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Self-similarity of binary quasiperiodic sequences
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Abstract. Self-similarity in binary quasiperiodic sequences generated by a projection method
is shown to exist when and only when it is associated with quadratic irrational numbers and
the explicit self-similarity transformation for an arbitrary quadratic number is obtained. The
self-similarity transformation is shown not to be reducible to the simplest form for a class of
quadratic numbers.

1. Introduction

Quasiperiodic systems lack any translational symmetry yet they are not random. The
properties of a quasiperiodic system are considered to be fundamentally different from
two extremes, regular crystals and random systems, since the geometrical structure plays
a pivotal role in determining them. For example, the Bloch theorem and the van Hove
singularities in the density of states for regular crystals follow from the translational
symmetry. In elucidating the physical properties of quasiperiodic crystals, it is crucial
to have clear knowledge of their geometrical structure and symmetry [1-6]. Even for one-
dimensional chains, however, there are only a few systems whose geometrical structure
(self-similarity) is known well, despite extensive work over the past several years [7].
Among them are the Fibonacci chain and its relatives [3].

In this paper we consider quasiperiodic sequences of two components produced by a
projection method with one parameter o and study the self-similarity of the sequences. In
section 2 we prove that the necessary and sufficient conditions for a sequence to be self-
similar is that ¢ is a quadratic number. It is rather trivial to show that this condition is
necessary for a sequence to be self-similar. Thus the main point of the discussion is to prove
that the condition is also sufficient for self-similarity. To this end, we obtain the explicit self-
similarity transformation of the quasiperiodic sequence for an arbitrary quadratic number,
exploiting the continued-fraction expansion of an irrational number which has been utilized
in the discussion of quasiperiodic systems [1,8,9]. We discuss the reduction of the self-
similarity transformation in section 3 and show that the transformation cannot be reduced to
its simplest form for a class of quadratic numbers. To illustrate an example of a non-self-
similar quasi periodic sequence, we briefly discuss in section 4 the band structure of a tight
binding electron on a one-dimensional chain. Concluding remarks are made in section 5.
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2. The self-similarity transformation

We consider a quasiperiodic sequence of 0 and 1 given by

F(a) = {Fy (o)} (nz21 (H
with

Fu(a) = [(n + Da] — [ne] )]
where [x] denotes the integer part of x,n = 1,2,3,... and « is a real parameter in (0, 1)
characterizing the sequence. It should be emphasized that the following argument holds for
any system isomorphic to F(«). When « is a (reduced) rational number a/b (a < b), then
the sequence is periodic, and we denote the periodic unit by [1(a/b) which consists of al

sand b — a Os.
We define an inflation rule for sequence (1) as two simultaneous transformations for

two units of 0 and 1:
S$(0,1) — §(0, 1)
TO,1)—>T'0,1)

3

where S0, 1) and T(0, 1), units consisting of k,0s, /;1s and k,0s, /,1s, respectively, cover
the entire F(«). The numbers of Os and s in §'(0, 1), k., ;, and those in T'(0, 1), k;, [},
are assumed to satisfy k. + 1/ > k,+ [, and k] + 1 > k, +1,. When F(a) is invariant under
transformation (3), the sequence is called self-similar. For a self-similar sequence F(a), the
ratio of the numbers of Os and 1s in the system must be unchanged when the transformation
is applied, and hence o must be a quadratic number determined by

(ke + L) k) + 1) — (ke + L) (K + 1)]e?
+ [y + 1)1 — (ky + LDk + (kg + 11 — (ks + L)L) + Ll — Ll = 0. (4)

Thus, it is a rather trivial statement that parameter o of a self-similar quasiperiodic chain
must be a quadratic number. Taking the contraposition, we can conclude that F(«) for o
other than quadratic numbers does not have any self-similarity in the sense of equation (3).
In the following, we show that the converse is also true, namely that the sequence F(a) for
any quadratic number has self-similarity.

