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Introduction

Let X be a smooth irreducible algebraic curve of genus g over a field & of
characteristic 0, and ! be a prime number. For each n=1, 2, -+, consider the
configuration space

Yn = Fo,n X= {(_Pl; "'JPn)EX";pi:‘:Pj fOI' l:':]} .

Then the Galois group Gal(k/R) acts outerly on the pro-/ fundamental group
Pn:”qn—l(yn);

@,: Gal(k/k) > Out P, .

The main purpose of this paper is to prove that ¢, has the same kernel for all
sufficiently large n>n,=ny(X|k, I) (Theorem 2, §4). For example, we can take
n,=11if g>1 and X is affine, n,=2 if g>1, and n,=4 in all cases. This theorem
is based on some group theoretic property of Out P, (Theorem 1, §1).

The present work grew out of our previous work [7], [8] and [6].

1. The statement of Theorem 1

1.1. Let X be a compact Riemann surface of genus g>0, and X=X\
{a;, +++, a,} (r=0) be the complement of » distinct points @, -+, @, in X,
For each integer n>1, consider the configuration space

Yn = Fo.nX = {(pl) '").pn)EX”;Pi :’:Pj for l#—‘]} )

and let 7,(Y,, b) be its fundamental group with a base point b=(b,, -*+, b,). It
is the pure braid group of X with 7 strands. For each 7 (1<:<n,n>2), the
projection
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(1-1-1) Yna(Ply "')Pn) g (Pl’ "')ﬁi’ "')l’n)e Y,

is a locally trivial topological fibering (cf. [2], §1.2).
It induces a short homotopy exact sequence
11— 7[1(X\ {bh "t l;iy "t bn}" bu) - ”l( Yﬂ’ b)

1.1.2 v
( ) = Yy, (by, oo, by o0y bn)) -1,

v

because (i) the fiber of (1.1.1) above (4, -+, b;, ***, b,) can be identified with
X\{by, -, &;, -+, b,} which is connected, and (ii) z(Y,-,)={1} ([2], Prop. 1.3).

For each 7 (1<i<n), the group m(X\{b), ‘-, I;,-, e+, b,}, b;) is generated by
the elements x{”, y{, 2§ (1<j<g, 1<k<r+n, kZr+i) described by the loops
in Fig. 1. These generators satisfy a single defining relation

(1.13) CRPT RN O PO CRRFLEES

It is free of rank 2g+r+n—2. As is well-known, these elements x%”, y$?, 2{”

for all 7 generate z,(Y,, b) (with more relations than (1.1.3) for all 7).

Figure 1

1.2. Now fix a prime number /, and pass to the pro-/ completions. Call
N{?, P,, P{)\(==P,.,) the pro-I completions of the groups

(1.2.1) m(X\by, =+, biy =+, Ba}, 8y 7Yy B), 7 Yo, (Bry 0, By +++, b))

respectively. 'Then since the leftmost group of (1.2.1) is free, the exact sequence
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(1.1.2) induces that of pro-/ groups
(L.2.2) 1->N{) > P, > P -1

([1], Prop. 3; cf. also [6], Lemma 7.1.2). Call N{(2) the minimal closed nor-
mal subgroup of N{” containing [N{”, N§”] (the closure of the algebraic commu-
tator) together with all the 2§”(1<k<r-+n, k#r+i). Here and in what follows,
we shall use the same notation (e.g., 2§”) for an element of a group and its image
in the pro-/ completion. The notation N{”(2) refers to a filtration defined later
(83.2).

When i=n, we shall often suppress the superscript (¢) and write as N,=
NP, x,=x, etc.

1.3. Now assume

n>2, if g>1 and r>1, or
g=0 and r >3,
(1.3.1) n>3, if g=1 and r=20, or
g=0 and r=2,
n>4, if g=0 and r=1,
n>5, if g=r=0.

Our first main result is the following

Theorem 1. Let n be as in (1.3.1), and o be an automorphism of P, which
stabilizes N, and induces an inner automorphism of P,.,~P,|N,. If o satisfies
moreover the following conditions (a'1), (a2), then o itself is an inner automorphism.

(1) o(28)~zt" (~: P,-conjugacy) for all i,k (1<i<n, 1<k<r-+tn,
k+r+i),

(62) o stabilizes NS and acts trivially on its quotient mod N (2) (1<i<n).

Remark. We do not know whether our assumption (1.3.1) for # is the
best possible; especially whether the theorem is still valid when g>2, =0, n=2.

2. Key lemmas for the proof of Theorem 1

2.1. The element z=2{" will play a special role in the sequel. Note
that the loop with base point 4, defining 2 (Fig. 1) is a “trip” around g, if >0,
but if =0 it is a trip around &,. Our proof of Theorem 1 will be based on the
following two key lemmas. Here and in what follows, if g, :*+, g, are elements
of a topological group G, {gi, **+, g,> will denote the smallest closed subgroup of
G containing g, -+, g,.

Lemma A. Let C be the centralizer of x in P,. Then (i) P,=C-N,, (ii)
CNN,=<{2>.
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Thus, C= P, is close to giving a splitting of the projection P,—P,/N,.
Put

W= {x;,y; 1<j<g), 2 2<k<r+n—2)}CN,.
Note that W U {2} is a set of free generators of N,.
Lemma B. For each we W, there exists a subset S=S,C P, such that
(i) ScNg™,
(i) the centralizer of S in N, = N is w, 2> .

