PRO-/ PURE BRAID GROUPS OF RIEMANN SURFACES AND GALOIS REPRESENTATIONS¹

To the memory of the late Professor Michio Kuga

YASUTAKA IHARA AND MASANOBU KANEKO

(Received October 30, 1990)

Introduction

Let X be a smooth irreducible algebraic curve of genus g over a field k of characteristic 0, and l be a prime number. For each $n=1, 2, \cdots$, consider the configuration space

$$Y_n = F_{0,n} X = \{(p_1, \dots, p_n) \in X^n; p_i \neq p_j \text{ for } i \neq j\}$$
.

Then the Galois group $Gal(\bar{k}/k)$ acts outerly on the pro-l fundamental group $P_n = \pi_1^{pro-l}(Y_n)$;

$$\varphi_n : \operatorname{Gal}(\overline{k}/k) \to \operatorname{Out} P_n$$
.

The main purpose of this paper is to prove that φ_n has the same kernel for all sufficiently large $n \ge n_0 = n_0(X/k, l)$ (Theorem 2, §4). For example, we can take $n_0=1$ if $g \ge 1$ and X is affine, $n_0=2$ if $g \ge 1$, and $n_0=4$ in all cases. This theorem is based on some group theoretic property of Out P_n (Theorem 1, §1).

The present work grew out of our previous work [7], [8] and [6].

1. The statement of Theorem 1

1.1. Let X^{cpt} be a compact Riemann surface of genus $g \ge 0$, and $X = X^{cpt} \setminus \{a_1, \dots, a_r\}$ $(r \ge 0)$ be the complement of r distinct points a_1, \dots, a_r in X^{cpt} . For each integer $n \ge 1$, consider the configuration space

$$Y_n = F_{0,n} X = \{(p_1, \dots, p_n) \in X^n; p_i \neq p_j \text{ for } i \neq j\}$$
,

and let $\pi_1(Y_n, b)$ be its fundamental group with a base point $b=(b_1, \dots, b_n)$. It is the pure braid group of X with n strands. For each i $(1 \le i \le n, n \ge 2)$, the projection

This work was supported by Grant-in-Aid for Scientific Research, The Ministry of Education, Science and Culture.

$$(1.1.1) Y_n \ni (p_1, \dots, p_n) \to (p_1, \dots, p_i, \dots, p_n) \in Y_{n-1}$$

is a locally trivial topological fibering (cf. [2], §1.2).

It induces a short homotopy exact sequence

$$(1.1.2) 1 \to \pi_1(X \setminus \{b_1, \dots, \check{b}_i, \dots, b_n\}, b_i) \to \pi_1(Y_n, b)$$

$$\to \pi_1(Y_{n-1}, (b_1, \dots, \check{b}_i, \dots, b_n)) \to 1,$$

because (i) the fiber of (1.1.1) above $(b_1, \dots, b_i, \dots, b_n)$ can be identified with $X \setminus \{b_1, \dots, b_i, \dots, b_n\}$ which is connected, and (ii) $\pi_2(Y_{n-1}) = \{1\}$ ([2], Prop. 1.3).

For each i $(1 \le i \le n)$, the group $\pi_1(X \setminus \{b_1, \dots, b_i, \dots, b_n\}, b_i)$ is generated by the elements $x_j^{(i)}, y_j^{(i)}, z_k^{(i)}$ $(1 \le j \le g, 1 \le k \le r+n, k \ne r+i)$ described by the loops in Fig. 1. These generators satisfy a single defining relation

$$(1.1.3) [x_1^{(i)}, y_1^{(i)}] \cdots [x_g^{(i)}, y_g^{(i)}] z_{r+n}^{(i)} \cdots z_{r+i}^{(i)} \cdots z_1^{(i)} = 1.$$

It is free of rank 2g+r+n-2. As is well-known, these elements $x_j^{(i)}, y_j^{(i)}, z_k^{(i)}$ for all i generate $\pi_1(Y_n, b)$ (with more relations than (1.1.3) for all i).

Figure 1

1.2. Now fix a prime number l, and pass to the pro-l completions. Call $N_n^{(i)}$, P_n , $P_{n-1}^{(i)} (\cong P_{n-1})$ the pro-l completions of the groups

$$(1.2.1) \quad \pi_1(X \setminus \{b_1, \dots, b_i, \dots, b_n\}, b_i), \, \pi_1(Y_n, b), \, \pi_1(Y_{n-1}, (b_1, \dots, b_i, \dots, b_n)),$$

respectively. Then since the leftmost group of (1.2.1) is free, the exact sequence

(1.1.2) induces that of pro-l groups

$$(1.2.2) 1 \rightarrow N_n^{(i)} \rightarrow P_n \rightarrow P_n^{(i)} \rightarrow 1$$

([1], Prop. 3; cf. also [6], Lemma 7.1.2). Call $N_n^{(i)}(2)$ the minimal closed normal subgroup of $N_n^{(i)}$ containing $[N_n^{(i)}, N_n^{(i)}]$ (the closure of the algebraic commutator) together with all the $z_k^{(i)}(1 \le k \le r+n, k \ne r+i)$. Here and in what follows, we shall use the same notation (e.g., $z_k^{(i)}$) for an element of a group and its image in the pro-l completion. The notation $N_n^{(i)}(2)$ refers to a filtration defined later (§3.2).

When i=n, we shall often suppress the superscript (i) and write as $N_n=N_n^{(n)}, x_i=x_j^{(n)}$, etc.

1.3. Now assume

$$n \ge 2, \quad \text{if} \quad g \ge 1 \quad \text{and} \quad r \ge 1, \quad \text{or} \quad g = 0 \quad \text{and} \quad r \ge 3,$$

$$(1.3.1) \qquad n \ge 3, \quad \text{if} \quad g \ge 1 \quad \text{and} \quad r = 0, \quad \text{or} \quad g = 0 \quad \text{and} \quad r = 2,$$

$$n \ge 4, \quad \text{if} \quad g = 0 \quad \text{and} \quad r = 1,$$

$$n \ge 5, \quad \text{if} \quad g = r = 0.$$

Our first main result is the following

Theorem 1. Let n be as in (1.3.1), and σ be an automorphism of P_n which stabilizes N_n and induces an inner automorphism of $P_{n-1} \simeq P_n/N_n$. If σ satisfies moreover the following conditions $(\sigma 1)$, $(\sigma 2)$, then σ itself is an inner automorphism.

- (\sigma1) $\sigma(z_k^{(i)}) \sim z_k^{(i)}$ (\sigma: P_n-conjugacy) for all $i, k \ (1 \le i \le n, \ 1 \le k \le r+n, k \ne r+i)$,
 - (σ 2) σ stabilizes $N_n^{(i)}$ and acts trivially on its quotient mod $N_n^{(i)}(2)$ $(1 \le i \le n)$.

Remark. We do not know whether our assumption (1.3.1) for n is the best possible; especially whether the theorem is still valid when $g \ge 2$, r=0, n=2.

2. Key lemmas for the proof of Theorem 1

2.1. The element $z=z_1^{(n)}$ will play a special role in the sequel. Note that the loop with base point b_n defining z (Fig. 1) is a "trip" around a_1 if r>0, but if r=0 it is a trip around b_1 . Our proof of Theorem 1 will be based on the following two key lemmas. Here and in what follows, if g_1, \dots, g_r are elements of a topological group $G, \langle g_1, \dots, g_r \rangle$ will denote the smallest closed subgroup of G containing g_1, \dots, g_r .

Lemma A. Let C be the centralizer of z in P_n . Then (i) $P_n = C \cdot N_n$, (ii) $C \cap N_n = \langle z \rangle$.

Thus, $C \hookrightarrow P_n$ is close to giving a splitting of the projection $P_n \to P_n/N_n$. Put

$$W = \{x_i, y_i (1 \le j \le g), z_k (2 \le k \le r + n - 2)\} \subset N_n$$
.

Note that $W \cup \{z\}$ is a set of free generators of N_n .

