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Selfsimilarity in a Class of Quadratic-Quasiperiodic Chains
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We prove that quasiperiodic chains associated with a class of quadratic irrational
numbers have an inflation symmetry and can be generated from a regular chain by a
hyperinflation. We devise the explicit method to find the hyperinflation symmetry and
discuss the properties of such a class of quasiperiodic sequences.

Introduction

§1.

Quasiperiodic systems’? provide exotic
structures between periodic crystals and amor-
phous systems. Symmetry of periodic crystals
is used to classify the crystals, and lack of sym-
metry in amorphous systems makes it difficult
to classify the structure. For quasiperiodic sys-
tems, there are infinitely many variety of the
structure and its classification is one of the
most urgent problems. As an example, let us
consider a one-dimensional lattice produced
by a projection method shown in Fig. 1.% Lat-
tice points in a strip with slope « in the first
quadrant of a square lattice are projected onto
a line with slope p to produce, after adjusting
the length scale, a one-dimensional lattice

2)

¢y

where [x] denotes the largest integer less than
or equal to x. It is apparent that there are two
lattice spacings, 1 and 1+ p, which are placed
in an order determined by «. When « is ra-
tional, a periodic lattice is produced and when
o is irrational, the sequence becomes quasiperi-
odic. Every irrational a(0<oa=<1) produces a
distinct quasiperiodic sequence. The sequence
of two lattice spacings in the lattice is iso-
morphic to the sequence of 0 and 1 determined
by a relation

Fy()=[n+1)a]—[nal, @

and o represents the fraction of 1 in the
sequence.

There have been many works on the physi-
cal properties of quasiperiodic systems which
consist of two components in the order iso-

xn=n+p[an] (n=03 13 .“)3
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Fig. 1. The projection method to produce

quasiperiodic lattices. Lattice points in a strip with
slope « in a square lattice are projected onto a line
with slope p. When « is irrational, the lattice is
quasiperiodic with two lattice spacings 1 and 1+p
and the fraction of the longer spacing is given by a.

morphic to the sequence of 0 and 1 in eq. (2).
It has been expected without rigorous proofs
that all the quasiperiodic systems exhibit the
same properties. Therefore most of the works
on quasiperiodic chains have been carried out
for the Fibonacci chain corresponding to
a=(v/5—1)/2 in eq. (2) and its derivatives.?
There have been several works which in-
troduced a method to generate quasiperiodic
systems corresponding to an arbitrary irra-
tional number, utilizing its continued fraction
expansion.*”

In this paper, we show that the quasiperi-
odic system generated by eq. (2) has a selfsimi-
larity (inflation) transformation when and
only when « is a quadratic irrational number
in (0,1) whose conjugate is not in (0, 1). We
call such numbers quasi-reduced quadratic
(QRQ) numbers (with an analogous notion in
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the number theory in mind). We present an ex-
plicit method to find the inflation rule for the
quasiperiodic chains generated by eq. (2) for
ae {QRQ numbers}. For any QRQ number «,
we can find a unimodular fractional linear
transformation = (FLT)  with  integral
coefficients which fixes «. The inflation rule
is derived as the hyperinflation® at the fixed
point of the FLT. The physical properties of
the quasiperiodic chain can be obtained once
the transformation of the physical properties
is known along the hyperinflation path. There-
fore, we conclude that quasiperiodic chains
generated by eq. (2) with QRQ numbers show
similar physical properties.

We organize this paper as follows. In §2, we
discuss the relation between the sequence
generated by eq. (2) and the Farey series. We
consider an integral fractional linear transfor-
mation in §3 and derive a corresponding
hyperinflation rule, and subsequently inflation
rules for quasiperiodic chains. The hyperinfla-
tion symmetry was first found by Odagaki and
Aoyama® for certain periodic and quasiperi-
odic sequences given by eq. (2). In §4, we
present an explicit method to derive the
hyperinflation rule in the sequence (2) for an
arbitrary QRQ number. We discuss properties
of quasiperiodic chains characterized by QRQ
numbers and their approximants in §5. Some
concluding remarks are also given in §5. Ap-
pendices A and B contain the sketch of proofs
for the theorems given in §2 and §3, while in
Appendix C we give a detailed explanation of
finding an FLT for a given QRQ number.