2.2. Proof of Lemma A. To check (i) it suffices to show that if w is one
of the generators x{", y{", 2" of P, then wzw™ is conjugate to z by an element
of z(X\{by, -, bs=i}, d,) (CN,). The following explicit formula for wzw™
proves its validity.

wew™ = n(w) 2n(w)™", where
nP) = 5P, a(y) =3 (1< <g),
n(z{") = 2" (1<k<r+n—1),
w(z{0) = (3% 2)71, w(2) =20 (1<i<n—1),
n(w) =1, for all other w.

This settles the proof of (i). The statement (ii) is obvious, as 2 can be
chosen to be one of the free generators of N,.

2.3. Reducing Lemma B to Lemma B’. For each we W, call a(w)

Figure 2
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the element of
2(X\Aby, +++, b2y b}, br) (CNE)

defined by the loop described in Fig. 2.
It is clear that a(w) commutes with 2 and also with any w'€ W, w’'+w.

Lemma B’. The centralizer of a(w) in N,=N{" is precisely {W\ {w}, 2.
We shall reduce Lemma B to Lemma B’. Assume Lemma B’, and set
S, = {a(w');w' €W, w'+w} .
Then S,Cc NV, and
the centralizer of S, in N, =WQW<W\ {w'}, 2>

w/Sw

= <w) 2> ’

which implies Lemma B. The last equality is because W U {2} is a set of free
generators of N, (see Cor. of Lemma 2.4.2, §2.4). Thus, Lemma B is reduced
to Lemma B’.

2.4. Proof of Lemma B’ We know that N, is free on WU {2}. Let
=1, denote the automorphism of N, defined by the outer a(w)-conjugation

v —aw)vaw)™ (veN,).
We know that

w)=w", weW\{w}

() ==z,

and our task is to show that N;={W\{w}, 2> (IV;,: the r-invariant elements of
N, ; the inclusion D is obvious). So, what we do is to write down 7(w) ex-
plicitly and, using the “difference” between 7(w) and w, to show that the r-
invariant elements of IV, cannot ‘“‘contain” w.

First we prove the case w=ux,. (The case w=y, is essentially the same and
will be omitted.)

The effect of 7 on N, is given by

(%) = 2 A; Zpu1 A7 (8= 9,87 37 % yin] - [8 3.])
rw)=w (WEW\{x}U ).
Fix an isomorphism of the completed group algebra Z,[[N,]] of N, over the

ring of l-adic integers Z; and the noncommutative power series algebra A=
Z[[ Xy, -, Xg, Yy, o, Yy, 23, o, Zypw2]ln.c OVer Z; with 2g+r+n—2 indeter-
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minates such that
xj L d 1'*‘4&% N Jg «> 1-+'I<i, z* «> I‘FJZ;.

Here, we regard A as being equipped with the graduation which assigns X, Y,
(1<j<g) degree 1 and Z,(1<k<r+n—2) degree 2. Extend 7 to an auto-
morphism of A. For each m>1, let I, denote the ideal of A consisting of all
power series whose lowest degree is greater than or equal to m. Then the ef-
fect of 7 on I,/I; is '

£ r+n-2
T(Xj) = X]'—‘ kgl (Xk Yk— Yk Xk)— kgl Zk ,
(X)) = X (=), (V) =Y, (1<i<y),
7(Z) = Zy (1Lk<r+n—-2).
We claim that for every m

homogeneous elements of degree m }

€Tl 7(f) = f} = {

{ homogeneous elements}

not containing X;

(2.4.1)

of degree m+1

The inclusion D is clear. Let {fu| u&M?} be the set of all monomials of degree
m which contain X;. (M is a finite set of indices.) It suffices to show that the
elements 7( fu)—fu (u € M) are linearly independent over Z;,. To show this, we
proceed by double induction on the invariants a(fu) and &( fu) defined as follows.
We define a( fu) to be the sum of degrees of indeterminates which do not lie left
on the leftmost X in fu. The invariant b(f.) is defined to be the number of
X;Y,, V. X; ({=*]) and Z(1<k<r-+n—2) which appear on the left of the left-
most X in fu. For example, when j=1 and m=6, a(Y, Y, X, Z, X,)=4 (recall
that deg (Z;)=2), a(X,X]Y3)=5, a(X;Z1Y,)=6 etc., b(Y,Y:X,Z,X;)=0,
WX, Y, X,Z,Y))=1, b(Z, X, Y, X, X;)=3 etc. Assume that a relation

EECM(T(fM)“fM) =0, awcZ,
holds. If a(fu)=1 and b( fu)=0, then fu=f" X; where f’ is of degree m—1 and

does not contain X, X;Y;, Y, X; (i) nor Z(1<k<r-+n—2). For this we
have

4 r+n-2
(f—fo= —f X Vi~ Vi X)+ 3 Zh—f X, Y 4+f VX, .
i
Look at the term f” Y; X;. 'This can never be supplied by any other 7 ( fu)—fu