Lemma B. For each $w \in W$, there exists a subset $S = S_w \subset P_n$ such that

- (i) $S \subset N_n^{(n-1)}$,
- (ii) the centralizer of S in $N_n = N_n^{(n)}$ is $\langle w, z \rangle$.
- **2.2. Proof of Lemma A.** To check (i) it suffices to show that if w is one of the generators $x_j^{(i)}$, $y_j^{(i)}$, $z_k^{(i)}$ of P_n then wzw^{-1} is conjugate to z by an element of $\pi_1(X\setminus\{b_1,\dots,b_{n-1}\},b_n)$ ($\subset N_n$). The following explicit formula for wzw^{-1} proves its validity.

$$\begin{split} & wzw^{-1} = n(w) \ zn(w)^{-1} \ , \quad \text{where} \\ & n(x_j^{(n)}) = x_j^{(n)}, \ n(y_j^{(n)}) = y_j^{(n)} \quad (1 \leq j \leq g) \ , \\ & n(z_k^{(n)}) = z_k^{(n)} \quad (1 \leq k \leq r + n - 1) \ , \\ & n(z_1^{(i)}) = (z_{r+i}^{(n)} \ z_1^{(n)})^{-1} \ , \quad n(z_{r+n}^{(i)}) = z_{r+i}^{(n)} \quad (1 \leq i \leq n - 1) \ , \\ & n(w) = 1 \ , \quad \text{for all other } w. \end{split}$$

This settles the proof of (i). The statement (ii) is obvious, as z can be chosen to be one of the free generators of N_n .

2.3. Reducing Lemma B to Lemma B'. For each $w \in W$, call $\alpha(w)$

Figure 2

the element of

$$\pi_1(X \setminus \{b_1, \dots, b_{n-2}, b_n\}, b_{n-1}) (\subset N_n^{(n-1)})$$

defined by the loop described in Fig. 2.

It is clear that $\alpha(w)$ commutes with z and also with any $w' \in W$, $w' \neq w$.

Lemma B'. The centralizer of $\alpha(w)$ in $N_n = N_n^{(n)}$ is precisely $\langle W \setminus \{w\}, z \rangle$.

We shall reduce Lemma B to Lemma B'. Assume Lemma B', and set

$$S_w = \{\alpha(w'); w' \in W, w' \neq w\}$$
.

Then $S_w \subset N_n^{(n-1)}$, and

the centralizer of
$$S_w$$
 in $N_n = \bigcap_{\substack{w' \in W \\ w' \neq w}} \langle W \backslash \{w'\}, z \rangle$
$$= \langle w, z \rangle,$$

which implies Lemma B. The last equality is because $W \cup \{z\}$ is a set of free generators of N_n (see Cor. of Lemma 2.4.2, §2.4). Thus, Lemma B is reduced to Lemma B'.

2.4. Proof of Lemma B' We know that N_n is free on $W \cup \{z\}$. Let $\tau = \tau_w$ denote the automorphism of N_n defined by the outer $\alpha(w)$ -conjugation

$$\tau \colon \nu \to \alpha(w) \ \nu \ \alpha(w)^{-1} \quad (\nu \in N_n) \ .$$

We know that

$$au(w') = w', \quad w' \in W \setminus \{w\}$$
 $au(z) = z,$

and our task is to show that $N_n^{\tau} = \langle W \setminus \{w\}, z \rangle$ (N_n^{τ} : the τ -invariant elements of N_n ; the inclusion \supset is obvious). So, what we do is to write down $\tau(w)$ explicitly and, using the "difference" between $\tau(w)$ and w, to show that the τ -invariant elements of N_n cannot "contain" w.

First we prove the case $w=x_j$. (The case $w=y_j$ is essentially the same and will be omitted.)

The effect of τ on N_n is given by

$$\begin{split} \tau(x_j) &= x_j \, \Delta_j \, z_{r+n-1} \, \Delta_j^{-1} \quad (\Delta_j = y_j \, x_j^{-1} \, y_j^{-1} \, [x_{j+1}, y_{j+1}] \cdots [x_g, y_g]) \,, \\ \tau(w) &= w \quad (w \in W \setminus \{x_i\} \, \cup \, \{z\}) \,. \end{split}$$

Fix an isomorphism of the completed group algebra $Z_l[[N_n]]$ of N_n over the ring of l-adic integers Z_l and the noncommutative power series algebra $\Lambda = Z_l[[X_1, \dots, X_g, Y_1, \dots, Y_g, Z_1, \dots, Z_{r+n-2}]]_{n.c}$ over Z_l with 2g+r+n-2 indeterminant

minates such that

$$x_j \leftrightarrow 1 + X_j$$
, $y_j \leftrightarrow 1 + Y_j$, $z_k \leftrightarrow 1 + Z_k$.

Here, we regard Λ as being equipped with the graduation which assigns X_j , Y_j $(1 \le j \le g)$ degree 1 and $Z_k(1 \le k \le r+n-2)$ degree 2. Extend τ to an automorphism of Λ . For each $m \ge 1$, let I_m denote the ideal of Λ consisting of all power series whose lowest degree is greater than or equal to m. Then the effect of τ on I_1/I_3 is

$$\begin{split} \tau(X_j) &= X_j - \sum_{k=1}^g (X_k \ Y_k - Y_k \ X_k) - \sum_{k=1}^{r+n-2} Z_k \ , \\ \tau(X_i) &= X_i \ (i \neq j) \ , \quad \tau(Y_i) = \ Y_i \ (1 \leq i \leq g) \ , \\ \tau(Z_k) &= Z_k \ (1 \leq k \leq r+n-2) \ . \end{split}$$

We claim that for every m

$$\{f \in I_m/I_{m+2} | \tau(f) = f\} = \begin{cases} \text{homogeneous elements of degree } m \\ \text{not containing } X_j \end{cases}$$

$$\oplus \begin{cases} \text{homogeneous elements} \\ \text{of degree } m+1 \end{cases} .$$

The inclusion \supset is clear. Let $\{f_{\mu} | \mu \in M\}$ be the set of all monomials of degree m which contain X_j . (M is a finite set of indices.) It suffices to show that the elements $\tau(f_{\mu})-f_{\mu}$ ($\mu \in M$) are linearly independent over Z_l . To show this, we proceed by double induction on the invariants $a(f_{\mu})$ and $b(f_{\mu})$ defined as follows. We define $a(f_{\mu})$ to be the sum of degrees of indeterminates which do not lie left on the leftmost X_j in f_{μ} . The invariant $b(f_{\mu})$ is defined to be the number of $X_i Y_i$, $Y_i X_i$ ($i \neq j$) and $Z_k (1 \leq k \leq r + n - 2)$ which appear on the left of the leftmost X_j in f_{μ} . For example, when j = 1 and m = 6, $a(Y_1 Y_2 X_1 Z_1 X_1) = 4$ (recall that deg $(Z_k) = 2$), $a(X_2 X_1^2 Y_2^3) = 5$, $a(X_1 Z_1^2 Y_1) = 6$ etc., $b(Y_1 Y_2 X_1 Z_1 X_1) = 0$, $b(X_2 Y_2 X_1 Z_1 Y_1) = 1$, $b(Z_1 X_2 Y_2 X_2 X_1) = 3$ etc. Assume that a relation

$$\sum_{\mu \in \mathcal{M}} c_{\mu}(\tau(f_{\mu}) - f_{\mu}) = 0, \quad c_{\mu} \in \mathbf{Z}_{l},$$

holds. If $a(f_{\mu})=1$ and $b(f_{\mu})=0$, then $f_{\mu}=f'X_j$ where f' is of degree m-1 and does not contain X_j , X_i , Y_i , Y_i , X_i ($i \neq j$) nor Z_k ($1 \leq k \leq r+n-2$). For this we have

$$\tau(f_{\mu}) - f_{\mu} = -f' \{ \sum_{\substack{i=1 \ i \neq i}}^g (X_i Y_i - Y_i X_i) + \sum_{\substack{k=1 \ i \neq i}}^{r+n-2} Z_k \} - f' X_j Y_j + f' Y_j X_j .$$

Look at the term $f'Y_jX_j$. This can never be supplied by any other $\tau(f_{\mu'})-f_{\mu'}$ $(\mu' \in M)$. Hence we must have $c_{\mu}=0$ for such $\mu \in M$ that $a(f_{\mu})=1$ and $b(f_{\mu})=0$. Let a>1. Assume that $c_{\mu'}=0$ for all $\mu' \in M$ such that $a(f_{\mu'})< a$ and $b(f_{\mu'})=0$

