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Certain automorphism groups of pro-l fundamental groups
of punctured Riemann surfaces®

By Masanobu KANEKO

{Communicated by Y. Ihara)

Introduction.

In this paper we present some results on certain automorphism
groups of pro-I fundamental groups of punctured Riemann surfaces.

Let I be a prime, g>1, >0 be integers and G=G,, be the pro-l
completion of the fundamental group of Riemann surface of genus g
with r-points deleted. Assume r>1. Then G is a pro-l free group of
rank 2g+r-—1 having a standard presentation:

G=

<xl; Lgy ***y wZa

[xl’ $,+1][$2, xv+2] Tt [xm mZa]zl M Z,=1> .
iyttt Ry pro-1

We give G a central filtration {G(m)},-: such that the elements
X, -+, T, are of degree 1, the elements z, ---, 2, are of degree 2 and
generally the degree of a commutator [z, ¥] is the sum of degrees of z
and y. For this filtration let grG= 6291G(m)/G(m+1). Then, by a standard

method, grG turns out to be a free Lie algebra generated by the classes
of @, -+, 2y, 2, -*,2,. By using this we first establish a ‘“successive
approximation lemma” to construct automorphisms of G. Then we study
some basic properties of the subgroup

IF'=F,,={oe Aut G| 25~2z%, Ja;€ ZF, 1<5<r}

of the automorphism group of G. Such type of groups arise naturally
in the context of “large Galois representations” (cf. [2] [3]). These
studies are viewed as a continuation of our previous study [2] in which
we treated exclusively the case of #=0. A new ingredient is the filtra-
tion of G explained above. The author owes the idea of introducing
such filtration to study the group I” to Professor Takayuki Oda. It seems

*) This paper is a part of the author’s doctoral dissertation submitted to the University
of Tokyo (1988).
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that the lower central series used in [2] does not work well to study /7
when r>2.
As a consequence of these studies, we establish the following

THEOREM. Suppose r>s>0. The naturally induced homomorphism

Fﬂa‘? FV’U
18 surjective.

This is a pro-l analogue of the classical theorem of De~hn-Nielsen.
We can derive from this a result on conjugacy classes of I, ,/Int G as
in [2].

The author would like to express his sincere gratitude to Professors
Y. Thara and Takayuki Oda for their helpful comments and advice
without which this work would not be completed at all.

1. Filtration of the fundamental group and Lie algebra.

We fix a prime number ! throughout the paper. Let g and r be
two integers greater than or equal to 1. We denote by G, , the pro-l
completion of the fundamental group of r-punctured Riemann surface
of genus g,

L1y Xgy * v+, Ly
Gv,r=<

21ttty Ry

[xl’ x!H-l][x?’ xﬂ+2] tt [ﬂ’;‘,, xza]zl tee z7:1> .
pro-1i

We fix ¢ and r throughout the sections 1,2 and 3, so we write G
for G,, injthese sections. In this section we define a certain central
filtration of G and study its associated Lie algebra.

Let N=N,, be the closed subgroup of G normally generated by the
parabolic elements z,, ---,2,. For each m>1, we define inductively a
subset X, of the set of all closed normal subgroups of G as follows:

21={G}, 22:{[G: G]’ N}r
Z’m:{[Hu H]]I H,e 2:’; H,G Zj, ’i—{—J:m} (m23).

Here, [, ] denotes the closure of algebraic commutator. Then the sequence
{G(m)}ns: of closed normal subgroups of G is defined by putting

G(m)=the minimal closed normal subgroup of G containing all
elements in X,.
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It is easy to check that the sequence {G(m)}.-, has the properties
G=G1)DG2) > ---DGm)DGm+1)>D---
and
[G(m), Gn)]CG(m+n) (m, n>1).

In particular, we have G(m+1) D[G, G(m)]1D[G(m), G(m))], i.e., the quotient
gr"G=G(m)/G(m+1) is abelian, hence a Z,-module.