(»'€M). Hence we must have cu=0 for such u &M that a(fu)=1 and b(fu)=
0. Leta>1. Assume that =0 for all '€ M such that a( fw)<<a and b( fw)=
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0. Let fu be an element with a(fu)=a and b(fu)=0. Then we can write fu=
f'X;f” where f" does not contain X;, X;Y;, Y, X; (i) nor Z,(1<k<r+n—2)
and deg(f”)=a—1. For this we have

rtn-2
(o) —fo= —f DX Y=Y X)+ 3 2 f'—f X, V"4 VX e
i
The term f' Y, X,f” cannot be cancelled out by any other terms in 7(fu)—fu
itself. If cu%0, the term cu(f' Y; X, f") should be cancelled out by some term
in another cu(7(fw)—fw) (»'#+p). But then fur must be of the form 'Y, X, f"”/
with deg(f”’)=a—2. By the induction hypothesis we have cw=0, hence
cw=0. Thus we conclude by induction that cu=0 for all p&EM such that
b(fu)=0. Let a>1, 5>0 and assume that c,=0 for all &M such that either

a(fu)>a and b(fu) =b—1
a(fu)=a—1 and b(fu)=0b.

Let fu be an element such that a( fu)=a, b( fu)=>b and write fu=f'X,f", deg(f")
=a—1. Then

g r+n—-2
(f)—fo =~ AS XY=V, X)+ 3 Z} '~ X; Y, Y, X, f
% -
The term f'Y,; X, f” can appear in another 7(fuw)—fu only if fu is of the form
f'Y;X;f" or fu is such that a(fw)>a and b(fw)==b—1. By the induction hy-
pothesis, we conclude that cu=0. This settles the proof of the claim (2.4.1).
Now if an element vEN,, is fixed by 7, then by the claim above we have

v—1€Z,[[X,,  Xp s Xy Yir s Yoo Zay s Zyinllme -
In particular
p 1€ AXy— 1) o+ (AX, 1)) |
By Lemma 2.4.2 below we conclude from this that

v
IIE<.X'1, Xy Xy Y Ve B 0t zr+n—2> .

Lemma 2.4.2. Let F be a free pro-I group of rank r >2 with free generators
%y, -+, %, and A be its completed group algebra over Z;; A=Z,[[F]]. If g€F is
such that

g—1EA(x,—1)+A(xt,— 1)+ +A(x,—1)

for some s (1<s<r), then gE<x,, ++, x,).
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Proof. Let H=<x, ‘-, x,>. Define Z[[F/H]], a topological left A-
module as follows. For each finite quotient F—F of F, let H denote the image
of H. Consider Z,[[F/H]] as a left F-module, and take the limit Z, [[F/H]]:=
lim Z,[[F|H]] which is a left A-module. Let v be the element of Z, [[F/H]] cor-
responding to H. Then x;v=vie., (x;—1)v=0 (1<i<s). Therefore,

(g—Dv= (g—i (= 1)+ O (x,—1))u =0.

0x,
Therefore, gu=v, and hence gEH.

Corollary. Let F be as above. For I1C{l, -, r}, define Fi=<{x;|ic).
Then FlnFlean(I,]C{l, ) 7’}‘)-

This completes the proof in case of w=x;.
As for w=z,, we use the normal graduation of A, namely, every indeter-
minate has degree 1. The action of 7 on N, is given by

T(Z) = 8;1 2y 81: (8lc = (2‘r+n—2"'zk)—l zf+ﬂ—1(z'+ﬂ-2...zk)) ’
(@) =w (@EWU &\ {z}) .

Again extend 7 to an automorphism of A. Let I be the augmentation ideal of
A. Then 7 keeps I" and the effect of 7 on I/I® is

(X)=X;, #(¥Y)=Y;, (1£j<y),
™Z;) = Z; (j¥k),
WZ) =7t 3 (Z,5~4Z).

As before it suffices to show that for every m

homogeneous elements of degree }

(FeI"Im|w(f) = f} = {

{ homogeneous elements }

not containing Z,

of degree m--1

Let {fu| u =M} be the set of all monomials of degree m which contain Z,. We
only need to show that the elements 7(fu)—fu (v €M) are linearly independent
over Z;, and this will be established by single induction on the invariant a(fy)
of fu defined as the number of indeterminates which do not lie left on the left-
most Z, in fu. The argument is similar to that in the first step (case b( fu)=0)
of previous double induction in case w=x; and is omitted here.

3. Proof of Theorem 1
3.1. First, we need:

Claim 1. Each inner automorphism o of P, satisfies (a1), (c2).
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Proof. It suffices to show that any inner automorphism of P, acts trivially
on N{P/N§P(2). But P, being generated by the x$, 94, 2§, it suffices to show
that if w and @’ belong to this set of generators of P, and if w&N{’ then
w'ww' tw ' eN(2). If either w=x{’ and w'=){" or w=y}) and w'=x{
(k=1), w'ww' ' w™'=[w’, w] is given as follows and is contained in N{"(2):

() 9507 g i)
x(x("y(,')_ i)™ (>E)

[CE R OB oy S O
X(z‘+,, pe 2 ¥ A0 (G<k)

[P 351 =

[z(f,-k)l—l zg"-k)k-l-l 2(‘)}; (2'(".3,_1 z‘,‘;),,“), x(,-‘)]
X (y(") 2(r'+)‘-1 (')k+1) z(r’-v-)h
9,951 =1 X i)™ (>E)
(R4 2mr 28821 &4 (;")_1)2(,‘2/;
X (322820 2D YT (G<k).

