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1. The theorem. Let B, (n 0,1,2
be the Bernoulli numbers defined by the formal
power series

x =B,,X
x !e 1 =0

and put /n-’- (n "+" 1)Bn. As is well known and
easily seen, /1 1 and /n- 0 for all odd in-
tegers >--3. In this note we present the following
recurrence relation.

Theorem. The n’s satisfy
1 l(n+ 1)/n+ (n> 1)(1) B,= n+ 1 =o

Remark. The formula has a strong resembl-
ance to the usual recurrence

B,= +1 --o
B

(see [21 for example) but needs half the number of
terms to calculate B.,.

We shall give two proofs. The first proof
uses a continued fraction expansion and its con-
vergents of the defining power series of B,. This
method faithfully traces our original way of dis-
covering the formula and seems to apply to sear-
ching similar kinds of formulas for various num-
bers defined by nice generating functions. The
second and much simpler proof is due to Don
Zagier, to whom the author expresses his grati-

tude for permitting him to include the proof in
the paper.

2. Convergents of continued fraction expan-
sion. Let f(x) 1+ cx+ cx + be a
formal power series (over some field) with con-
stant term 1. Suppose f(x) has a continued frac-
tion expansion

1 ax a.x ax(2) f(x) 1+ 1+ 1+ 1+
with non-zero ai’s and let

Q,(x) 1 a,x a,_,x
P,,(x) 1+ 1+ l + a,,x

be its n-th convergent. The polynomials P,(x)
and Qn(x) are uniquely determined from
f(x) by the following conditions:

(3) P, (0) Q, (0) 1.
(4) deg P,,(x) deg Q,,(x) rn if n =. 2m,
deg P,,(x) deg Qn (x) + 1 m + 1 if n 2m + 1

n+l
(5) f(x) Q.(x)/P.(x) mod x

(in the ring of formal power series).
Both P(x)and Qn (x) satisfy the same re-

currence relations

(6) P. (x) P_ (x) + axP._(x)
V,(x) Vn_l(X) + anxV,,_z(x) (n >_ 2)

with the initial conditions Po- 1, Pl-- 1
alX’ Qo QI 1.

Now we put f(x) (//2) coth ((/2),
where cothy (e-+ e-)/(e- e-). This is a

generating function of even index Bernoulli num-
bers:

f(z) Z B,.,
=o (2n)

In this case, the coefficients a in (2) are

given by a 1/12,

(4+ 1))anda,+ (2;)/(12(4+4))4 4
(--> 1). This can be deduced from the famous
expansion

tanh / 1 x x
/ 1+3+5+

with the aid of a formula for the inverse of a
given continued fraction expansion ([3, p. 332]),
but we omit the details here. The key point of
our proof of the theorem lies in the explicit de-
scription of the convergents of the continued frac-
tion expansion off(x) (-- (v/2) coth((/2)).

Lemma. With the notations as above, we have

_> 0)
,0 2i 2i (2i+1)

m

P2m-1 (X)
2 Z (2m- 2i- 1)(2m + i)

m(4m- 1) i=o

2i+1 2i+1 (2i+1)! (m__>l)

Q.m(X) , (m > O)
=o 2i 2i (2i)!
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Q.m_l (X)
1 Z (m- i)(4m + 2i- 1)

m (4m 1)

(2m+i)(4m)
-1 x

2i 2i (2i) (m 2 1).

Proof E. Heine [1, p. 245] gave the conver-
gents of the continued fraction expansion of
1/f(x). Taking the properties (4) and (5) of the
convergents into account, we see that the 2m-th
convergent for l/f(x) is just the inverse of that
for f(x), i.e. P(x)/Q(x), thus we obtain the
formula for P(x)and Qeu(x). Thanks to the
recurrence (6), odd index P’s and Q’s are calcu-
lated from even index ones and the lemma fol-
lows.

3. Proof of the theorem. By the approx-
imation property (5), we have

(7) B (2i) P. (x) .(x) mod x

and
2n- X 2n(s) mod x

2n 2n-
Equating the coefficients of x x of (7) and
2n-1x of (8) by using Lemma, we get respectively

1 (2n+1)+(n>1)(9) 4 2n + 1 =o 2i
1 --1

(10) 4.- 4n(2n + 1)(4n + 1) i=O

(2n + 2i + 1)(2n + 2i)( 2n + 1 )+ (n > 2)
2i ---1

() ,_=_ 1
(2i-1)

2n(4n- 1) =o

2i -Multiplying (10) by 4(2+ 1)(4+ 1), (11)
by 4(4- 1) and adding them give us

1 ( 2n )2n+2i_2(n> 2)(12) B4n_ 2n = 2i-- 1
or

(13) /4+2 1 1(2n+2)2n+2 =0 2i+ 1
.++ (n _> 1).

We can unify (9.), (13) and B 1/2 into (1) in

the theorem (recall that 1 1 and Bodd__3
0), hence completes the proof.

4. Another proof. The simple proof sket-
ched below is due to D. Zagier.

In general, define an involution * on the set
of sequences {bo, bl, b2,...} by

B* (x) e-XB( x)
where B(x) is the following generating function:

X
n

B(x) =o bn (n 1)!"

( , (n+l))i.e., by b- (-- 1) =o i+ 1 b. Then

the expression

is seen to be anti-invariant under * and hence
vanishes if B*() B(). This is the case when
B() /(ex- 1), thus we have

Replacing n by n 1 and observing B+- 0,
we get the theorem.
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