ProposITION 1.  Equipped with the bracket operator [, ], the Z-module
grG= @ gr"G is a free Lie algebra over Z, generated by the elements x;
>1

m=>

mod G(2) (1<i<2g) and z; mod G8) (1<j<r—1). The module gr G
18 a finitely generated free Z-module whose rank p(m) is given by the
Sormula

T (1—t™)etm =1—2gt — (r—1)2.
m=1

Proor. As was pointed out by J. Labute in an abstract case ([4,
Proposition 1]), this can be shown by a standard argument which, in the
case of lower central series and pro-[, was indicated in 3, p. 58]. Likewise,
the point is to show that there exists a representation of the Lie algebra
grG into the free associative Z-algebra generated by 2g+4r—1 elements
X, -, Xy, Zy, -+, Z,_,, which maps @, to X; (1<i<2¢) and z; to Z;
(1<j<r—1). Here, we regard the associative algebra as given the
graduation which assign X; degree 1 and Z; degree 2. Such a representa-
tion is obtained by the Magnus embedding

G — Zl[[le M) XZm Zlv ct 0y Zr~1]]n.c=/1

of G into the non-commutative formal power series algebra (x;—1+X,,
2;—1+Z;). Here again the degree of each X; (1<¢<2g) is 1 and that
of each Z; (1<j<r—1) is 2. Let I, be the ideal of A consisting of all
power series whose lowest degree is greater than or equal to m. Then
G(m) is mapped into 1+, (m>1) and we can associate to each element
of gr"G a homogeneous polynomial of degree m in X, ---, X3, Zy, - -+, Z,_;
(deg(X,) =1, deg(Z;)=2). This gives the desired representation of grG.
Calculation of the rank is also carried out in the similar manner as that

in[7. B
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2. Filtration of ‘‘braid type’’ automorphism group.
Put
F=r,,={cc AutG,,| 2~z%, 3a;€ Z7, 1<5<r},

where ~ denotes conjugacy in G=G,,,. Since each element in I stabilizes
N=N,, I acts on G/G(2)=Z¥. Taking the class of z; (1<i<2¢g) in
G/G(2) as coordinates, we get a representation

i:I'—> GL(2g; Z).

PROPOSITION 2. The representation i induces an exact sequence

1 () — [ 2568295 2) —> 1,

where I'(1)={ce '] 23-27'€ G(2), 1<i<2g} and

0 '—19
GS,(2g; Z,):{AEGL(Zg; Z,)('AJ,A=MA)J,. 1(4) € Z7, Jg=< L o )}

Moreover, for o€ I, we have 2i~z:7) (1<j<r).

Proor. The fact that the image of 1 is contained in GS,(2g; Z)
and the relation zj~2{%“’ are easily seen by a calculation modulo G(3)
of the effect of ¢ on the relation

(%1, %g41][F2, Bgia] + -+ [X, Top)os -+ - 2, =1.

The crucial part is to show that the image of 1 coincides with GS,(2¢9; Z).
As in the proof of Proposition 1 in [2], the essential tool for that is the
“guccessive approximation lemma” presented below. Once established
the lemma, the proof of Proposition 2 is totally the same as that of

Proposition 1 in [2]. W
For A € GS,(2g; Z,), let a; denote the i-th column vector of A (1<1<2g)
and x% denote wfuxs ... wyei, where a;="(ay, g, -+ -, Ggps) € Z7.

LEMMA 3 (Successive approximation). Let m>1 and A=(a;)1<i<s, €
GS,(29; Z;). Suppose the elements s{™, - -, s’ € G(2) and ™, .-, t™MeG
satisfy a congruence
(ha)  [si™xs, simiaton] - oo [, szt - it =1

mod G(m+2).



Pro-l fundamental groups of punctured Riemann surfaces 367

Then, there exist s, ---,8,€G(2) and t,, ---,t,€ G such that

s;=si™ mod Gim+1) (1<1<2g),
t=t™ mod G(m) (1<5<r),
and

[s:x°1, 8, 1 x%0+1] - - « [8,x%, sy x°u b2yt - - - L2877 =1.

Proor. The proof is similar to that of Lemma 1 in [2]. So consult
[2] as for the detail of the following calculation. Now, it suffices to
prove that there exist s{**"=s{™ mod G(m+1) (1<i<2g) and t"*V=t™
mod G(m) (1<j<r) satisfying the next higher congruence (},.,,). Put
sim=Ss(™ with S;€ G(m+1) (1<i<2¢) and t"*"=Tg™ with T;€ G(m)
(1<j<7r). We shall show that we can choose S; and 7'; suitably so that
si™P (1<1<2g) and t{~*" (1<j<r) satisfy the congruence ({,.,). By
the same calculation as in [2], we obtain

[simthxe, simibxte+i]=[x%, S, 1[S;, x e+ ][si™x%, s{™x%+] mod G(m+3),
tm Iz T = [Ty, 2™zt mod G(m+3).

Put

-1 -1
p=[si"x", gMx%41] - - - [8{"x%, s ] X UM ™ - EM2 € Gm+-2).