In order to find explicitly the self-similarity transformation of F(x) for an arbitrary
quadratic number «, we use the continued-fraction expansion of «, which is known to be
periodic beyond a certain level [10]f. We write it as

1 1 i
e e | ——— 5
Tt k40 %)
1 1 1
o I ©6)

hi+hot  hpo +0°

t Real numbers can be classified into algebraic and transcendental numbers, and the former are further classified
according to the degree of the algebraic equation which they satisfy. A rational number is thus considered to
be an algebraic number of degree one. An algebraic number of degree two is called a quadratic number, and is
classified as a reduced or a non-reduced number: a quadratic number is called reduced when it is larger than unity
and its conjugate is in (—1, 0); when a quadratic number is in (0,1) and its conjugate is not in (0,1) we call it a
quasi-reduced quadratic number.
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The periodic part 6 is the inverse of a reduced quadratic number (6 € (0, 1) and its conjugate
6 < —1). We denote the ith approximant of @ by p;/q;,

1
e e | e i=2,...,n )

1
— i ———— | —n i=2,...,m. ®)

{(p1/q1 = r1/s; = 0/1). Since 8 is the stable fixed point of a modular transformation

pd+gq

ré +s ®)

v(@) =

with ps — gr = 1 (we choose this parity since, when m is odd, p = rp,q = rp_y,r =
Sm,S = Sm_; and, when m is even, p = rySm—1 + ’3:-1»‘? = rm(Sm + rm—1),7r =
Sm—1Gm +Tm=1),§ = si + rmSm—1), ¢ is the stable fixed point of a modular transformation,

_ pny0@)]+py _ Ax+B

T gy0@)+4g,  Ca+D’ (10)

8(a)
Here,

f(a) = _ P %n an
0gn—1 — Pn-1

and AB —CD = ps —qr =1 is shown to hold. In fact A, B, C and D are written as

A = pp(sqn—1 = rqn) + Pn-1(4qn-1 — P4n)

B = pu(rpn — spn—1) + Pn-1(PPn — qPn-1)

C = gu(sqn-1 — rqn) + 4n-1(4qn-1 — P4n) (12)

D = qu(rpn = 5pn-1) + Gn-1(PPn — qPn-1)- (13)
The flow of the fixed point iteration

a = 8(a) (14)

can be easily analysed. We find:

(1) The complex conjugate & of « is the unstable fixed point of equation (14), and it is
the stable fixed point of @ = (=D& + B)/(Ca — A).

(2) The convergence region ', of equation (14) is given by I'y = (—00, @) when C > 0
and n is odd or when C < 0 and » is even and ', = (&, 00) when C > 0 and n is even or
when C < 0 and n is odd.
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We consider a series of transformtions

&46(&)—>62(&)—>83(&)—> (15)
4qn 4n dn dn

which can be shown to converge to « monotonically. Using the fact that p, =
kn—lpn—l + Pu-2,4n = kn-l‘]n—-l + gn-2 and Pndn-y — qnPn-1 = (—1)?, we can prove
that p, ,/q, 5 = (Pn = Pn-1)/(gn — Gn-1)s Pn/qn and p,_i/qn-1 form a Farey tripletf,
which are all in the converging region, I',. Therefore, the periodic unit I1(p,/q,) for
F(pn/qy) is obtained by putting [T(p,_1/g,—1) and T1(p_,/q,_,) side by side:

7
1 (B—":j-) I (P;‘_z) when n is even
m(Ze)-f Junl e (16
an I (—pf—_z) I <&’—_—l-) when n is odd.
Qn—-z Qn—l
When p;_,/q,_, = 1 for even n or p,_1/q,—1 = 1 for odd n, equation (16) must be
considered as
11 (‘U"—I ) when n is even
y (f’l) - s (17)
n 111 (E:‘_"_Z) when # is odd.
qn—2

Note, however, that this happens only when n =2, ky =2 orn =4,k = k3 = 1 for even
norn=23,k =1 for odd n. Since

s (p;_z) _ pa(s =1)+ pa-i(g — p) (18)

a,y)  an(s —r)+aqu-1(g — p)