0. Let f_{μ} be an element with $a(f_{\mu})=a$ and $b(f_{\mu})=0$. Then we can write $f_{\mu}=f'X_jf''$ where f' does not contain X_j , X_i , Y_i , Y_i , Y_i , X_i $(i \neq j)$ nor $Z_k(1 \leq k \leq r+n-2)$ and $\deg(f'')=a-1$. For this we have

$$\tau(f_{\mu})-f_{\mu} = -f' \, \left\{ \sum_{\stackrel{j=1}{i \neq j}}^g (X_i \, Y_i - Y_i \, X_i) + \sum_{\stackrel{j=1}{k=1}}^{r+n-2} \!\! Z_k \right\} \, f'' - f' \, X_j \, Y_j f'' + f' \, Y_j \, X_j f'' + \cdots \, .$$

The term $f' Y_j X_j f''$ cannot be cancelled out by any other terms in $\tau(f_\mu) - f_\mu$ itself. If $c_\mu \neq 0$, the term $c_\mu(f' Y_j X_j f'')$ should be cancelled out by some term in another $c_{\mu'}(\tau(f_{\mu'}) - f_{\mu'})$ ($\mu' \neq \mu$). But then $f_{\mu'}$ must be of the form $f' Y_j X_j f'''$ with $\deg(f''') = a - 2$. By the induction hypothesis we have $c_{\mu'} = 0$, hence $c_\mu = 0$. Thus we conclude by induction that $c_\mu = 0$ for all $\mu \in M$ such that $b(f_\mu) = 0$. Let $a \geq 1$, b > 0 and assume that $c_\mu = 0$ for all $\mu \in M$ such that either

$$a(f_{\mu}) > a$$
 and $b(f_{\mu}) = b-1$

or

$$a(f_{\mu}) = a-1$$
 and $b(f_{\mu}) = b$.

Let f_{μ} be an element such that $a(f_{\mu})=a$, $b(f_{\mu})=b$ and write $f_{\mu}=f'X_{j}f''$, $\deg(f'')=a-1$. Then

$$\tau(f_{\mu})-f_{\mu} = -f' \left\{ \sum_{\stackrel{j=1}{i\neq j}}^{g} (X_{i} Y_{i} - Y_{i} X_{i}) + \sum_{k=1}^{r+n-2} Z_{k} \right\} f'' - f' X_{j} Y_{j} f'' + f' Y_{j} X_{j} f'' + \cdots .$$

The term $f'Y_jX_jf''$ can appear in another $\tau(f_{\mu'})-f_{\mu'}$ only if $f_{\mu'}$ is of the form $f'Y_jX_jf''$ or $f_{\mu'}$ is such that $a(f_{\mu'})>a$ and $b(f_{\mu'})=b-1$. By the induction hypothesis, we conclude that $c_{\mu}=0$. This settles the proof of the claim (2.4.1).

Now if an element $\nu \in N_n$ is fixed by τ , then by the claim above we have

$$\nu-1 \in \mathbf{Z}_{l}[[X_{1}, \dots, X_{j}, \dots, X_{g}, Y_{1}, \dots, Y_{g}, Z_{1}, \dots, Z_{r+n-2}]]_{n,c}$$

In particular

$$\nu-1\in\Lambda(X_1-1)+\cdots+(\Lambda(X_j-1))+\cdots$$
.

By Lemma 2.4.2 below we conclude from this that

$$\nu \in \langle x_1, \cdots, \overset{\vee}{x}_j, \cdots, x_g, y_1, \cdots, y_g, z_1, \cdots, z_{r+n-2} \rangle$$

Lemma 2.4.2. Let F be a free pro-l group of rank $r \ge 2$ with free generators x_1, \dots, x_r and Λ be its completed group algebra over Z_l ; $\Lambda = Z_l[[F]]$. If $g \in F$ is such that

$$g-1 \in \Lambda(x_1-1)+\Lambda(x_2-1)+\cdots+\Lambda(x_s-1)$$

for some s $(1 \le s \le r)$, then $g \in \langle x_1, \dots, x_s \rangle$.

Proof. Let $H=\langle x_1, \dots, x_s \rangle$. Define $Z_t[[F/H]]$, a topological left Λ -module as follows. For each finite quotient $F \to \overline{F}$ of F, let \overline{H} denote the image of H. Consider $Z_t[[F/\overline{H}]]$ as a left \overline{F} -module, and take the limit $Z_t[[F/H]]:=\lim Z_t[[F/\overline{H}]]$ which is a left Λ -module. Let v be the element of $Z_t[[F/H]]$ corresponding to H. Then $x_iv=v$ i.e., $(x_i-1)v=0$ $(1 \le i \le s)$. Therefore,

$$(g-1)v = \left(\frac{\partial g}{\partial x_1}(x_1-1) + \dots + \frac{\partial g}{\partial x_n}(x_s-1)\right)v = 0.$$

Therefore, gv=v, and hence $g \in H$.

Corollary. Let F be as above. For $I \subset \{1, \dots, r\}$, define $F_I = \langle x_i | i \in I \rangle$. Then $F_I \cap F_J = F_{I \cap J}(I, J \subset \{1, \dots, r\})$.

This completes the proof in case of $w=x_i$.

As for $w=z_k$, we use the normal graduation of Λ , namely, every indeterminate has degree 1. The action of τ on N_n is given by

$$\tau(z) = \delta_k^{-1} z_k \, \delta_k \left(\delta_k = (z_{r+n-2} \cdots z_k)^{-1} z_{r+n-1} (z_{r+n-2} \cdots z_k) \right),$$

$$\tau(w) = w \quad (w \in W \cup \{z\} \setminus \{z_k\}).$$

Again extend τ to an automorphism of Λ . Let I be the augmentation ideal of Λ . Then τ keeps I^m and the effect of τ on I/I^3 is

$$\begin{split} &\tau(X_j) = X_j \;, \quad \tau(Y_j) = Y_j \quad (1 \leq j \leq g) \;, \\ &\tau(Z_j) = Z_j \quad (j \neq k) \;, \\ &\tau(Z_k) = Z_k + \sum_{i=1}^{r+n-2} (Z_j Z_k - Z_k Z_j) \;. \end{split}$$

As before it suffices to show that for every m

$$\{f \in I^m/I^{m+2} | \tau(f) = f\} = \left\{ egin{array}{l} \operatorname{homogeneous \ elements \ of \ degree \ } m \\ \operatorname{not \ containing} \ Z_k \end{array} \right\} \ \oplus \left\{ egin{array}{l} \operatorname{homogeneous \ elements} \\ \operatorname{of \ degree} \ m+1 \end{array} \right\}.$$

Let $\{f_{\mu} | \mu \in M\}$ be the set of all monomials of degree m which contain Z_k . We only need to show that the elements $\tau(f_{\mu}) - f_{\mu} (\mu \in M)$ are linearly independent over Z_l , and this will be established by single induction on the invariant $a(f_{\mu})$ of f_{μ} defined as the number of indeterminates which do not lie left on the leftmost Z_k in f_{μ} . The argument is similar to that in the first step (case $b(f_{\mu})=0$) of previous double induction in case $w=x_j$ and is omitted here.

3. Proof of Theorem 1

3.1. First, we need:

Claim 1. Each inner automorphism σ of P_n satisfies $(\sigma 1)$, $(\sigma 2)$.