§2. The Farey Series and Periodic Units

First, we call a series of 0 and 1, F (@)=
{F,(c)}»=1, a Farey expansion of « (e [0, 1)).
When a=b/a (a>b=0) is a rational number
in its lowest term, then the Farey expansion
F (b/a) is a periodic sequence whose unit con-
sists of b of 1 and a—b of 0. We denote the
periodic unit by Per (b/a), namely Per (b/a)
=F,(b/a)F,(b/a)---F.,(b/a). Note that if
a=2 Per(b/a) always ends with 10. We
denote by Per’ (b/a) the sequence identical to
Per (b/a) except for 10 at the right end
changed to O1.

The series F(a) is closely related to the
Farey series;” the Farey series of order m,
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denoted by Fu, is the ascending series of ir-
reducible fractions in (0, 1) whose denomina-
tors do not exceed m(0=0/1 and 1=1/1).
For example, the Farey series of order 3 is 0,
1/3,1/2,2/3, 1. If b/a and d/ c are two suc-
cessive terms of Fy, we call them a Farey pair
and the semi-open interval [b/a, d/c) a Farey
interval (of order m). Then, we can prove the
following theorem.

Theorem 1 Let [b/a, d/c) be a Farey inter-
val of order m. For ac [b/a, d/c), the first
m— 1 entries of F (a) are identical to those of
F(b/a).

A brief proof is given in Appendix A. In other
words, the first m—1 terms of F'(«) are deter-
mined by the Farey interval of order m to
which the number o belongs.

§3. Fractional Linear Transformation

We introduce a fractional linear transforma-
tion (FLT) belonging to PSL,(Z)

Y=~ 3

where p, g, r and s are integers satisfying
ps—rq=1, s(r+s)>0, q/s=0,
(p+q)/ (r+s)=1. @

The first condition implies that the transforma-
tion is a simple rotation and the latter three
conditions ensure 0<y(0)<y(1)=<1.

Our main observation can be stated as the
following theorem.
Theorem 2 For any ac [0, 1), the Farey ex-
pansion, F(y(a)), for y(a) is obtained from
F (o) by a hyperinflation

0—Per (y(0)),
1=>Per’ (y(1)). (&)

Consequently, when « is a fixed point of FLT
(3), namely y(a)=a, the Farey expansion
F(«) has the symmetry given by inflation (5).
We give a sketch of the proof in Appendix B.

A similar hyperinflation rule can be shown
to exist when p, g, r, s in FLT (3) satisfy

ps—rq=—1, 6)

instead of ps—rqg=1. For this FLT, we sup-
pose that y(c) satisfies
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O=y(H<yO)=1. )

When ae (0, 1) is irrational, F(y(x)) is ob-
tained from F(a) by

0—Per’ (y(0)),
1-Per (y(1)). ®

If « is rational, then inflation (8) applied to
Per (o) yields Per’ (y(a)).

§4. The Quasi-Reduced Quadratic Numbers

We now present an explicit algorithm to
find the selfsimilar transformation for an ar-
bitrary QRQ number. As we have explained in
Introduction, the QRQ numbers are defined to
be a set of irrational numbers in (0, 1), each of
which is a real solution to a quadtratic equa-
tion over integers and its conjugate is not
in (0, 1). Now, let o be an QRQ number and
satisfy

Aa*+Ba+C=0, (©)

where A, B, C are integers without common di-
visor. It is straightforward to show that « is a
fixed point of the fractional linear transforma-
tion corresponding to the matrix

x—yB
2y e
I'= x+yB | (10)
YA >

where x and y (y##0) are integer solution to
x2—(B*—4AC)y*==+4. (11

We take x to be positive and the sign of y is
chosen so as to the condition (4) is satisfied.
The sign in eq. (11) coincides with that of
det (I"). Equation (11) is classically known as
the Pell equation.? It has a unique “‘minimal’’
solution and other solutions are exhausted, up
to sign, by its ‘“‘powers”. In Appendix C we
give an explicit algorithm for solving eq. (11).
From the matrix I'=(Iy;), we find the
hyperinflation rule for the Farey expansion of
o as

0—Per (1"12/1"22),
1=Per’ (Fu+1w)/ (Tu+T)),
when det (I")=1 and

(12)
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0—-Per’ (I'2/I),
1—-Per ((F11+F12)/(F21+F22))a

when det (I')=—1.