In other cases, w'ww’ ™" is N{*-conjugate to w and hence [w’, w] [N, N{’|C
N (2).

Now let g, 7, n be as (1.3.1), and o be an automorphism of P, which stabilizes
N, induces an inner automorphism of P,_,=<P,/N,, and satisfies the conditions
(1), (¢2) of Theorem 1.

Claim 2. We may assume that (i) oz=z, (i) o acts trivially on P,|N,.

Proof. Obvious, by (a1), Claim 1 and Lemma A(i).
Let W be the subset of IV, defined in §2.1.

Claim 3. For each we W, cwelw, 2.

Proof. Let S=S, be the subset of N~V in Lemma B. Then by Lemma
B, it suffices to show that cw &N, and that ow centralizes S. As ¢N,=N,, the
first assertion is obvious. To prove the second, take any s&€S. By Claim 2,
oz=g and o acts trivially mod N,. As o=z, we have ¢C=C. But ScC
(Lemma B); hence o(s) s7'€CNN,=<z>. On the other hand, as ¢ stabilizes
also N{*~V, and SCN{~Y, we have o(s) sT'END.  But NyYN<{>={1}, as
can be checked easily by considering the geometric meaning of the projection of
z on P,/N{" . (This is where we need the assumption #>3 if =0, a part of
(1.3.1).) Therefore, as=s for all s€S. Since w centralizes S, ow centralizes
oS=3S. Therefore, cwe<w, 2.

3.2. We shall use the invariance of the relation (1.1.3) by the action of
o, and the above Claim 3, to push o nearer to 1. The method we employ is
a pro-/ Lie calculus. We shall suppress also the subscript #, and write often as
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N=N,=N{®, etc. We shall first look at the action of & on N.
By (1), (¢2), we may put

ox; =S$;%;, oy;=1;); (IS]Sg))
o=z uy (2<k<r+n—1),

with s;, £;€N(2) and 4, €N (cf. §2.2). By Claim 3,

(3.2.1) s;€<x;, 2>, t,€{y;,2> (1<j<g),
and
(3.2.2) U Ry, u;‘E(z,,, 2'> (ZSkSr—f—n—Z) .

From the last inclusion we shall deduce:
Claim 4.
W ELR, 2y (2<kZr+n—2).

Proof. Consider the free differentiation w.r.t. the basis xy, -+, x,, 1, =,
Ver 21y ***y Zran—z. Lhen for wEW, wz,

0= -2 (2 ui?) = (1—up 2 u5?) 2.
ow ow
Since the element 1—u, 2, ui" in Z;[[N]] is not a zero divisor ([5], Lemma 3.1),
ou,

we have 5—:0. From this and Lemma 2.4.2 we conclude that u,E<{z,, 2>.
w

Our next goal is to prove:
Claim 5. ¢ acts trivially on N (In other terms, s,—=t,=w,=1, all j, k.).

Proof. Assume first that g>0. Let {N(m)},> be the central filtration
of the group N=N(1)=N, which was defined and studied in [8]. It is the
filtration such that

(i) the degrees of x; and y; (1<j<g) are 1 (ie., x;, ¥,EN(1)\N(2)), and
the degrees of z,(1<k<r+n—1) are 2 (z;€N(2)\N(3)),

(if) the degree of a commutator [x, y] is the sum of degrees of x and y.
We have [N(m), N(n)] CN(m-+n) and, in particular, gr” N:=N(m)/N(m+1) is
a Z;-module. Under the commutator operation, the Z;-module

L:= ng:mGZBIgr"'N
has a structure of graded Lie algebra over Z,; and it was shown in [8] that L is
free Lie algebra generated by

X;==x,mod N(2), Y,=y,modN(2) (1<;<yg)
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and
Zy=2z,mod N(3) (1<k<r+n—2).
By the Magnus embedding
N— ZI [[Xl’ °t Xg) Yly R Yg’ Zly *t%y Zr+ﬂ—2]]n.c =A

of N into the non-commutative formal power series algebra (x;—14-X;, y,—
1+Y;, 2+ 14-Z,), N(m) is mapped into 141, where I, is the ideal of A con-
sisting of all power series whose lowest degree is at least m (deg(X;)=deg(Y,)=
1, deg(Z;)=2), and gr"™ N is identified with the Z;-module of homogeneous
“Lie polynomials” of degree m. In particular mgl N(m)=1. Hence in order to

prove Claim 5, it suffices to show that the inclusions
@ 5 4ENmE]) (1<j<g), wENm) 2<k<rn—1)

hold for all m>1. First, by the assumption (ii), (#;) holds. Suppose (#.)
holds for some m and put

S; =s; mod N(m+2), T,=t;mod Nm+2) (1<j<g)
U, = u, mod N(m—+1) (2<k<r+n—1).

Then from (3.2.1) and Claim 4 we have

S;€<X,, 2y, T;e<Y;,Zy (1<j<g)

(3.2.3) U,e<Z,Z) (2<k<r+n—2).

