X, τ, Z) for

the function defined by (1). Finally, we denote by Γ2 the group (usually denoted Γ0(2))
of matrices

(
a b

c d

)
∈ Γ1 with b even and by θ(τ) the theta-series

∑
r(−1)rqr2/2, a modular

form of weight 1/2 on Γ2. The first result is:

Proposition 2. The function Θ(X, τ, Z) has an expansion of the form

Θ(X, τ, Z) = θ(τ)
∑

j, l≥0
Hj,l(τ)

Xj

j!
Zl

l!
(5)

where H0,0(τ) = 1 and each Hj,l(τ) is quasimodular of weight 3j + l on Γ2.

Proof. From (1) and the identity θ(τ) = η(τ/2)2/η(τ) we find

log
(

Θ(X, τ, Z)
θ(τ)

)
= −

∑
n, r>0
n odd

1
r

(
en2rX/8ζr − 2 + e−n2rX/8ζ−r

)
qnr/2

= −2
∑

j, l≥0
j≡l (mod 2)

j+l>0

φj,l(τ)
(X/8)j

j!
Zl

l!
(6)

with

φj,l(τ) =
∑

n, r>0
n odd

rl+j−1 n2j qnr/2 =

{
22jD2jF

(1)
l−j(τ) if l > j,

2j+l−1Dj+l−1F
(2)
j−l+2(τ) if j ≥ l,

(7)

where F
(1)
k and F

(2)
k (k = 2, 4, . . . ) are the two Eisenstein series

F
(1)
k (τ) = Gk

(τ

2
)
− Gk(τ) =

∞∑
n=1

( ∑
d|n, 2-d

(n/d)k−1

)
qn/2 ,

F
(2)
k (τ) = Gk

(τ

2
)
− 2k−1Gk(τ) = (2k−1 − 1)

Bk

2k
+

∞∑
n=1

( ∑
d|n, 2-d

dk−1

)
qn/2

of weight k on Γ2. Since each of these is quasi-modular (indeed, actually modular except
for F

(1)
2 ) of weight k on Γ2, and since the mth derivative of a quasi-modular form of weight

k is quasi-modular of weight k + 2m, it follows that in both cases φj,l ∈ M̃3j+l(Γ2). The
result now follows by exponentiating, since quasi-modular forms form a graded ring.
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The next identity is an analogue of the Jacobi triple product identity. Set

H(w, q, ζ) = q−1/24
∏

n>0, n odd

(
1 − wn2/8qn/2ζ

)(
1 − w−n2/8qn/2ζ−1

)
and denote by H0(w, q) the coefficient of ζ0 in H(w, q, ζ) as a Laurent series in ζ.

Proposition 3. The function H(w, q, ζ) has the expansion

H(w, q, ζ) =
∑

r∈Z
(−1)r H0(w,wrq)wr3/6 qr2/2 ζr .

Proof. From the product expansion of H we find

H(w, wq, w1/2qζ) = (wq)−
1
24

∏
n odd

(
1 − w

(n+2)2

8 q
n+2

2 ζ
)(

1 − w− (n−2)2

8 q
n−2

2 ζ−1
)

= w−1/24 1 − w−1/8q−1/2ζ−1

1 − w1/8 q1/2 ζ
H(w, q, ζ)

= −w−1/6 q−1/2 ζ−1 H(w, q, ζ) ,

and this means that if we write the Laurent expansion of H with respect to ζ in the form

H(w, q, ζ) =
∑

r∈Z
(−1)r Hr(w, q) wr3/6 qr2/2 ζr ,

then Hr+1(w, q) = Hr(w,wq) and hence by induction Hr(w, q) = H0(w,wrq) for all r.

Proof of Theorem 1. From Proposition 2 we have

H(X, τ, Z) =
1

η(τ)
Θ(X, τ, Z) =

θ(τ)
η(τ)

∑
j, l≥0

Hj,l(τ)
Xj

j!
Zl

l!
.