As an example, we consider a=2—+3
which satisfies a>—4a+1=0. Equation (11)
becomes x*—12y?=4, one of whose solution
is given by x=4 and y=—1. Corresponding
matrix I"is (¢ 4), and the hyperinflation rule
is given by

(13)

1
r@)=,—: 14
and
0—Per (1/4)=0010,
1-Per’ (1/3)=001. 15)

In general, a=(n— vn*>—4)/2 (n=3) satisfy-
ing &> —na+1=0 is a fixed point of FLT

1
y()=_——, (16)
whose hyperinflation rule is
0—Per (1/n)=0---010,
n—2
1-Per’ (1/(n—1))=0 a7

---01.
s
As the second example, we consider
a=2—+2 which is a solution to
a?—4a+2=0. We find that the hyperinflation

(of determinant 1) is given by

4—q
y()=7——. (18)
and
0—Per (4/7)=1010110,
1—-Per’ (3/5)=10101. (19)

Finally, we consider a=(+vn’>+4—n)/2
(n=1) which is a solution to a*+na—1=0.
The irrational number 1/« is known to be the
golden, silver and bronze mean for n=1, 2
and 3, respectively. It is a simple task to find
the hyperinflation rule for these o’s:

r—(l ") 0)
“\n n2+1/)

that is,
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atn
y)=——57> 1) 0—Per (¢q/s),
1=Per’ (p+q)/ (r+s)). @7
and When we start the transformation from o®
0—Per n =(), we generate a series of periodic sequences
n*+1/)’ converging to a fixed point of the transforma-
n+1 tion. These periodic sequences are considered
1—=Per’ (m) (22) to be approximants® to the quasiperiodic

It is clear that this gives the well-known infla-
tion rule for the Fibonacci chain when n=1.

When eq. (11) with minus sign has a solu-
tion which yields I" (det (I')=—1) for the
FLT, then I'=I"? is an FLT with det (I")=1
with the hyperinflation given by repeated appli-
cation of the hyperinflation for I". A necessary
and sufficient condition for this case is dis-
cussed in Appendix C. For example, we find
for @=2—+2 I'=(Z] }) with hyperinflation
0—Per’ (2/3)=101 and 1—Per (1/2)=10. The
hyperinflation in eq. (19) is the square transfor-
mation of this rule. Similarly, the matrix /" in
eq. (20) can be written as I'=1"2 where

_ ( 0 1 )

I'= .
1 n

Noting that det (I")=—1, we apply the infla-
tion rule (8) and find the hyperinflation rule

@23)

_ 1
Pe)=—, @4)
and
1
0—>Per’(—)=0~-01,
n n—1
1-P ——1 ) 0---010 25
N -0---
eri L 910. (25)

The hyperinflation rule (21) and (22) is the
square transformation of rule (24) and (25).
This type of hyperinflations has been dis-
cussed by Suzuki.”

§5. Hyperinflation and Approximant

Crystals
Let us consider a hyperinflation
patgq
= , 2
P@)="—— 26)

with conditions (4) and

sequence at the fixed point. After n—1
hyperinflation, we arrive at a rational number
a™=b,/a, We can show that a, satisfies the
recurrence relation

(28)
with initial conditions a;=1, a,=s, and b,

satisfisfies the same recurrence relation with
b,=0, b,=q. Therfore, we find

Ap+2=(p+S8)an+1—an,

an= [A—pA)At—(A—pAy)Al],

Ay—A_

_ q
Ar—A_

where 4. (A+>A-) are the solutions to

A2—(p+s)A+1=0.

b

(A% =2, 29

(30

Since p+s>2 must be satisfied from egs. (10)
and (11), A- € (0, 1) and A+ >1. It is noted
that for FLT (16) A+ coincides with the con-
jugate of their fixed point. The periodic unit
for the n-th approximant consists of a, ele-
ments. Therefore, as n gets larger, the number
of elements in the unit increases exponentially
as ~A%.

The physical properties of quasiperiodic
chains and their approximants can be ob-
tained if the transformation of the properties
is known along the hyperinflation path. As an
example, let us consider a tight-binding elec-
tron on the quasiperiodic chain and its ap-
proximants, where two kinds of the nearest
neighbor transfer energies % and ¢ are placed
in the order of the Farey expansion of ae
QRQ numbers and the site energies are set to
zero. We follow a hyperinflation converging
to « from aP=0. After n—1 transformation,
we arrive o = b,/ a, whose periodic unit con-
sists of a, sites. Therefore, the number of
energy bands increases exponentially as the
order of the approximant is increased and the
energy spectrum becomes point-like at the
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fixed point.!”? Precise determination of the
band structure can be acheived by the trace
mapping of the transfer matrices proposed
first by Kohmoto et al.!? In fact, the trace map-
ping for an arbitrary irrational quasiperiodic
lattice has been reported.>'?
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Appendix