Here, <X, Z;> (resp. <Y, Z>, <Z, Z>) is the Lie subalgebra of L generated
by X; (resp. Y;, Z;) and Z,.
By letting o act on the relation

[xly yl]'"[xga yg] Rytp-1"""R2 31 = 1

and considering it modulo N(m+-3), we get the following relation in L;

?;: ([Si’ Yi]+[Xj’ Tj])+ 'gl[UIn Zk] =0.

Write V for U,,,_;. Since Z,,,.,.=— i} [X;, Yj]—’kz"}_zZ,, in gr® N, the above
j= =1

relation can be rewritten as

(S, VX, T)+ 3] [Un Zi
(3.2.4) ! , o
~ 5, v+ 3

We first show that (#,) holds for some m with m>3. Let m=1. Then by
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(3.2.3) we have
S;=a;Z,, T;=0;Z (1<j<g), U=0 (2<k<r+n-2),

and

V=3, X+d, ¥, with a,b,c,d,€Z.
=

FLt LIag L ied

Putting these into (3.2.4) and noting that the elements [Z,, Y], [X}, Z],
[Xs [X;, Y11, [V}, [X, Y;]] (1<, k< g) constitute a part of a Z;-basis in gr’ N,
we conclude that a;=b;=c;=d;=0; hence (#,) holds. Suppose m=2. This
time there exist by (3.2.3) a;, b, ¢4, d, € Z, such that

S,=alZ,X], T,=bl2,Y] (1<j<g)
l]; = CkJZ;%—ah ZZ. (2:;125;7—%41——2).

r+n—2
Write V=V,+ X e, Z,, where ¢,€Z, and V, is a linear combinations of
k=1

[X;, Yi]'s. Putting these into (3.2.4) we get

3 @[12Z X1, Y46, 1X, 12, YD+ 3 a2 2]

(3.2.5) = Vo 31X, VIH1Ve 3 2+ 2, 31X, V]

i=1 j=1

H B 6z B X, VI 3 a2 3 2]

Since each term except [V, il [X;, Y]] contains some Z; (1<k<7r+4n—2) and
the elements [[X}, X,.], [X, jI_/’j]] ((, m)=(j,)) constitute a part of Z-basis in
gr* N whose Z;-span never contains an element including Z,, we must have
[V, ,é [X;, Y;]]=0. Hence V,=f ,é [X;, Y,] with some f € Z,. By replacing
Uyyn-1 DY Upino1® B ano (Zran1=([%1, Y11 [%g5 Y1) 7 (Br4n-2"""21)"") We may as-
sume that f=0 (so V;=0). Then the term [’ézek Zy, jE:}l [X}, Y}]] in the right
hand side of (3.2.5), [Z;, [X;, Y]] being a generator of gr* IV, must be zero and

thus ¢,=0 for 2<k<r+4n—2. Comparing the remaining terms, we easily con-
clude that

aj="b=dy=e (1<j<g 2<k<r+n-2).

Hence, by replacing o by Int(27%)-0 (Int(g) is the inner automorphism by an
element g), we may assume ¢,=0, i.e., (#5) holds. When m>3, Lemma 3.2.6
below shows that (#,.,) holds and by induction our proof of Claim 5 in case
£>0 is done.
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Lemma 3.2.6. Let L be a free Lie algebra over Z, with free generators
Xy, oo, Xy Y, 000, Yo, Zy, o0, Zyyep equipped with a graduation such that deg(X P)
=deg(Y,)=1(1<j<g) and deg(Z))=2 (1<k<r+4n—2). Let S;e<XX;, Z,
T,e<Y;, Z> (1< j < g) be homogeneous elements of degree m+1 and U,E<Z,, Z,>
(2<k<Lr+n—2), VEL be homogeneous elements of degree m>3. Suppose that
these elements satisfy the relation

(S, YIHIX, TD+ 3 [Us Zi]
(3.2.7) 7= , m:”
= [V,E [XJ., Yj]—]— F}'_,‘l Zy].

Then S;=T,;=U,=V=0 (1<j< g, 2<k<r+n—2).

Proof. Our proof is essentially similar to that of Lemma 4.3.2 in [6]. Itis
easy to see that =0 implies S;=T;=V,=0. Suppose V=0 and decompose
Vas V=23V with VW& L™, where L™ consists of homogeneous elements

of multidegree T=(I;, m;, m)i<j<gnsi<rin-z N (X;, Y, Z)icj<gashsrsn—z.  Let
Vo be a component whose degree in Z, is as large as possible. Then the term
[V, Z,] from the RHS of (3.2.7) must be cancelled out by the term from the
LHS. By the assumptions S;E<X;, Z, T;E<Y;, Z,) and U,&<Z;, Z,D, no
two of the [S}, Y;], [X;, T;] and [Uj,, Z,] have the term of same multidegree in
common.

Case 1. [0, Z] is cancelled out by some term from [S;, Y,] or [X;, T,].
In this case V"0 belongs to the subalgebra <X, Y;, Z;> and has degree at least
1l in each X, Y; and Z, (because m>3). Then the term [V, [X}, Y]] (+0)
from the RHS of (3.2.7) is of degree at least 2 both in X; and Y}, thus cannot
appear in the LHS. Hence it must appear in [0, Z|] for some 7,. V™ is in
<X, Y;, Z,> and of degree at least 3 both in X; and Y;. The degree in Z, of
V0 is less by 1 than that of V0. Now consider [V, [X;, Y;]] from the
RHS, and so on. We finally get V% which is in {Xj, Y;>. But then
[V, [Xj, Y;]] (£0 because m>3) cannot be cancelled out, contradiction.