Proof. It suffices to show that any inner automorphism of P_n acts trivially on $N_n^{(i)}/N_n^{(i)}(2)$. But P_n being generated by the $x_j^{(i)}, y_j^{(i)}, z_k^{(i)}$, it suffices to show that if w and w' belong to this set of generators of P_n and if $w \in N_n^{(i)}$ then $w'ww'^{-1}w^{-1}\in N_n^{(i)}(2)$. If either $w=x_j^{(i)}$ and $w'=y_j^{(k)}$ or $w=y_j^{(i)}$ and $w'=x_j^{(k)}(k \pm i), w'ww'^{-1}w^{-1}=[w', w]$ is given as follows and is contained in $N_n^{(i)}(2)$:

$$[y_{j}^{(k)}, x_{j}^{(i)}] = \begin{cases} (x_{j}^{(i)} y_{j}^{(i)^{-1}} z_{r+i-1}^{(i)} \cdots z_{r+k+1}^{(i)}) z_{r+k}^{(i)^{-1}} \\ \times (x_{j}^{(i)} y_{j}^{(i)^{-1}} z_{r+i-1}^{(i)} \cdots z_{r+k+1}^{(i)})^{-1} & (i > k) \\ (z_{r+k-1}^{(i)} \cdots z_{r+i+1}^{(i)} y_{j}^{(i)} x_{j}^{(i)^{-1}})^{-1} z_{r+k}^{(i)^{-1}} \\ \times (z_{r+k-1}^{(i)} \cdots z_{r+i+1}^{(i)} y_{j}^{(i)} x_{j}^{(i)^{-1}}) & (i < k) \end{cases}$$

$$[x_{j}^{(k)}, y_{j}^{(i)}] = \begin{cases} [z_{r+i-1}^{(i)} \cdots z_{r+k+1}^{(i)} z_{r+k}^{(i)^{-1}} (z_{r+i-1}^{(i)} \cdots z_{r+k+1}^{(i)}), x_{j}^{(i)}] \\ \times (y_{j}^{(i)} z_{r+i-1}^{(i)} \cdots z_{r+k+1}^{(i)}) z_{r+k}^{(i)} \\ \times (y_{j}^{(i)} z_{r+i-1}^{(i)} \cdots z_{r+k+1}^{(i)}) z_{r+k}^{(i)} \\ \times (y_{r+k-1}^{(i)} \cdots z_{r+i+1}^{(i)} x_{j}^{(i)} y_{j}^{(i)^{-1}})^{-1} & (i < k) \end{cases} .$$

In other cases, $w'ww'^{-1}$ is $N_n^{(i)}$ -conjugate to w and hence $[w', w] \in [N_n^{(i)}, N_n^{(i)}] \subset N_n^{(i)}$ (2).

Now let g, r, n be as (1.3.1), and σ be an automorphism of P_n which stabilizes N_n , induces an inner automorphism of $P_{n-1} \cong P_n/N_n$, and satisfies the conditions $(\sigma 1), (\sigma 2)$ of Theorem 1.

Claim 2. We may assume that (i) $\sigma z = z$, (ii) σ acts trivially on P_n/N_n .

Proof. Obvious, by $(\sigma 1)$, Claim 1 and Lemma A(i). Let W be the subset of N_n defined in §2.1.

Claim 3. For each $w \in W$, $\sigma w \in \langle w, z \rangle$.

Proof. Let $S=S_w$ be the subset of $N_n^{(n-1)}$ in Lemma B. Then by Lemma B, it suffices to show that $\sigma w \in N_n$ and that σw centralizes S. As $\sigma N_n = N_n$, the first assertion is obvious. To prove the second, take any $s \in S$. By Claim 2, $\sigma z = z$ and σ acts trivially mod N_n . As $\sigma z = z$, we have $\sigma C = C$. But $S \subset C$ (Lemma B); hence $\sigma(s) s^{-1} \in C \cap N_n = \langle z \rangle$. On the other hand, as σ stabilizes also $N_n^{(n-1)}$, and $S \subset N_n^{(n-1)}$, we have $\sigma(s) s^{-1} \in N_n^{(n-1)}$. But $N_n^{(n-1)} \cap \langle z \rangle = \{1\}$, as can be checked easily by considering the geometric meaning of the projection of z on $P_n/N_n^{(n-1)}$. (This is where we need the assumption $n \geq 3$ if r = 0, a part of (1.3.1).) Therefore, $\sigma s = s$ for all $s \in S$. Since w centralizes S, σw centralizes $\sigma S = S$. Therefore, $\sigma w \in \langle w, z \rangle$.

3.2. We shall use the invariance of the relation (1.1.3) by the action of σ , and the above Claim 3, to push σ nearer to 1. The method we employ is a pro-l Lie calculus. We shall suppress also the subscript n, and write often as

 $N=N_n=N_n^{(n)}$, etc. We shall first look at the action of σ on N. By $(\sigma 1)$, $(\sigma 2)$, we may put

$$\begin{split} \sigma x_j &= s_j x_j \,, \quad \sigma y_j = t_j y_j \quad (1 \leq j \leq g) \,, \\ \sigma z_k &= u_k z_k u_k^{-1} \quad (2 \leq k \leq r + n - 1) \,, \end{split}$$

with s_i , $t_i \in N(2)$ and $u_k \in N$ (cf. §2.2). By Claim 3,

$$(3.2.1) s_i \in \langle x_i, z \rangle, \quad t_i \in \langle y_i, z \rangle \quad (1 \le j \le g),$$

and

$$(3.2.2) u_k z_k u_k^{-1} \in \langle z_k, z \rangle (2 \leq k \leq r + n - 2).$$

From the last inclusion we shall deduce:

Claim 4.

$$u_k \in \langle z_k, z \rangle$$
 $(2 \leq k \leq r+n-2)$.

Proof. Consider the free differentiation w.r.t. the basis $x_1, \dots, x_g, y_1, \dots, y_g, z_1, \dots, z_{r+n-2}$. Then for $w \in W$, $w \neq z_k$,

$$0 = \frac{\partial}{\partial w} \left(u_{\mathbf{k}} \, \mathbf{z}_{\mathbf{k}} \, u_{\mathbf{k}}^{-1} \right) = \left(1 - u_{\mathbf{k}} \, \mathbf{z}_{\mathbf{k}} \, u_{\mathbf{k}}^{-1} \right) \, \frac{\partial u_{\mathbf{k}}}{\partial w} \, .$$

Since the element $1-u_k z_k u_k^{-1}$ in $\mathbf{Z}_l[[N]]$ is not a zero divisor ([5], Lemma 3.1), we have $\frac{\partial u_k}{\partial w} = 0$. From this and Lemma 2.4.2 we conclude that $u_k \in \langle z_k, z \rangle$.

Our next goal is to prove:

Claim 5. σ acts trivially on N (In other terms, $s_j = t_j = u_k = 1$, all j, k.).

Proof. Assume first that g>0. Let $\{N(m)\}_{m\geq 1}$ be the central filtration of the group $N=N(1)=N_n$ which was defined and studied in [8]. It is the filtration such that

- (i) the degrees of x_j and y_j $(1 \le j \le g)$ are 1 (i.e., $x_j, y_j \in N(1) \setminus N(2)$), and the degrees of $z_k (1 \le k \le r + n 1)$ are 2 $(z_j \in N(2) \setminus N(3))$,
- (ii) the degree of a commutator [x, y] is the sum of degrees of x and y. We have $[N(m), N(n)] \subset N(m+n)$ and, in particular, $\operatorname{gr}^m N := N(m)/N(m+1)$ is a \mathbb{Z}_l -module. Under the commutator operation, the \mathbb{Z}_l -module

$$L := \operatorname{gr} N = \bigoplus_{m \geq 1} \operatorname{gr}^m N$$

has a structure of graded Lie algebra over Z_l and it was shown in [8] that L is free Lie algebra generated by

$$X_j = x_j \mod N(2)$$
, $Y_j = y_j \mod N(2)$ $(1 \le j \le g)$

and

$$Z_k = z_k \mod N(3) \quad (1 \le k \le r + n - 2).$$

By the Magnus embedding

$$N \rightarrow \mathbf{Z}_{l}[[X_{1}, \cdots, X_{g}, Y_{1}, \cdots, Y_{g}, Z_{1}, \cdots, Z_{r+n-2}]]_{n,c} = \Lambda$$

of N into the non-commutative formal power series algebra $(x_j \mapsto 1 + X_j, y_j \mapsto 1 + Y_j, z_k \mapsto 1 + Z_k)$, N(m) is mapped into $1 + I_m$, where I_m is the ideal of Λ consisting of all power series whose lowest degree is at least $m (\deg(X_j) = \deg(Y_j) = 1, \deg(Z_j) = 2)$, and $\operatorname{gr}^m N$ is identified with the Z_l -module of homogeneous "Lie polynomials" of degree m. In particular $\bigcap_{m \geq 1} N(m) = 1$. Hence in order to prove Claim 5, it suffices to show that the inclusions

$$(\sharp_m)$$
 $s_j, t_j \in N(m+1) (1 \le j \le g), u_k \in N(m) (2 \le k \le r+n-1)$

hold for all $m \ge 1$. First, by the assumption (ii), (\sharp_1) holds. Suppose (\sharp_m) holds for some m and put

$$S_j = s_j \mod N(m+2)$$
, $T_j = t_j \mod N(m+2)$ $(1 \le j \le g)$
 $U_k = u_k \mod N(m+1)$ $(2 \le k \le r+n-1)$.