A. Proof of Theorem 1.

First we note that F,(c)=0 or 1 according
to ae [i/n, (i(+1)/(n+1)) or ac [i/(n+1),
i/n), i being the unique integer such that
ae [i/(n+1), (i+D/(n+ 1)/ (n+D)<i/
n<(i+1)/(n+1)). For kwith1<k=m—1, let
i be the unique integer such that b/aec [i/
(k+1), (i+1)/(k+1)). Then Fi(b/a)=0 if
and only if b/ae [i/k, (i+1)/(k+1)). Since
the denominators of i/ k and (i+1)/(k-+1) do
not exceed m and [b/a, d/c) is a Farey inter-
val of order m, we must have either [b/a, d/c)
Cli/k, i+1)/(k+1)) or [b/a,d/c)N[i/k,
(i+1)/(k+1)=0. Hence F;(x)=0 if and
only if Fi(b/a)=0.

B Proof of Theorem 2.

Because rational numbers are dense in [0, 1),
it is sufficient to prove the hyperinflation rule
for rational «’s. Let b/a and d/c be a Farey
pair of certain order. Then b/a, (b+d)/
(a+c) and d/ c are three successive terms of a
Farey series of higher order and so are y(b/ a),
y((b+d)/(a+c)) and y(d/c). It is straightfor-
ward to show the following two propositions:

1. Suppose b/a<d/c are a Farey pair.
When d/c<1, Per (b+d)/(a+c))=Per (b/
a) Per (d/c)=Per’ (d/c) Per (b/a) (just con-
catenate the two periods). When d/c=1,
b=a—1and Per (a/(a+1))=1 Per ((a—1)/ a).

2. For b/ac (0,1), Per’ 1—b/a) is ob-
tained from Per (b/a) by transformation 0—1
and 1—0.

These proposition can be shown by direct cal-
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culation using the criterion noted in the begin-
ning of Appendix A."* The proof of the the-
orem is completed by induction on the order
of the Farey series. For example, when d/c
#1, Per (y((b+d)/(a+c)))=Per (y(b/a))
Per (y(d/c)). Thus if Per(y(b/a)) and
Per (y(d/ ¢)) are obtained from Per (b/a) and
Per (d/c) by inflation 0—Per (y(0)) and 1—
Per’ (y(1)), then Per (y((b+d)/(a+c))) is ob-
tained from Per ((b+d)/(a+c)) by the same
inflation rule.

C Solution to the Pell equation

First we set r=[+v D/4] when D is even and
r="“the largest odd number less than v D’
when D is odd, where D=B*—4AC. We fur-
ther set 6=r++D/4 or §=(r++D)/2 ac-
cording as D is even or odd. Since the quad-
ratic irrational @ is reduced in the sense of
Gauss (i.e. 8=1, 0=0'= —1), its continued
fraction expantion is purely periodic;

I 1 1
kit kot kn1t 0

If we write the right hand side of eq. (31) as
(a0+b)/(c0+d), our solution (x, y) is given
by x+y VD =2(c6+d).

We can show that x2— Dy*= —4 has a solu-
tion if and only if the length # of the period of
the continued fraction in eq. (31) is odd. If
this is the case x+y v D =2(cf+d)* gives a so-
lution of x2—Dy?=4.

If we know a priori that x>—Dy*=—4 has
no solution, for example if D has a prime fac-
tor congruent to 3 modulo 4, we can apply a
more simple algorithm as follows.

Case 1. ae (0, 1), o’ =conjugate of a=1.
In this case o’ has the following purely peri-
odic continued fraction expansion

1 1 1 1
kl_ kz—
We determine p’, q’, r’ and s’ by writing the
right hand side of eq. (32) as (p’o’+q’)/
(r’ a’ +s’), and then the FLT corresponding to
r=(2 9)=(% %) 'is the desired transforma-
tion which fixes a.

Case 2. «ae(0,1), a’'<0.

In this case 1—a« satisfies Case 1, thus we
compute (% ?) for 1—« using the method ex-
plained above, and we obtain the desired

0=ko+ @31

o’ =ko— —. (32

kn—l— o



1152

matrix by (7 ;

=11

(9 (o)
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