Case 2. [V0, Z|] is cancelled out by some term from [U,, Z,].
In this case V"0 belongs to {Z,, Z,>. As the degree of U, is greater than 2, U,
is of degree at least 2 in Z,. Thus the term [V, [X;, Y]] from the RHS of
(3.2.7) cannot be cancelled out by any term from the LHS, hence it must be
cancelled out by [V, Z,] or [V"Y, Z,] for some 7, from the RHS. Consider the
term [V, [X;, Y;]] in the RHS. This is of degree 2 both in X; and Y}, hence
must be cancelled out by some [V"?, Z,] or [V"?, Z,] from the RHS. Continu-
ing these arguments we are lead to a contradiction as in Case 1.
This settles the proof of Claim 5 when g>0.

Suppose g=0. Then N=N,, is a free pro-/ group of rank r-+n—2 genera-
ted by 2,(1<k<r+n—1), 2,44-1"*2; 2;=1. Recall that we have put
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oy =i, HEN (2Z<kZ<r+n—1)(oz;=2)
and that by Claim 4 we have
(3.2.8) w2y, 2 (2<k<r+n—2).

In this case we use the filtrations by the lower central series of N. Let
{N[m]} »2: be the lower central series and put L= @ N[m]/N[m+1]. Then L
m>1

is a free Lie algebra over Z; on Z,==; mod N[2], «**, Z,4,-3=2,44-2 mod N[2]
(cf. [4]). Letm be a positive integer satisfying u, € N [m] for all k (2<k<r+4n—1)
and define U,=u;, mod N[m+-1]. Then by (3.2.8) we have

(3.2.9) U, <2, Z> (2<k<rin—2).

The relation 2,.,-, -2, 2;=1 applied by o yields

[ZZ, UZ]+"'+[Zr+n—27 Ur+n—2]
= [ZI+ZZ+"'+Z1+11—2» Uf+n-l] .

As in the case of g>0, this with (3.2.9) implies that we may assume m>2. Then,
by Lemma 4.3.2 in [6], of which proof is valid over Z,, we conclude that u,=1
for all £ hence Claim 5 for g=0.

Now let o be an automorphism of P, which satisfies the conditions of Theorem
1 and Claim 2. The final step of our proof of Theorem 1 is:

Claim 6. o acts trivially on P,.

Proof. Take any element & in P,. First we claim that o(ct)-a™ is con-
jugate in NN, to some /-adic power of z. When aa€C, this is because o(a)-a~'€
CNN,=<{z> (Lemma A(ii)). In general, @ being written as a=nc with nEN,,
and ceC, we have o(@)=n-0(c)=n2* c=nz*n™" a for some k€ Z,. Therefore,
o(a) @™ is conjugate in N, to some /-adic power of 2. Replacing 2 with 2,=2%"
(this is the second place where we need the assumption #>3 if =0 which
ensure the existence of 2%”) and C with the centralizer of 2§, and tracing the
arguments as before under the assumption that o acts trivially on N,, we con-
clude that o(ar)-a™! is conjugate in N, also to some power of 2,. If n+r>3,
this together with the fact that 2 and 2, constitute free generators of IV, implies
that o()-a™" must be the identity element. If n+7r=3, consider the relation

nztn™ = n’ 2§ n’~* mod N,[3] (=[N,, [N, N,]]) -

By writing down this relation explicitly with free generators x;, y; (1<j<g) and
2(2e=([%1, y1]***[%4, ¥,]) "' 27"), we readily see that we must have k=%"=0.
Therefore o(a) - must be the identity element.
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4. Galois representations

4.1. We shall now give some applications to Galois representations. Let
X°? be any complete smooth irreducible algebraic curve over C, given together
with 7 distinct C-rational points 4, -+, a, (r=>0), and put X=X\ {a,, +--, a,}.
As before, consider the configuration space

Y: Y” — Fo'”X= '{(xl, "‘,x”)EX”; x,-=¥=x,~ (izf:j)} >

choose a C-rational point b=(b,, -, b,) of Y, as base point, and look at the
algebraic fundamental group P=P,=#(Y,, b), the profinite completion of the
topological fundamental group z,(Y,(C), b). For each open subgroup HCP,
let fu: (Yu, by)—(Y, b) be the covering corresponding to H (unique up to==).
For each pair (H, H') of subgroups of P with finite indices, and an element
g€ P with H'C gHg™, call 14 4(g) the unique projection (Y, by)—>(Yg, gby).
Call M the union of C(Yy) (the function field) with respect to the embeddings
1% #(1): C(Yg)—=C(Y}%) (for H'CH), which is a Galois extension over C(Y)
and for each g€ P,, call i*(g) the element of Gal (M/C(Y)) defined by the sys-
tem {i¥,v(£)} var,-

Proposition 4.1.1. (i) M is a maximal Galois extension of C(Y)=
C ((X°")") unramified outside the prime divisors

[ai = {(xy, -, %) E(X?) 5 2, = a} (1<i<n, 1<5<7)

(4.1.2) { . . . L.
Ay = A(xy, o, %) EXP) 4 =i} (1<i,j<n,i%j),

of YPt=(X*)". (ii) The homomorphism i*: P,— Gal(M|C(y)) is an isomor-
phism.