(Recall that w = eX .) On the other hand, Proposition 3 can be written in the form

H(X, τ, Z) =
∑
r∈Z

(−1)r er3X/6+rZ H0

(
X, τ +

rX

2πi

)
qr2/2 ,

while by (2) and the definitions of H0(X, τ) and Θ0(X, τ) we have

H0(X, τ) =
1

η(τ)
Θ0(X, τ) =

∞∑
n=0

An(τ)
η(τ)

X2n .

Substituting the Taylor series expansions

er3X/6+rZ =
∑

p,l≥0

r3p+l

6pp! l!
Xp Zl,

An

η

(
τ +

rX

2πi

)
=

∑
m≥0

rm

m!
Dm

(An

η
(τ)

)
Xm ,

and comparing the coefficients of XjZl in the two expansions of H(X, τ, Z), we obtain

θ(τ)
η(τ)

Hj,l(τ) =
∑

m, n, p≥0
p+2n+m=j

j!
6pp! m!

Dm
(An(τ)

η(τ)
) ∑

r∈Z
(−1)r r3p+l+m qr2/2

=
∑

m, n, s≥0
2m+2s+6n=3j+l

2s (2n)!
6j−2n−m

(
2n + m

m

)(
j

2n + m

)
Dm

(An(τ)
η(τ)

)
Dsθ(τ) .
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Now the fact that θ and η are modular (with character) and Hj,l quasi-modular of weight
3j + l on Γ2, together with the fact that the operator D preserves the property of quasi-
modularity and raises weights by 2, implies by induction that An is quasi-modular of weight
6n on Γ2 for all n. But Γ1 is generated by Γ2 and

( 1 1

0 1

)
, so a modular or quasi-modular

form on Γ2 which has a Fourier expansion with only integral powers of q is automatically
modular or quasi-modular on Γ1. This completes the proof of Theorem 1.

§3. Highest order terms. As we discussed in §1, there is an isomorphism M̂k(Γ) →
M̃k(Γ) obtained by sending an almost-holomorphic modular form F (τ) to the first term
f0(τ) of its expansion (3). The map in the other direction sends a quasi-modular form
f(τ) to the function f∗(τ) obtained by writing f(τ) as a polynomial in G2 with modular
coefficients and then replacing G2 by G∗

2(τ) = G2(τ) + 1/2Y . In particular, we can define
the “leading coefficient” L[f ] of f ∈ M̃k(Γ) by

f(τ) = 2k/2L[f ] G2(τ)k/2 + · · · , f∗(τ) =
L[f ]
Y k/2

+ · · · ,

where “· · · ” denotes terms of smaller degree in G2 or in 1/Y . Equivalently, L[f ] is the
coefficient fk/2(τ) in the expansion (3), which is a constant if M = k/2 and zero otherwise (in
general, the term fM (τ) in (3) is a modular form of weight k−2M). The map L : M̃k(Γ) → C
for k > 0 is also proportional to the projection onto the final summand 〈Dk/2−1G2〉 in the
direct sum decomposition of Proposition 1 (c). We wish to compute its value for the quasi-
modular form An ∈ M̃6n(Γ1) of Theorem 1.

Theorem 2. L[An] =
(1/72)n

1 − 6n

(6n)!
(3n)! (2n)!

for all n ≥ 0.

Sketch of proof. Note first that the map L : M̃∗(Γ) → C is a ring homomorphism and an-
nihilates all modular forms of positive weight. (It is simply the map sending P (G2, G4, G6)
to P ( 1

2 , 0, 0).) It also has the property L[Dnf ] = (−1)n Γ(k/2+n)
Γ(k/2) L[f ] for f ∈ M̃k(Γ) with

k > 0, because D(G2) = −2G2
2 + 5

6G4 and D is a derivation. Hence from (7) and the fact
that all F

(2)
k and all F

(1)
k except for F

(1)
2 = F

(2)
2 + G2 are modular we have

L[φj,l] =
{

22j−1(2j)! if l = j + 2, j ≥ 0,
0 otherwise.