Then from (3.2.1) and Claim 4 we have

$$(3.2.3) S_{j} \in \langle X_{j}, Z_{1} \rangle, \quad T_{j} \in \langle Y_{j}, Z_{1} \rangle \quad (1 \leq j \leq g)$$

$$U_{k} \in \langle Z_{k}, Z_{1} \rangle \quad (2 \leq k \leq r + n - 2).$$

Here, $\langle X_j, Z_1 \rangle$ (resp. $\langle Y_j, Z_1 \rangle$, $\langle Z_k, Z_1 \rangle$) is the Lie subalgebra of L generated by X_j (resp. Y_j, Z_k) and Z_1 . By letting σ act on the relation

$$[x_1, y_1] \cdots [x_g, y_g] z_{r+n-1} \cdots z_2 z_1 = 1$$

and considering it modulo N(m+3), we get the following relation in L;

$$\sum_{j=1}^{g} ([S_{j}, Y_{j}] + [X_{j}, T_{j}]) + \sum_{k=2}^{r+n-1} [U_{k}, Z_{k}] = 0.$$

Write V for U_{r+n-1} . Since $Z_{r+n-1} = -\sum_{j=1}^{g} [X_j, Y_j] - \sum_{k=1}^{r+n-2} Z_k$ in gr² N, the above relation can be rewritten as

We first show that (\sharp_m) holds for some m with $m \ge 3$. Let m=1. Then by

(3.2.3) we have

$$S_j = a_j Z_1$$
, $T_j = b_j Z_1$ $(1 \le j \le g)$, $U_k = 0$ $(2 \le k \le r + n - 2)$,

and

$$V = \sum_{j=1}^{g} (c_j X_j + d_j Y_j)$$
 with $a_j, b_j, c_j, d_j \in \mathbf{Z}_l$.

Putting these into (3.2.4) and noting that the elements $[Z_1, Y_j]$, $[X_j, Z_1]$, $[X_k, [X_j, Y_j]]$, $[Y_k, [X_j, Y_j]]$ ($1 \le j, k \le g$) constitute a part of a \mathbb{Z}_l -basis in $\operatorname{gr}^3 N$, we conclude that $a_j = b_j = c_j = d_j = 0$; hence (\sharp_2) holds. Suppose m = 2. This time there exist by (3.2.3) $a_j, b_j, c_k, d_k \in \mathbb{Z}_l$ such that

$$\begin{split} S_j &= a_j[Z_{\rm l},X_j] \;, \quad T_j = b_j[Z_{\rm l},Y_j] \quad (1 \! \leq \! j \! \leq \! g) \\ U_k &= c_k Z_k \! + \! d_k Z_{\rm l} \quad (2 \! \leq \! k \! \leq \! r \! + \! n \! - \! 2) \;. \end{split}$$

Write $V = V_0 + \sum_{k=1}^{r+n-2} e_k Z_k$, where $e_k \in \mathbb{Z}_l$ and V_0 is a linear combinations of $[X_i, Y_k]$'s. Putting these into (3.2.4) we get

$$\sum_{j=1}^{g} (a_{j}[[Z_{1}, X_{j}], Y_{j}] + b_{j}[X_{j}, [Z_{1}, Y_{j}]]) + \sum_{k=2}^{r+n-2} d_{k}[Z_{1}, Z_{k}]$$

$$= [V_{0}, \sum_{j=1}^{g} [X_{j}, Y_{j}]] + [V_{0}, \sum_{k=1}^{r+n-2} Z_{k}] + [e_{1} Z_{1}, \sum_{j=1}^{g} [X_{j}, Y_{j}]]$$

$$+ [\sum_{k=2}^{r+n-2} e_{k} Z_{k}, \sum_{j=1}^{g} [X_{j}, Y_{j}]] + [\sum_{k=1}^{r+n-2} e_{k} Z_{k}, \sum_{k=1}^{r+n-2} Z_{k}]$$

Since each term except $[V_0, \sum_{j=1}^g [X_j, Y_j]]$ contains some Z_k $(1 \le k \le r + n - 2)$ and the elements $[[X_l, X_m], [X_j, Y_j]]$ $((l, m) \ne (j, j))$ constitute a part of Z_l -basis in $\operatorname{gr}^4 N$ whose Z_l -span never contains an element including Z_k , we must have $[V_0, \sum_{j=1}^g [X_j, Y_j]] = 0$. Hence $V_0 = f \sum_{j=1}^g [X_j, Y_j]$ with some $f \in Z_l$. By replacing u_{r+n-1} by $u_{r+n-1} \cdot z_{r+n-1}^f$ $(z_{r+n-1} = ([x_1, y_1] \cdots [x_g, y_g])^{-1} (z_{r+n-2} \cdots z_1)^{-1})$ we may assume that f = 0 (so $V_0 = 0$). Then the term $[\sum_{k=2}^{r+n-2} e_k Z_k, \sum_{j=1}^g [X_j, Y_j]]$ in the right hand side of (3.2.5), $[Z_k, [X_j, Y_j]]$ being a generator of $\operatorname{gr}^4 N$, must be zero and thus $e_k = 0$ for $2 \le k \le r + n - 2$. Comparing the remaining terms, we easily conclude that

$$a_j = b_j = d_k = e_1 \quad (1 \le j \le g, 2 \le k \le r + n - 2).$$

Hence, by replacing σ by $\operatorname{Int}(z_1^{-e_1}) \cdot \sigma$ (Int(g) is the inner automorphism by an element g), we may assume $e_1 = 0$, i.e., (\sharp_3) holds. When $m \ge 3$, Lemma 3.2.6 below shows that (\sharp_{m+1}) holds and by induction our proof of Claim 5 in case g > 0 is done.

Lemma 3.2.6. Let L be a free L ie algebra over Z_l with free generators $X_1, \dots, X_g, Y_1, \dots, Y_g, Z_1, \dots, Z_{r+n-2}$ equipped with a graduation such that $\deg(X_j) = \deg(Y_j) = 1 (1 \le j \le g)$ and $\deg(Z_k) = 2 (1 \le k \le r+n-2)$. Let $S_j \in \langle X_j, Z_1 \rangle$, $T_j \in \langle Y_j, Z_1 \rangle$ $(1 \le j \le g)$ be homogeneous elements of degree m+1 and $U_k \in \langle Z_k, Z_1 \rangle$ $(2 \le k \le r+n-2)$, $V \in L$ be homogeneous elements of degree $m \ge 3$. Suppose that these elements satisfy the relation

Then
$$S_j = T_j = U_k = V = 0 \ (1 \le j \le g, 2 \le k \le r + n - 2).$$

Proof. Our proof is essentially similar to that of Lemma 4.3.2 in [6]. It is easy to see that V=0 implies $S_j=T_j=V_k=0$. Suppose $V \neq 0$ and decompose V as $V=\sum_{\tau} V^{(\tau)}$ with $V^{(\tau)} \in L^{(\tau)}$, where $L^{(\tau)}$ consists of homogeneous elements of multidegree $\tau=(l_j,m_j,n_k)_{1\leq j\leq g,1\leq k\leq r+n-2}$ in $(X_j,Y_j,Z_k)_{1\leq j\leq g,1\leq k\leq r+n-2}$. Let $V^{(\tau_0)}$ be a component whose degree in Z_1 is as large as possible. Then the term $[V^{(\tau_0)},Z_1]$ from the RHS of (3.2.7) must be cancelled out by the term from the LHS. By the assumptions $S_j \in \langle X_j,Z_1\rangle$, $T_j \in \langle Y_j,Z_1\rangle$ and $U_k \in \langle Z_k,Z_1\rangle$, no two of the $[S_j,Y_j]$, $[X_j,T_j]$ and $[U_k,Z_k]$ have the term of same multidegree in common.