Then the left hand side of (#,., is congruent modulo G(m+3) to
g r
.0 * iI;II [xaiy Sy+€][siy x“"*"‘] ‘ jl;[;. [Tﬁ z.‘f]'

Sinece z; mod G(2) (1<7<2g) and z;mod G(8) (1<j<r~—1) are the generators
of grG and since A is invertible, we have

grHiG= zl [x mod G(2), gr="1G+ 3. [gr"G, %+ mod G(2)]
+ ;g‘,:[gr'”G, 2;mod G(3)].
Therefore, we can choose S,, ---,S,,, T4, - -+, T, such that the congruence
o7'= T [x% S, JSe x4 1 [Th 2] mod G(m+9)

holds. (Actually we can take T.=1.) Then, s{*"=8;s{™ (1<1<2¢) and
tmtv=Ta™ (1<j<r) satisfy the congruence (}...). I
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For m>1, put
T, m)=(m)={o€ I'| 23-27€ Gim+1) (1<i<2g), 2 ~ 2z, (1<j<r)}

where ~~ denotes conjugacy by an element in G(m). Let f, denote the
following surjective Z-linear homomorphism

Fon 1 (g™ @) X (gr™G)T D (8i)12icap X () 1< i<
> 3 (1B g0l 50 Bl + 5 [ 2,1€ 97776

where Z,=x; mod G(2), Z;=z, mod G(3). Assume m+#2. We can define
an injective homomorphism from I'(m)/I'(m+1) to {gr™"'G)¥ X (gr"G)" by
0 > (B 07 1<ice X (i) 1252

where zi=t;2;t;', t,€ G(m) (1<j<r). At this point we use, to confirm
that this is well defined, the fact that the centralizer of z; in G is {z,),
the (topologically) cyclic group generated by z; (1<j<7). (See [3, p.55])

PROPOSITION 4. (1) [['(m), [(m)]cl(m+n) m,n>1. (2) Assume
m+2. The Z-module ['(m)/[’(m+1) is identified with the kernel of f,.

COROLLARY. For m>1, m=+2, ['(m)/["(m-+1) is a finitely generated
free Z-module of rank 2gp(m-+1)+ro(m)—p(m+2) (o(m)=rank(grG)).

Proor. The proof is essentially the same as that of Theorem 1 in
[2]. Successive approximation (Lemma 3) will play the crucial role. We
omit the details here. I}

REMARK. With slight modification, the case of m=2 can be described
similarly and I'(2)/I"(3) turns out to be a finitely generated free Z,-module
whose rank can be given explicitly.

3. Outer automorphism group.
Put
r=r,,=r,,/intG,, I'1)=r,,0)=0,.1)/ntG,,
where Int denotes inner automorphism group.

LEMMA 5. Int GNI'(m)=Int; G(m), where Int; G(m)={ccIntG|Ige
G(m), z°=gxg™", Y€ G}.
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Proor. The inclusion D is obvious. Conversely, let g€ G satisfy
[g, z]1€ G(m+1), [g,2,1€ G(m+2). When g belongs to G(k) for k<m—1,
put ¢,=gmod G(k+41). Then in grG, [Z;, 9.]1=I[Z;, 9.]=0. Since grG is a
free Lie algebra generated by Z; (1<i<2g) and z; (1<j<r—1), we have
9,=0, i.e., g€ G(k+1) ([5, Theorem 5.10]). Hence ge G(m). M

For m>1, put

I'm)=r, (m)=(,,(m)-Int G)/Int G.
According to Lemma 5, we have
I(m)=T", (m)/Inte G(m).
There is an exact sequence induced from that in Proposition 2;
1— I (1) — I' —GS,(2¢; Z,) —> 1,

and we have the following proposition analogous to Proposition 4.

ProposiTioN 6. (1) [I'(m), I'(n)lc'(m+n) (m,n>1). (2) Assume
m+2. The Z-module I'(m)/I"(m+1) is identified with the kernel of fn,
where f, is a homomorphism from {(gr"*'G)* X (9gr"G)’}/gr"G to gr™**G
induced by fn.. Here, gr"G is embedded in (gr"*'G)¥ X (gr"G)" by the map

gmod Gm—+1) — ([g, ¥D)1cice, X (9, 9, - - -, 9).

ProoF. This is a consequence of Proposition 4 and Lemma 5. Again
the proof is essentially the same as that of Theorem 2 in [2]. Since G
is free, present case is a little easier. i

COROLLARY. For m>1, m+2, I'(m)/['(m+1) is a finitely generated
Sfree Z-module of rank 2go(m+1) + (r —1)p(m) —p(m+2) (o(m)=rank(grG)).