Inserting this into (6) gives

L
[Θ(X, τ, Z)

θ(τ)
]

= exp
(
−Z2Φ

(XZ

2
))

, Φ(t) :=
∞∑

j=0

(2j)! tj

j! (j + 2)!
=

(1 − 4t)3/2 − (1 − 6t)
12t2

.

On the other hand, induction on m and s gives

L
[
η(τ)Dm

(An(τ)
η(τ)

)]
= (−1)m Γ(3n + m − 1

2 )
Γ(3n − 1

2 )
L[An] , L

[Dsθ(τ)
θ(τ)

]
= (−1)s (2s)!

22s s!
,

so the calculation in the proof of Theorem 1 leads to the identity

exp
(
−Z2Φ

(XZ

2
))

=
∑

m,n,p,l≥0

(−1)m κ(3p + l + m)
6pp! l!

(
3n + m − 3

2

m

)
L[An] Xp+2n+m Zl

5



where κ(n) is (− 1
2 )n/2 n!

(n/2)! for n even and 0 for n odd. This generating series identity
overdetermines the numbers L[An], and even its specialization to Z = 0, for which the
left-hand side equals 1, yields a system of linear equations which determines them uniquely.
The solution of this system is as given in the theorem, although the proof of this is not
easy. One could in principle continue in a similar way and find the next terms (coefficients
of G3n−2

2 G4, G3n−3
2 G6, etc.) in the expansion of An, but the calculations rapidly become

unmanageable.

§4. Quasi-Jacobi forms. Finally, we discuss the nature of the “function” Θ(X, τ, Z)
(which is, of course, not a function of X at all, but just a formal power series). To simplify
the comparison with Jacobi forms, we change variables again to x = X/2πi, z = Z/2πi.
Recall [2] that a holomorphic Jacobi form on Γ is a holomorphic function φ of two variables
τ ∈ H and z ∈ C satisfying three properties: a “modular” transformation property with
respect to (τ, z) 7→

(
aτ+b
cτ+d , z

cτ+d

)
for

(
a b

c d

)
∈ Γ, an “elliptic” transformation property with

respect to z 7→ z + λτ + µ for (λ, µ) in some lattice in Q2, and a “holomorphic at infinity”
property which says that the Fourier expansion of the function has only terms qnζr with
r2 ≤ 4nm for some rational number m, called the index of the form. All three properties
are reflected by the function Θ(x, τ, z), but in somewhat modified form. Specifically, Propo-
sition 2 tells us that Θ(x, τ, z) is the holomorphic part of a function Θ∗(x, τ, z) (obtained by
replacing each Hj,l in (5) by H∗

j,l) which is invariant under (x, τ, z) 7→
(

x
(cτ+d)3 , aτ+b

cτ+d , z
cτ+d

)
for all

(
a b

c d

)
∈ Γ2; Proposition 3 tells us that the function H(x, τ, z) = η(τ)−1Θ(x, τ, z) is

multiplied by a simple factor under the substitution (x, τ, z) 7→ (x, τ +λx, z+λτ + 1
2λ2x+µ)

for λ and µ in Z; and Proposition 3 also implies that the Fourier expansion of H(x, τ, z)
contains only terms qnζr with n ≥ r2/2. This suggests that there should be an analogue
of the theory of Jacobi forms involving three variables z, τ and x of degrees 1, 2, and 3
rather than just two variables of degrees 1 and 2 as in the usual Jacobi case, where by
“degree” we mean that under a modular transformation τ 7→ aτ+b

cτ+d the variables z, τ and x

change to variables z∗, τ∗ and x∗ with ∂z∗/∂z = (cτ + d)−1, ∂τ∗/∂τ = (cτ + d)−2, and
∂x∗/∂x = (cτ + d)−3. It would be interesting to see whether such a theory can be worked
out and whether there are further extensions containing other (presumably infinitesimal)
variables of yet higher degree.
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