Proof. A theorem of Grauert-Remmert on unique extendability of par-
tial finite coverings of normal analytic spaces, and GAGA (the generalized
Riemann existence theorem, and GAGA for morphisms) [3], Exp. XII.

4.2. Call Br(Y) the set of all prime divisors of Y*?*=(X***)" belonging to
(4.1.2). For each DEBr(Y), choose a point Q,& |D| (the support of D), an
open neighborhood U, of Qp in Y°#(C), and a biholomorphic map u,: U, W”,
where W={we&C, |w|<1}. We require that UpN | D’| =¢ for any D' €EBr(Y),
D’=#D, and that U, N | D| corresponds to {(w;, -+, w,); w;=0} via up. Choose
any path pp: I—Y(C) such that p,(0)=b and p,(1)=05,U,— | D| (I=[0, 1]).
Put u,(Q5)=(wi, :*+, wy), and let ¢,: I—-Up—| D| be the loop, with base point
05, defined by

up(cp(t)) = (wi exp (2wit), wi, -+, wy) (tE€I).

Such a path p, determines, on the one hand, an element z,=32,(pp) of
P,=#(Y,, b), and on the other hand, an extension vp,=vp(pp) to M ot the
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valuation v, of C(Y) corresponding to D. Namely, 2, is the class of the loop
pprocpopp, and Uy is defined as follows. For each subgroup H of P, with finite
index, let fy: Y#*— Y** be the integral closure of Y°* in C(Yy), and pp x be
the lifting of p, to a path on Yj(C) such that p, z(0)=by. Let Vj gz be the
unique connected component of fz'(Up,) containing pp x(1). Then there is a
unique prime divisor Dy of Y#* lying above D such that Y#*(C) NV, z+¢. It
is clear that {Dy} is a system of prime divisors of Y#' compatible with the
projections and hence corresponds to an extension vy(pp) of D to M. By con-
struction, the following assertion is obvious.

Proposition 4.2.1. *(2,(pp)) generates the inertia group of vp(pp) in
M|C(Y) in the sense of topological groups.

From now on, we shall suppress the p, and write as 2y, Up.

4.3. Write X"=X, X - X X(X;=X for 1 <i<n),and put =={1, 2, -+, n}.
For each finite non-empty subset JCZ, with cardinality m (1<m<n), call Y, ;
the projection of Y on I X;. In particular, Y=Y,=Y, 5. By Fadell and

ier
Neuwirth ([2] Th 1.2), Y(C)—Y, ;(C) is a locally trivial fiber space, and the
fiber above (& bj,) is

Z; = Fou-nX\{0; GEN}) (=Frimn-n(X")).

Since (Y, 7(€C))=(1) ([2] Prop. 1.3), the above fibering induces a short homo-
topy exact sequence of topological fundamental groups

1 = (Z)(C), ¥") = (Y,(C), b) = P,

(4.3.1) ,
= 72(Vy /(C),b') = Ppy—1,

where b'= II b;, b= T] b;, b=(b", ¥"”). In particular, when m=n—1 (=1), the
jer jET

kernel group in (4.3.1) is =(X(C)\{b,;(j € J)},b”), which is free of rank
2g+r+m—1, where g is the genus of X%,

Proposition 4.3.2. If (W, w)—>(Y,.;,b") is a connected finite etale covering
corresponding to HC P, ;=m(Y,, ;(C), b'), a subgroup with finite index, then the
fiber product (WXy,,,Y,, wXb) is a connected finite etale covering corresponding
to the inverse image of H in (Y ,(C), b).

Proof. The fiber product covering is obviously etale, and it is connected
because each fiber of Y—7Y, ; is connected. By the definition of the fiber pro-
duct, an element of =(Y,(C), b) belongs to the image of z,(WXy,,, Y,) (C),
wx b) if and only if its projection on (Y, ;(C), b") belongs to the image of
m(W(C), w) i.e., to H.

Denote by M, the field M for Y,, ;. Then M,-C(Y) is a Galois subexten-
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sion of M/C(Y).

Corollary 4.3.3. The normal subgroup of P, corresponding to M;-C(Y)
viai*: P,3Gal(M|C(y)) is the kernel of P,—P, induced by (4.3.1), and Gal
(M; C(Y)|C(Y)) is canonically isomorphic (via i*) to P,,.

4.4. Now let k be a subfield of C such that X is defined over k and the
points a,(1<j<r) are k-rational. Let Aut(C/k) be the group of all automor-
phisms o of C acting trivially on k. We can associate to each n>1 a group
homomorphism

¢ = ¢,: Aut(C/k) — Out P,

(Py=m,(Y,, b), Out: the outer automorphism group) as follows. For each &
Aut(C/k), let o’ be the unique automorphism of C(Y) which extends o and
which acts trivially on k(Y). Note that ¢’ leaves the discrete valuations vp
(DEBr(Y)) invariant. By the characterization of M given in Prop. 4.1.1 (i), &’
extends to an automorphism & of M. Identify Gal(M/C(Y)) with P, via i*
(Prop. 4.1.1 (ii)). Then & is unique up to elements of P,. The element of
Out P, represented by the automorphism g—ags~" of P, is well-defined by o,
which is the definition of ¢,(¢). For any non-empty subset JCZ={1, 2, -+, n},
the homomorphism ¢;=¢,, ; is defined using M, /k(Y) instead of M[k(Y).

