Dualities in Algebraic Logic

Yde Venema
Institute for Logic, Language and Computation
Universiteit van Amsterdam
https://staff.fnwi.uva.nl/y.venema

13 February 2018
LAC 2018, Melbourne
Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks
Algebraic Logic

- aim: study logics using methods from (universal) algebra
 - examples:
 - propositional logic: Boolean algebras
 - intuitionistic logic: Heyting algebras
 - first-order logic: cylindric algebras
 - other examples:
 - interpolation: amalgamation
 - completeness: representation
 - abstract algebraic logic:
 - study Logic using methods from (universal) algebra
Algebraic Logic

- aim: study logics using methods from (universal) algebra
- examples:
 - propositional logic: Boolean algebras
 - intuitionistic logic: Heyting algebras
 - first-order logic: cylindric algebras
Algebraic Logic

- aim: study logics using methods from (universal) algebra
- examples:
 - propositional logic: Boolean algebras
 - intuitionistic logic: Heyting algebras
 - first-order logic: cylindric algebras
- other examples:
Algebraic Logic

- **aim:** study logics using methods from (universal) algebra
- **examples:**
 - propositional logic: Boolean algebras
 - intuitionistic logic: Heyting algebras
 - first-order logic: cylindric algebras
- **other examples:**
 - interpolation: amalgamation
 - completeness: representation
Algebraic Logic

- aim: study logics using methods from (universal) algebra
- examples:
 - propositional logic: Boolean algebras
 - intuitionistic logic: Heyting algebras
 - first-order logic: cylindric algebras
- other examples:
 - interpolation: amalgamation
 - completeness: representation
- abstract algebraic logic:
 - study Logic using methods from (universal) algebra
Duality

- in mathematics: categorical dualities
Duality

- in mathematics: categorical dualities
- \(C \) and \(D \) are dual(ly equivalent) if \(C \) and \(D^\circ \) are equivalent
Duality

- in mathematics: categorical dualities
- C and D are dual(ly equivalent) if C and D° are equivalent
 i.e. there are contravariant functors linking C and D
A Fundamental Duality

verbal

visual
A Fundamental Duality

<table>
<thead>
<tr>
<th>verbal</th>
<th>visual</th>
</tr>
</thead>
<tbody>
<tr>
<td>algebra</td>
<td>geometry</td>
</tr>
</tbody>
</table>
A Fundamental Duality

- verbal
- algebra
- syntax

and

- visual
- geometry
- semantics

Stone duality:
A Fundamental Duality

verbal | visual
algebra | geometry
syntax | semantics

Stone duality:

\[
\text{BA} \quad \xrightarrow{S} \quad \text{Stone} \quad \xleftarrow{A}
\]
Variants of Stone duality

- Heyting algebra vs Esakia spaces
- compact regular frames vs compact Hausdorff spaces
- distributive lattices vs Priestley spaces
- modal algebras vs topological Kripke structures
- cylindric algebras vs . . .
- . . .
Variants of Stone duality

- Heyting algebra vs Esakia spaces
- compact regular frames vs compact Hausdorff spaces
- distributive lattices vs Priestley spaces
- modal algebras vs topological Kripke structures
- cylindric algebras vs...
- ...

Contravariance
Variants of Stone duality

- Heyting algebra vs Esakia spaces
- compact regular frames vs compact Hausdorff spaces
- distributive lattices vs Priestley spaces
- modal algebras vs topological Kripke structures
- cylindric algebras vs . . .
- . . .

Contravariance In all these examples both categories are concrete!
Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks
Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks
Modal duality

Main characters

■ modal algebras (MA)
■ Kripke structures (KS)
■ Stone spaces (Stone)
Modal duality

Main characters

- modal algebras (MA)
- Kripke structures (KS)
- Stone spaces (Stone)
- topological Kripke structures (TKS)
Modal duality

Main characters

- modal algebras (MA)
- Kripke structures (KS)
- Stone spaces (Stone)
- topological Kripke structures (TKS)
- . . . , and of course their morphisms!
Modal duality

Main characters

- modal algebras (MA)
- Kripke structures (KS)
- Stone spaces (Stone)
- topological Kripke structures (TKS)
- . . . , and of course their morphisms!