Proor. It suffices to show that the module {(gr™*'G)* X (gr™G)"}/gr"G
is I-torsion free. Take an element (8;)icics, X (;)1cicr 1IN (gr™"'G)* X (grG)"
such that

(18:)1<icog X (Us)1cicr=([9, T)1cic2s X (9, 9, + -+, 9)

for some g€ gr"G. As gr"G is torsion free, we must have t,=t,= --- ={,
and g=It;,, Then Is;=[lt; x]=I[t;, x;]. Hence s;=[t;,z;]. M

4. Pro-l version of the theorem of Dehn-Nielsen.

In this section, we prove the surjectivity of the natural homomorphism
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r,,—7I,. (r>s>0).

Here, we understand by I°,, the full automorphism group of the pro-l
fundamental group of Riemann surface of genus g, which was studied
in [2]. In the classical case, corresponding statement is known as the
theorem of Dehn-Nielsen (cf. e.g. [8, 5.6]).

First we define the above homomorphism. Consider the homomor-
phism G,,—G,, defined by z;—x; (1<t<29), 2;—2; (1<j<s) and z,~1
(s+1<j<r). As each element of I",, stabilizes the closed normal sub-
group generated normally by 2,.,, - - -, 2,, the above homomorphism induces
a homomorphism ¢=4¢,,;

o: f’,,, —— f’g,..

THEOREM 7 (Pro-l analogue of the theorem of Dehn-Nielsen). For
each r>s>0, the homomorphism

¢: Iy, —> 1y,
18 surjective.

Proor. First we prove the theorem in the case where r>s>1. Next,
by using some results in [2] and [4], we prove the surjectivity of [, ,—1,,.
We follow the argument in [6] where the corresponding result in the
case of g=0 is proved.

So first assume »>s>1. In view of the commutative diagram below,
it suffices to show that the induced homomorphism ¢,: I, ,(1)—I,.(1) is
surjective,

1— 7, (1) —T,,—GS,(2¢; Z) — 1
b
1—71,,1) — ', —> GS,(2¢g; Z)) — L.
For that purpose, we only need to check that the induced homomorphisms
greg,: Ly (m) [Ty, (m+1) — Ty u(m) [Ty (m+1)
are surjective for all m>1. Consider the following commutative diagram;

1— Iy (m)IF, m+1) —> (grG, )X (gr"Gy, )T L2 gro#G,, — 1

lgr’"séx la lﬁ
1> Iy () [P (1) —> (G, o X (g Gy) 2> gr9G,, — 1
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where « and p are naturally induced homomorphisms. By the snake
lemma, the sequence

ker « — ker 8 — coker(gr™¢,) —> 1

is exact. Hence our task is to show that ker a —ker 8 is surjective.
We let denote by U, the kernel of the surjective homomorphism
gr G, ,—gr"G,, (m>1). Then ker a (resp. ker 8) is equal to ¥, . .DA.H
(grG,,,) " (resp. W,,.). Since the ideal A= P U,, is generated by z,,4, - - -, 2,

m>1

and grG is generated by z; (1<1<2g) and z; (1<j<r—1), we have
Une=[Unin, G143 [ 2]+ T [07°G, 2]

From this and the definition of the map f,, we conclude that ker & —ker
is surjective.

Next we consider the case where r=1, s=0. As similar as the case
treated above, we need to look at the following diagram and to show
that ker « —ker 8 is surjective:

1—> f,,l(m)/f,,,(m-l-l) — (gr™ "G, )Y X gr@G,,. —flr grmt*G,, — 1

lgr“sﬁx J'a lﬁ
1— I, m)/ [, o(m+1) —> (gr™*'@G, )" —ZT» gr @, ,— 1.
Let %A, be the kernel of the homomorphism g¢gr"G,,—gr"G,,. Also in
this case, owing to a theorem of J. Labute [4], the ideal A= P A, is

m>1
generated by z,=[x, z,,,]+ --+ +[x,, %,]. Hence the argument as above
also works in this case.

As a direct consequence of the above theorem and Theorem 3 in [2],
we get the following

COROLLARY. Suppose 9g>3. Let A be an element of GS,(2g; Z)
satisfying the following conditions:

mod [ 1+2

A=1
# {mod roo1=2,

and C be the GS,(2g; Z,)-conjugacy class of A. Then 27*(C) contains more
than one I, ~conjugacy class. Here, 2 is the map induced from the action
of Iy, om G,,/|G, 2)=2Z%.
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REMARK. By a result of M. Asada [1], the above corollary holds for

g=2 in a slightly weaker form.

{11
[2]
[3]
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