Pm.;: Aut(ClR) > Out P, ; (m=|]]|).
We denote by X: Aut(C /k)-—)ZA * the cyclotomic character.

Proposition 4.4.1. (i) Let DEBr(Y) and o €Aut(C[k). Then ¢(c) zp~
B~ Isn-conjugacy). (i) Let Jc{1,2, -, n}, JE¢. Then (o) leaves the
kernel of P,— P, ; invariant, and induces on P,, ; the outer automorphism @, ;(c).

Proof. (i) Choose any prime element 7 of v, in k(Y), and put M*=
M (z"*;n>1). (We cannot always choose = such that M*=1»M.) Since M* is a
composite of M with a Galois extension of k(Y), & extends to an automorphism
&* of M*. Let v, be as in §4.2, and extend it to a valuation v} of M*. Note
that M*/C(Y) is also Galois, and call I* the inertia group of o3 in M*/C(Y).
The restriction to M gives a surjective homomorphism I*—1I onto the inertia
group of v, in M|C(Y). Moreover, both I* and I are topologically cyclic (the
residue characteristic being 0). Therefore, 2, extends to a generator 2§ of I*.
Now the valuation 55o5* " of M* is an extension of the valuation vyos™'=v, of
C(Y). Therefore, there exists s* €Gal(M*/C(Y)) such that vFos* T =ifos* T,
Comparison of inertia groups gives:

-1 -1
(%) o* gk ot = s* 2F° s*

with some o€ Z*, By applying the Kummer character
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Ke: Gal(M*|C(Y)) — Z(1) = lim p,

to both sides of (), noting that «.(23) is a generator of z (1), we obtain X(o)=q.
Therefore,

F2p 67t = s s,

if s€Gal(M/C(Y))=P, is the restriction of s*. This settles (i). The asser-
tion (ii) is obvious from the definitions.

4.5. Now we shall fix a prime number / and denote by P,, P, ; etc. the
maximal pro-/ quotient of P,, P, ;, etc. (i.e., the pro-/ completions of the cor-
responding topological fundamental groups). Then the passage to the pro-/
quotient P,—P, induces from ¢,, ¢, ; the representations @,, @, ; of Aut(C/k)
in Out P,, Out P,, ;, etc.

The second main result of this paper is the following

Theorem 2. Let X be a complete smooth absolutely irreducible curve
of genus g over a subfield k of C, and a,, -+, a, be r distinct k-rational points of X°%.
Let 1 be a prime number and @,(n=1,2, --+) be the representations of Aut(C|[R)
in Out P, defined from the data X=X*\{a, -+, a,}, via the outer action of
Aut(C|k) on P,=={"""'(F,, X). Then

Ker p, = Ker ., ,

if either g>1 and n+r=>3, or g=0 and n+r>5. In particular, if g>1 and r>1,
or g=0 and r>3, then

Ker ¢, = Ker ¢, .

Proof. Note first that ¢, ; is induced from ¢, by the canonical projection
P,—P, ;. In particular, ¢, , is a quotient representation of @,; hence Ker
P, Ker Py-1-

Now to prove the opposite inclusion, let o be any element of Ker ¢,_;. We
shall show that ¢,(o)EO0ut P, satisfies the assumptions of Theorem 1. Let
X;: Aut(C/k)—Z} be the l-cyclotomic character. Then by Prop. 4.4.1 (i) we
have

X ()

# Pu(0) Bp~2Y (~: P,-conjugacy) .

But since o EKer @,, o acts trivially on the abelianization of z{"°~/(X). If
r>2, this together with (§) gives X;(¢)=1. If g>1, then the determinant of
the action of ¢ on the abelianization of z{"°~!(X“*) is X,(¢); hence, again, X,(o)
=1. If g=0and <1, we may assume #>4 and hence also that o acts trivially
on P;, and hence also on

Ker(P; — P)) = zl"*~/(X—(r+2pts)) .

On the other hand, ¢ raises parabolic conjugacy classes to their X;(o)-th power.
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Therefore, X;(c)=1 in all cases. Therefore, by (#), the assumption (o1) of
Theorem 1 is satisfied.

To check (¢2), we may assume i=n. First, by Prop. 4.4.1 (ii), @,(o)
leaves N{" invariant. Secondly, to see that it acts trivially on N$”/N$”(2), con-
sider the projection P,—P, (,. Its testriction to N§” is a homomorphism onto
74"°~!(X, b,), induced from the natural homomorphism

771(X\ {bly ERE) bn—l}’ bn) - ”I(X) bn)

by pro-/ completion. Moreover, this homomorphism N{W—#3"°~(X, b,) com-
mutes with the action of o, and the kernel (being generated by loops around
by, -+, b,-,) is contained in N{’(2). Since @,(c)=1, o acts trivially on 4"~
(X,5,), and hence also on N{’/N{”(2). Therefore, (¢2) is also satisfied.

Therefore, by Theorem 1, @,(c)=1.
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