5 (Bﬁ) - DnS + Pn-19g (19
gn qnS + gn-19

5 (pn—l) _ Pt puip 20)
Gn—1 gnt + qn-1p

are also a Farey triplet, T1[8(p./g,)] is given in a similar manner to equation (16)
with TI[8(pu—1/gn-1)] and TI[8(p)_,/q,_,)], which in turn are written as a product of
(pn-1/qn-1) and I1(p,_,/q,_,) in the order determined by p,q,r,s, i.e. 6. Therefore,
fori =1,2,3,..., TI[6"(p,/q.)] is obtained from I1{8“~V(p,/q,)] by the inflation

n(pn—l/‘]n—]) - H[J(Pn—l/qn—-l)]

, 1)
(p)_/4,_3) = TSP, _2/qn_)]-
When p,_,/q,_, = 1 for even n or p,_i/g,—1 = 1 for odd n, we have to take the
transformation for I1(1) in equation (21) as
(1) — M[s(1)] (22)

where T1(...) denotes the same sequence as T1(...) except for 10 at the right end being
changed to O1. It should be noted that the same modification applies in the following.
As the inflation (21) holds at the fixed point of the modular transformation §(a), it is the
self-similarity transformation of F(a) for the quadratic number o satisfying « = §(w).

t The Farey series of order m is the ascending series of irreducible fractions in (0,1) whose denominators do not
exceed m (0 =0/1 and | = 1/1). A Farey triplet is a set of three successive terms in a Farey series.
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3. Reduction of the self-similarity transformation

We can define p),_, and g, _, by

P;_z _ (kn—1 — D pn—y + pn _ Pn- +p;1,~2
qy,;—z (kn—1 = Dgn—-1 + gn—2 Gn—1 +q;lz,-—2

(23)

14

and thus T1(p,_,/q,_,) can be written in terms of IT(p,-;/g.-1) and I1(p,_,/q,_,).
Consequently, if p,_,/q,_, is in Iy, the inflation (21) can be reducible to

M(pu-1/Gn-1) = THE(Pn-1/Gn-1)]

It n 14 " (24)
n(pn—2/qn—2) - H[a(pn—Z/qn—Z)]-
One can repeat this process to reach
(pn-1/qn-1) = T[8(Pn-1/qn-1)] 25)
(pn-2/qn-2) = TN6(pn-2/qn-2)]
as long as pn-2/qn-2 is in I'y. Furthermore, noting that
Pn-1 _ kn—2Pn-2+ Pn-3 26)

Gr-1 kn-29n—2+ qn-3

we can reduce the inflation rule when p,_3/g,-3 is in 4. Since Iy for quasi-reduced
quadratic numbers [10] contains (0,1), the inflation rule can be reducible to

I1(0) = 0 — I1[8(0)]

) Q7
() = 1 — OE)].

An alternative proof for this inflation rule is given elsewhere [11].

For non-quasi-reduced quadratic numbers, the reduction to the rule (27) is not possible
because their conjugate is in (0,1) and the reduction cannot go beyond the converging region
[y given in section 2. As an illustration, let us consider

— 1 1
a=_l__§.___.2.£=__..l_ 9._._..__._._1___ (28)
31 24246 1+4+6
thus
644 130 — 8
v(© 845 @) 3l — 19 (29

The inflation rule corresponding to equation (21) is

I1(1/2) — N{s(1/2)} = I3/7)

(30)
TI(1/3) — TI[8(1/3)] = T1(11/26).
Since TT(1/3) = I1(0/1)I1(1/2), this is reducible to
T1(0) = 0 — T1[5(0)] = [1(8/19) = 0101001010100101010 an

I(1/2) = 10 — I[8(1/2)] = I1(3/7) = 0101010.