Case 1. $[V^{(\tau_0)}, Z_1]$ is cancelled out by some term from $[S_j, Y_j]$ or $[X_j, T_j]$. In this case $V^{(\tau_0)}$ belongs to the subalgebra $\langle X_j, Y_j, Z_1 \rangle$ and has degree at least 1 in each X_j, Y_j and Z_1 (because $m \geq 3$). Then the term $[V^{(\tau_0)}, [X_j, Y_j]]$ ($\neq 0$) from the RHS of (3.2.7) is of degree at least 2 both in X_j and Y_j , thus cannot appear in the LHS. Hence it must appear in $[V^{(\tau_1)}, Z_1]$ for some τ_1 . $V^{(\tau_1)}$ is in $\langle X_j, Y_j, Z_1 \rangle$ and of degree at least 3 both in X_j and Y_j . The degree in Z_1 of $V^{(\tau_1)}$ is less by 1 than that of $V^{(\tau_0)}$. Now consider $[V^{(\tau_1)}, [X_j, Y_j]]$ from the RHS, and so on. We finally get $V^{(\tau_k)}$ which is in $\langle X_j, Y_j \rangle$. But then $[V^{(\tau_k)}, [X_j, Y_j]]$ ($\neq 0$ because $m \geq 3$) cannot be cancelled out, contradiction.

Case 2. $[V^{(\tau_0)}, Z_1]$ is cancelled out by some term from $[U_k, Z_k]$. In this case $V^{(\tau_0)}$ belongs to $\langle Z_k, Z_1 \rangle$. As the degree of U_k is greater than 2, U_k is of degree at least 2 in Z_k . Thus the term $[V^{(\tau_0)}, [X_j, Y_j]]$ from the RHS of (3.2.7) cannot be cancelled out by any term from the LHS, hence it must be cancelled out by $[V^{(\tau_1)}, Z_k]$ or $[V^{(\tau_1)}, Z_1]$ for some τ_1 from the RHS. Consider the term $[V^{(\tau_1)}, [X_j, Y_j]]$ in the RHS. This is of degree 2 both in X_j and Y_j , hence must be cancelled out by some $[V^{(\tau_2)}, Z_k]$ or $[V^{(\tau_2)}, Z_1]$ from the RHS. Continuing these arguments we are lead to a contradiction as in Case 1. This settles the proof of Claim 5 when g>0.

Suppose g=0. Then $N=N_n$ is a free pro-l group of rank r+n-2 generated by $z_k (1 \le k \le r+n-1)$, $z_{r+n-1} \cdots z_2 z_1 = 1$. Recall that we have put

$$\sigma z_k = u_k z_k u_k^{-1}, \quad u_k \in N \quad (2 \le k \le r + n - 1) (\sigma z_1 = z_1)$$

and that by Claim 4 we have

$$(3.2.8) u_k \in \langle z_k, z_1 \rangle \quad (2 \leq k \leq r + n - 2).$$

In this case we use the filtrations by the lower central series of N. Let $\{N[m]\}_{m\geq 1}$ be the lower central series and put $L=\bigoplus_{m\geq 1}N[m]/N[m+1]$. Then L is a free Lie algebra over Z_l on $Z_1=z_1 \mod N[2], \cdots, Z_{r+n-2}=z_{r+n-2} \mod N[2]$ (cf. [4]). Let m be a positive integer satisfying $u_k \in N[m]$ for all k $(2 \leq k \leq r+n-1)$ and define $U_k=u_k \mod N[m+1]$. Then by (3.2.8) we have

$$(3.2.9) U_k \in \langle Z_k, Z_1 \rangle \quad (2 \leq k \leq r + n - 2).$$

The relation $z_{r+n-1} \cdots z_2 z_1 = 1$ applied by σ yields

$$[Z_2, U_2] + \cdots + [Z_{r+n-2}, U_{r+n-2}]$$

= $[Z_1 + Z_2 + \cdots + Z_{r+n-2}, U_{r+n-1}]$.

As in the case of g>0, this with (3.2.9) implies that we may assume $m\ge 2$. Then, by Lemma 4.3.2 in [6], of which proof is valid over \mathbf{Z}_l , we conclude that $u_k=1$ for all k hence Claim 5 for g=0.

Now let σ be an automorphism of P_n which satisfies the conditions of Theorem 1 and Claim 2. The final step of our proof of Theorem 1 is:

Claim 6. σ acts trivially on P_n .

Proof. Take any element α in P_n . First we claim that $\sigma(\alpha) \cdot \alpha^{-1}$ is conjugate in N_n to some l-adic power of z. When $\alpha \in C$, this is because $\sigma(\alpha) \cdot \alpha^{-1} \in C \cap N_n = \langle z \rangle$ (Lemma A(ii)). In general, α being written as $\alpha = nc$ with $n \in N_n$ and $c \in C$, we have $\sigma(\alpha) = n \cdot \sigma(c) = nz^k c = nz^k n^{-1} \alpha$ for some $k \in \mathbb{Z}_l$. Therefore, $\sigma(\alpha) \alpha^{-1}$ is conjugate in N_n to some l-adic power of z. Replacing z with $z_2 = z_2^{(n)}$ (this is the second place where we need the assumption $n \geq 3$ if r = 0 which ensure the existence of $z_2^{(n)}$) and C with the centralizer of $z_2^{(n)}$, and tracing the arguments as before under the assumption that σ acts trivially on N_n , we conclude that $\sigma(\alpha) \cdot \alpha^{-1}$ is conjugate in N_n also to some power of z_2 . If n+r > 3, this together with the fact that z and z_2 constitute free generators of N_n implies that $\sigma(\alpha) \cdot \alpha^{-1}$ must be the identity element. If n+r = 3, consider the relation

$$nz^k n^{-1} = n' z_2^{k'} n'^{-1} \mod N_n[3] (=[N_n, [N_n, N_n]])$$

By writing down this relation explicitly with free generators x_j , y_j $(1 \le j \le g)$ and $z(z_2 = ([x_1, y_1] \cdots [x_g, y_g])^{-1} z^{-1})$, we readily see that we must have k = k' = 0. Therefore $\sigma(\alpha) \cdot \alpha^{-1}$ must be the identity element.

4. Galois representations

4.1. We shall now give some applications to Galois representations. Let X^{ept} be any complete smooth irreducible algebraic curve over C, given together with r distinct C-rational points a_1, \dots, a_r ($r \ge 0$), and put $X = X^{ept} \setminus \{a_1, \dots, a_r\}$. As before, consider the configuration space

$$Y = Y_n = F_{0,n} X = \{(x_1, \dots, x_n) \in X^n; x_i + x_j (i + j)\}$$

choose a C-rational point $b=(b_1, \dots, b_n)$ of Y_n as base point, and look at the algebraic fundamental group $P=P_n=\hat{\pi}_1(Y_n,b)$, the profinite completion of the topological fundamental group $\pi_1(Y_n(C),b)$. For each open subgroup $H\subset P$, let $f_H: (Y_H,b_H)\to (Y,b)$ be the covering corresponding to H (unique up to \cong). For each pair (H,H') of subgroups of P with finite indices, and an element $g\in P$ with $H'\subset gHg^{-1}$, call $i_{H',H}(g)$ the unique projection $(Y_{H'},b_{H'})\to (Y_H,gb_H)$. Call M the union of $C(Y_H)$ (the function field) with respect to the embeddings $i_{H',H}^*(1): C(Y_H) \hookrightarrow C(Y'_H)$ (for $H' \subset H$), which is a Galois extension over C(Y) and for each $g\in P_n$, call $i^*(g)$ the element of Gal (M/C(Y)) defined by the system $\{i_{N,N}^*(g)\}_{N \lhd P_n}$.

Proposition 4.1.1. (i) M is a maximal Galois extension of $C(Y) = C((X^{cpt})^n)$ unramified outside the prime divisors

$$(4.1.2) \begin{cases} [a_s]_i = \{(x_1, \dots, x_n) \in (X^{cpt})^n; x_i = a_s\} & (1 \le i \le n, 1 \le s \le r) \\ \Delta_{ij} = \{(x_1, \dots, x_n) \in (X^{cpt})^n; x_i = x_j\} & (1 \le i, j \le n, i \ne j), \end{cases}$$

of $Y^{cpt} = (X^{cpt})^n$. (ii) The homomorphism $i^* : P_n \to Gal(M/C(y))$ is an isomorphism.

Proof. A theorem of Grauert-Remmert on unique extendability of partial finite coverings of normal analytic spaces, and GAGA (the generalized Riemann existence theorem, and GAGA for morphisms) [3], Exp. XII.

4.2. Call Br(Y) the set of all prime divisors of $Y^{ept} = (X^{ept})^n$ belonging to (4.1.2). For each $D \in Br(Y)$, choose a point $Q_D \in |D|$ (the support of D), an open neighborhood U_D of Q_D in $Y^{ept}(C)$, and a biholomorphic map $u_D : U_D \cong W^n$, where $W = \{w \in C, |w| < 1\}$. We require that $U_D \cap |D'| = \phi$ for any $D' \in Br(Y)$, $D' \neq D$, and that $U_D \cap |D|$ corresponds to $\{(w_1, \dots, w_n); w_1 = 0\}$ via u_D . Choose any path $p_D : I \to Y(C)$ such that $p_D(0) = b$ and $p_D(1) = Q'_D \in U_D - |D|$ (I = [0, 1]). Put $u_D(Q'_D) = (w'_1, \dots, w'_n)$, and let $c_D : I \to U_D - |D|$ be the loop, with base point Q'_D , defined by

$$u'_D(c_D(t)) = (w'_1 \exp(2\pi i t), w'_2, \dots, w'_n) \quad (t \in I).$$

Such a path p_D determines, on the one hand, an element $z_D = z_D(p_D)$ of $P_n = \hat{\pi}_1(Y_n, b)$, and on the other hand, an extension $\tilde{v}_D = \tilde{v}_D(p_D)$ to M of the

valuation v_D of C(Y) corresponding to D. Namely, z_D is the class of the loop $p_D^{-1} \circ c_D \circ p_D$, and \tilde{v}_D is defined as follows. For each subgroup H of P_n with finite index, let $f_H: Y_H^{cpt} \to Y^{cpt}$ be the integral closure of Y^{cpt} in $C(Y_H)$, and $p_{D,H}$ be the lifting of p_D to a path on $Y_H(C)$ such that $p_{D,H}(0) = b_H$. Let $V_{D,H}$ be the unique connected component of $f_H^{-1}(U_D)$ containing $p_{D,H}(1)$. Then there is a unique prime divisor D_H of Y_H^{cpt} lying above D such that $Y_H^{cpt}(C) \cap V_{D,H} \neq \phi$. It is clear that $\{D_H\}_H$ is a system of prime divisors of Y_H^{cpt} compatible with the projections and hence corresponds to an extension $\tilde{v}_D(p_D)$ of D to M. By construction, the following assertion is obvious.

Proposition 4.2.1. $i^*(z_D(p_D))$ generates the inertia group of $\tilde{v}_D(p_D)$ in M/C(Y) in the sense of topological groups.

From now on, we shall suppress the p_D and write as z_D , \tilde{v}_D .

4.3. Write $X^n = X_1 \times \cdots \times X_n (X_i = X \text{ for } 1 \le i \le n)$, and put $\Sigma = \{1, 2, \dots, n\}$. For each finite non-empty subset $J \subset \Sigma$ with cardinality m $(1 \le m \le n)$, call $Y_{m,J}$ the projection of Y on $\prod_{i \in J} X_i$. In particular, $Y = Y_n = Y_{n,\Sigma}$. By Fadell and Neuwirth ([2] Th 1.2), $Y(C) \to Y_{m,J}(C)$ is a locally trivial fiber space, and the fiber above (b_i, \dots, b_{j_m}) is

$$Z_J = F_{0,n-m}(X \setminus \{b_i(j \in J)\}) \quad (\approx F_{r+m,n-m}(X^{cpt})).$$

Since $\pi_2(Y_{m,J}(C))=(1)$ ([2] Prop. 1.3), the above fibering induces a short homotopy exact sequence of topological fundamental groups

$$(4.3.1) 1 \rightarrow \pi_1(Z_J(\mathbf{C}), b'') \rightarrow \pi_1(Y_n(\mathbf{C}), b) = P_n \rightarrow \pi_1(Y_{m,J}(\mathbf{C}), b') = P_{m,J} \rightarrow 1,$$

where $b' = \prod_{j \in J} b_j$, $b'' = \prod_{j \notin J} b_j$, b = (b', b''). In particular, when m = n - 1 (≥ 1), the kernel group in (4.3.1) is $\pi_1(X(C) \setminus \{b_j (j \in J)\}, b'')$, which is free of rank 2g + r + m - 1, where g is the genus of X^{cpt} .

Proposition 4.3.2. If $(W, w) \rightarrow (Y_{m,J}, b')$ is a connected finite etale covering corresponding to $H \subset P_{m,J} = \pi_1(Y_{m,J}(C), b')$, a subgroup with finite index, then the fiber product $(W \times_{Y_{m,J}} Y_n, w \times b)$ is a connected finite etale covering corresponding to the inverse image of H in $\pi_1(Y_n(C), b)$.

Proof. The fiber product covering is obviously etale, and it is connected because each fiber of $Y \rightarrow Y_{n,J}$ is connected. By the definition of the fiber product, an element of $\pi_1(Y_n(C), b)$ belongs to the image of $\pi_1((W \times_{Y_{m,J}} Y_n) (C), w \times b)$ if and only if its projection on $\pi_1(Y_{m,J}(C), b')$ belongs to the image of $\pi_1(W(C), w)$ i.e., to H.

Denote by M_J the field M for $Y_{m,J}$. Then $M_J \cdot C(Y)$ is a Galois subexten-

sion of $M/\mathbb{C}(Y)$.

Corollary 4.3.3. The normal subgroup of P_n corresponding to $M_J \cdot C(Y)$ via $i^* \colon P_n \cong \operatorname{Gal}(M/C(y))$ is the kernel of $P_n \to P_m$ induced by (4.3.1), and $\operatorname{Gal}(M_J C(Y)/C(Y))$ is canonically isomorphic (via i^*) to P_m .

4.4. Now let k be a subfield of C such that X is defined over k and the points $a_j(1 \le j \le r)$ are k-rational. Let $\operatorname{Aut}(C/k)$ be the group of all automorphisms σ of C acting trivially on k. We can associate to each $n \ge 1$ a group homomorphism

$$\varphi = \varphi_n : \operatorname{Aut}(C/k) \to \operatorname{Out} P_n$$

 $(P_n = \hat{\pi}_1(Y_n, b))$, Out: the outer automorphism group) as follows. For each $\sigma \in \operatorname{Aut}(C/k)$, let σ' be the unique automorphism of C(Y) which extends σ and which acts trivially on k(Y). Note that σ' leaves the discrete valuations v_D $(D \in Br(Y))$ invariant. By the characterization of M given in Prop. 4.1.1 (i), σ' extends to an automorphism σ of M. Identify $\operatorname{Gal}(M/C(Y))$ with P_n via i^* (Prop. 4.1.1 (ii)). Then σ is unique up to elements of P_n . The element of Out P_n represented by the automorphism $g \to \sigma g \sigma^{-1}$ of P_n is well-defined by σ , which is the definition of $\varphi_n(\sigma)$. For any non-empty subset $J \subset \Sigma = \{1, 2, \dots, n\}$, the homomorphism $\varphi_J = \varphi_{m,J}$ is defined using $M_J/k(Y_J)$ instead of M/k(Y).

$$\varphi_{m,J}$$
: Aut $(C/k) \to \text{Out } P_{m,J} \quad (m = |J|)$.

We denote by χ : Aut(C/k) $\rightarrow \hat{Z}^{\times}$ the cyclotomic character.

Proposition 4.4.1. (i) Let $D \in Br(Y)$ and $\sigma \in Aut(C/k)$. Then $\varphi(\sigma) z_D \sim z_D^{\chi(\sigma)}(\sim: \hat{P}_n\text{-conjugacy})$. (ii) Let $J \subset \{1, 2, \dots, n\}$, $J \neq \phi$. Then $\varphi(\sigma)$ leaves the kernel of $P_n \rightarrow P_{m,J}$ invariant, and induces on $P_{m,J}$ the outer automorphism $\varphi_{m,J}(\sigma)$.