This is the simplest (reduced) inflation rule for F[(16 — 2/2)/311.
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4. Non-self-similar sequences

In order to see the properties of non-self-similar sequences, we consider as an example the
band structure of a tight binding electron on a one-dimensional quasiperiodic chain where

the site energy takes two different values €p and €; in the sequence of equation (1). It is
known that the energy band is determined by the convergence of the product of two transfer

matrices
— E -~ €0 —1 _ E — €] -1

Here, E is the energy of the electron and the transfer energy is chosen as the scale of energy.
We write the continued fraction expansion of o as

I 1 1

o = ———— 33
ki+ka+ kgt (33)

and define the nth approximant to o by (p1/g; = 0/1)
Pn _ _1___1_ ! (34)

Gn kl+k2+“.kn—l‘

We denote by A, the trace of the product of the matrices for the periodic unit of the nth
approximant [1(p,/q,). It is straightforward to show that
Ay = Tr(go)
Ay = Tr(g180) Uk, ~2(A1/2) — Tr(g1)Ux, -3(A1/2) (35)
Ant1 = Bn_1Us,1(An/2) — Ap1Uy,-2(Ar/2) (n22)

where
By = Tr(8180) Uk, -1(A1/2) — Tr(g1) Uy, -2(A1/2) 36)
B, = Bn-—lUk,, (An/2) — An-—IUk,,—-I(An/Z) n=22)
and
Up(x) = w x =cosd 37N
sin @

is the Chebyshev polynomial of the second kind [12]. Here, we have used the following
generalized hyperinflation rule [6]: when n is even

n(””")n(‘—”—’i)...n(fi) Pn/gn # 1
gn—1 qn dn )
! (pn-H) — k, (38)

Gn+1 (Pn—z)
1...1T1{ — =1
k P Pn/qn
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and when n is odd

I (f’—) .y (f’—) I (f’——i) Prt/Gnos # 1
. qn qn qn—-1
n (er-!) - kn (39)
n+i n (fi‘-) . (fi) I (fi) Dot s = 1.
Gn qn qn
kp—1

The allowed energy band for the chain is determined by |A,| < 2. We show in figure 1
the allowed energy region for
e?—1 I 11

e24+1  I1+3+5+

a transcendental number, when €y = 0 and €; = 1. It is clear that there is no self-similarity
in the band structure. For the nth approximant crystal there are g, bands and, for the
(n -+ 1)st approximant there are ¢,4+; = k,g, + ¢»— bands; that is, besides each of g, bands
in the nth approximant breaks up into k, bands, g,-; new bands appear. Thus, when one
moves on to the higher order approximant, more bands appear than Azbel’ [1] has predicted.

3
| s s
2 ] i
15 136
| ]
1 | i
[B] ' 7
i i
I !
0 i5 {3
i i

-1 .
I s =

-2

n 1 2 3 4 5
kn 13 5 7
mo L 3 8 18
o S T 5

Figure 1. The allowed energy regions for a tight binding electron in approximant chains. Two
site energies 0 and 1 are placed in the order of the approximant to F[(e* — 1)/(e* + 1)]. For
each approximant p,/g,, the allowed region consists of ¢, bands. For pn.y1/¢s+1, each band
for pn/gn splits into k, bands and, in addition to these, ¢,_; new bands appear. The numbers
in the figure denote the number of bands in each bunch of the allowed region.

5. Concluding remarks

We have shown in this paper that there is a clear distinction between the quadratic
algebraic numbers and other irrational numbers in self-similarity of one-parameter binary
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quasiperiodic chains and obtained the explicit algorithm to find the self-similarity
transformation for a given quadratic number. Self-similarity in the form of equation (3)
does not exist in the sequence except for quadratic irrational numbers. Self-similarity
based on the inflation rule (27) exists only for the sequence corresponding to quasi-
reduced quadratic numbers. For non-quasi-reduced quadratic numbers, the self-similarity
transformation cannot be reduced to rule (27).

When « is a rational number/an algebraic number of degree one, there is a translational
symmetry and in turn the Block or the Floquet theorem holds. Therefore, it is an intriguing
problem to find if a general theorem exists in the properties of self-similar chains which
corresponds to algebraic numbers of degree two and to investigate symmetries of quasi-
periodic chains for other irrationals. In this connection, it should be noted that there
has been an argument that the stability conditions for quasicrystals in two dimensions
could be satisfied only for quadratic irrationalities [13]. As is well known [6, 14], many
physical systems can be described in terms of unimodular transfer matrices, including an
electric circuit and optical layers. Therefore, it will be feasible to test the present results by
experiments.
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