Proof. (i) Choose any prime element π of v_D in k(Y), and put $M^*=M(\pi^{V_n};n\geq 1)$. (We cannot always choose π such that $M^*=M$.) Since M^* is a composite of M with a Galois extension of k(Y), σ extends to an automorphism σ^* of M^* . Let \tilde{v}_D be as in §4.2, and extend it to a valuation \tilde{v}_D^* of M^* . Note that $M^*/C(Y)$ is also Galois, and call I^* the inertia group of \tilde{v}_D^* in $M^*/C(Y)$. The restriction to M gives a surjective homomorphism $I^* \to I$ onto the inertia group of \tilde{v}_D in M/C(Y). Moreover, both I^* and I are topologically cyclic (the residue characteristic being 0). Therefore, z_D extends to a generator z_D^* of I^* . Now the valuation $\tilde{v}_D^* \circ \sigma^{*^{-1}}$ of M^* is an extension of the valuation $v_D \circ \sigma^{-1} = v_D$ of C(Y). Therefore, there exists $s^* \in \operatorname{Gal}(M^*/C(Y))$ such that $\tilde{v}_D^* \circ \sigma^{*^{-1}} = \tilde{v}_D^* \circ s^{*^{-1}}$. Comparison of inertia groups gives:

(*)
$$\sigma^* z_D^* \sigma^{*^{-1}} = s^* z_D^{*\alpha} s^{*^{-1}}$$

with some $\alpha \in \hat{\mathbf{Z}}^{\times}$. By applying the Kummer character

$$\kappa_{\pi} \colon \operatorname{Gal}(M^*/\mathbb{C}(Y)) \to \hat{\mathbb{Z}}(1) = \lim_{\longleftarrow} \mu_{\pi}$$

to both sides of (*), noting that $\kappa_{\pi}(z_{D}^{*})$ is a generator of $\hat{Z}(1)$, we obtain $\mathcal{X}(\sigma) = \alpha$. Therefore,

$$\tilde{\sigma}z_D \tilde{\sigma}^{-1} = sz_D^{\chi(\sigma)} s^{-1}$$
,

if $s \in Gal(M/C(Y)) = P_n$ is the restriction of s^* . This settles (i). The assertion (ii) is obvious from the definitions.

4.5. Now we shall fix a prime number l and denote by P_n , $P_{m,J}$ etc. the maximal pro-l quotient of P_n , $P_{m,J}$, etc. (i.e., the pro-l completions of the corresponding topological fundamental groups). Then the passage to the pro-l quotient $P_n \rightarrow P_n$ induces from φ_n , $\varphi_{m,J}$ the representations φ_n , $\varphi_{m,J}$ of $\operatorname{Aut}(C/k)$ in $\operatorname{Out} P_n$, $\operatorname{Out} P_{m,J}$, etc.

The second main result of this paper is the following

Theorem 2. Let X^{cpt} be a complete smooth absolutely irreducible curve of genus g over a subfield k of C, and a_1, \dots, a_r be r distinct k-rational points of X^{cpt} . Let l be a prime number and $\varphi_n(n=1,2,\dots)$ be the representations of $\operatorname{Aut}(C/k)$ in $\operatorname{Out} P_n$ defined from the data $X=X^{cpt}\setminus\{a_1,\dots,a_r\}$, via the outer action of $\operatorname{Aut}(C/k)$ on $P_n=\pi_1^{pro-1}(F_{0,n}X)$. Then

$$\operatorname{Ker} \varphi_n = \operatorname{Ker} \varphi_{n-1},$$

if either $g \ge 1$ and $n+r \ge 3$, or g=0 and $n+r \ge 5$. In particular, if $g \ge 1$ and $r \ge 1$, or g=0 and $r \ge 3$, then

$$\operatorname{Ker} \varphi_n = \operatorname{Ker} \varphi_1$$
.

Proof. Note first that $\varphi_{m,J}$ is induced from φ_n by the canonical projection $P_n \to P_{m,J}$. In particular, φ_{n-1} is a quotient representation of φ_n ; hence Ker $\varphi_n \subset \text{Ker } \varphi_{n-1}$.

Now to prove the opposite inclusion, let σ be any element of Ker φ_{n-1} . We shall show that $\varphi_n(\sigma) \in \text{Out } P_n$ satisfies the assumptions of Theorem 1. Let χ_l : Aut $(C/k) \to Z_l^{\times}$ be the l-cyclotomic character. Then by Prop. 4.4.1 (i) we have

(#)
$$\varphi_{n}(\sigma) z_{D} \sim z_{D}^{\chi_{l}(\sigma)} (\sim: P_{n}\text{-conjugacy}).$$

But since $\sigma \in \text{Ker } \varphi_1$, σ acts trivially on the abelianization of $\pi_1^{pro-l}(X)$. If $r \ge 2$, this together with (\sharp) gives $\chi_l(\sigma) = 1$. If $g \ge 1$, then the determinant of the action of σ on the abelianization of $\pi_1^{pro-l}(X^{cpt})$ is $\chi_l(\sigma)$; hence, again, $\chi_l(\sigma) = 1$. If g = 0 and $r \le 1$, we may assume $n \ge 4$ and hence also that σ acts trivially on P_3 , and hence also on

$$Ker(P_3 \to P_2) = \pi_1^{pro-l}(X - (r+2pts))$$
.

On the other hand, σ raises parabolic conjugacy classes to their $\chi_l(\sigma)$ -th power.

Therefore, $\chi_l(\sigma)=1$ in all cases. Therefore, by (#), the assumption ($\sigma 1$) of Theorem 1 is satisfied.

To check (σ 2), we may assume i=n. First, by Prop. 4.4.1 (ii), $\varphi_n(\sigma)$ leaves $N_n^{(n)}$ invariant. Secondly, to see that it acts trivially on $N_n^{(n)}/N_n^{(n)}(2)$, consider the projection $P_n \rightarrow P_{1,(n)}$. Its restriction to $N_n^{(n)}$ is a homomorphism onto $\pi_1^{pro-l}(X, b_n)$, induced from the natural homomorphism

$$\pi_1(X \setminus \{b_1, \dots, b_{n-1}\}, b_n) \rightarrow \pi_1(X, b_n)$$

by pro-l completion. Moreover, this homomorphism $N_n^{(n)} \to \pi_1^{pro-l}(X, b_n)$ commutes with the action of σ , and the kernel (being generated by loops around b_1, \dots, b_{n-1}) is contained in $N_n^{(n)}(2)$. Since $\varphi_l(\sigma)=1$, σ acts trivially on $\pi_1^{pro-l}(X, b_n)$, and hence also on $N_n^{(n)}/N_n^{(n)}(2)$. Therefore, $(\sigma 2)$ is also satisfied. Therefore, by Theorem 1, $\varphi_n(\sigma)=1$.

References

- [1] M.P. Anderson: Exactness properties of profinite functors, Topology 13 (1974), 229-239.
- [2] J. Birman: Braids, links, and mapping class groups, Ann. of Math. Studies 82 (1975), Princeton Univ. Press.
- [3] A. Grothendieck: Séminaire de Géométrie Algébrique 1, Rêvetements étale et groupe fondamental, Lecture Notes in Math. 226 Springer, Berlin 1971.
- [4] Y. Ihara: Profinite braid groups, Galois representations and complex multiplications, Ann. of Math. 123 (1986), 43-106.
- [5] —: On Galois representations arising from towers of coverings of $P^1 \setminus \{0, 1, \infty\}$, Invent. Math. 86 (1986), 427–459.
- [6] ——: Automorphisms of pure sphere braid groups and Galois representations, The Grothendieck Festschrift, Vol 2. Progress in Mathematics, Vol 87. Birkhäuser, Basel (1991), 353-373.
- [7] M. Kaneko: Some results on pro-l fundamental groups and braid groups of punctured Riemann surfaces and their application to Galois representations, Doctoral Thesis (1988), The University of Tokyo.
- [8] ——: Certain automorphism groups of pro-l fundamental groups of punctured Riemann surfaces, J. Fac. Sci., Univ. Tokyo 36 (1989), 363-372.

Yasutaka IHARA Research Institute for Mathematical Sciences Kyoto University Kyoto, Japan

Masanobu KANEKO Faculty of Engineering and Design Kyoto Institute of Technology Matsugasaki, Kyoto, Japan