Aim:

- introduce TKS
- develop duality between MA and TKS
Modal Algebras

\[A = (A, \lor, -, \bot, \Diamond) \] is a modal algebra if:

1. \((A, \lor, -, \bot)\) is a Boolean algebra
2. \(\Diamond : A \rightarrow A\) preserves finite joins:
 \[\Diamond \bot = \bot \text{ and } \Diamond (a \lor b) = \Diamond a \lor \Diamond b \]
Modal Algebras

\[\mathbb{A} = (A, \lor, -, \bot, \Diamond) \] is a modal algebra if

- \((A, \lor, -, \bot)\) is a Boolean algebra
- \(\Diamond : A \to A\) preserves finite joins:
 \[\Diamond \bot = \bot \text{ and } \Diamond (a \lor b) = \Diamond a \lor \Diamond b \]

\(h : \mathbb{A}' \to \mathbb{A}\) is an MA-morphism if it preserves all operations:

- \(h(a' \lor b') = h(a') \lor h(b'), \ldots, h(\Diamond a') = \Diamond h(a')\).
Modal Algebras

- $\mathbb{A} = (A, \lor, -, \bot, \Diamond)$ is a modal algebra if
 - $(A, \lor, -, \bot)$ is a Boolean algebra
 - $\Diamond : A \rightarrow A$ preserves finite joins:
 $\Diamond \bot = \bot$ and $\Diamond (a \lor b) = \Diamond a \lor \Diamond b$

- $h : \mathbb{A}' \rightarrow \mathbb{A}$ is an MA-morphism if it preserves all operations:
 - $h(a' \lor b') = h(a') \lor h(b')$, $h(\Diamond a') = \Diamond h(a')$.

- MA is the category of modal algebras with MA-morphisms
Modal Algebras

- \(\mathbb{A} = (A, \lor, -, \bot, \lozenge) \) is a modal algebra if
 - \((A, \lor, -, \bot) \) is a Boolean algebra
 - \(\lozenge : A \to A \) preserves finite joins:
 \[\lozenge \bot = \bot \text{ and } \lozenge (a \lor b) = \lozenge a \lor \lozenge b \]
- \(h : \mathbb{A}' \to \mathbb{A} \) is an MA-morphism if it preserves all operations:
 - \(h(a' \lor b') = h(a') \lor h(b') \), \ldots, \(h(\lozenge a') = \lozenge h(a') \).
- MA is the category of modal algebras with MA-morphisms

- A modal logic \(L \) can be algebraized by a variety \(V_L \) of modal algebras
Modal Algebras

- A = (A, ∨, -, ⊥, ◊) is a modal algebra if
 ▶ (A, ∨, -, ⊥) is a Boolean algebra
 ▶ ◊ : A → A preserves finite joins:
 ◊⊥ = ⊥ and ◊(a ∨ b) = ◊a ∨ ◊b

- h : A' → A is an MA-morphism if it preserves all operations:
 ▶ h(a' ∨' b') = h(a') ∨ h(b'), ..., h(◊'a') = ◊h(a').

- MA is the category of modal algebras with MA-morphisms

- A modal logic L can be algebraized by a variety VL of modal algebras
- Modal algebras are (the simplest) Boolean Algebras with Operators
A Kripke structure (frame) is a pair $\mathcal{S} = (S, R)$ with $R \subseteq S \times S$.

These provide the possible-world semantics of modal logic.
A Kripke structure (frame) is a pair $S = (S, R)$ with $R \subseteq S \times S$.

These provide the possible-world semantics of modal logic.

$f : (S', R') \rightarrow (S, R)$ is a bounded morphism if

- $R's't'$ implies $Rf(s')f(t')$
- $Rf(s')t$ implies the existence of t' with $R's't'$ and $f(t') = t$.

KS is the category of Kripke structures with bounded morphisms.
Kripke structures

- A **Kripke structure (frame)** is a pair $S = (S, R)$ with $R \subseteq S \times S$
 - these provide the possible-world semantics of modal logic
- $f : (S', R') \rightarrow (S, R)$ is a **bounded morphism** if
 - $R's't'$ implies $Rf(s')f(t')$
 - $Rf(s')t$ implies the existence of t' with $R's't'$ and $f(t') = t$.
- **KS** is the category of Kripke structures with bounded morphisms
Stone spaces

- A (topological) space is a pair \((S, \tau)\) where \(\tau\) is a topology on \(S\).
- A Stone space is a space \((S, \tau)\) where \(\tau\) is:
 - compact,
 - Hausdorff
 - zero-dimensional (i.e. it has a basis of clopen sets)
- Stone is the category of Stone spaces and continuous functions
Stone duality

From Stone spaces to Boolean algebras: $(\cdot)^*$

Objects Given (S, τ) take $(S, \tau)^* := (\text{Clp}(\tau), \cup, \sim_S, \emptyset)$

Arrows Given $f : (S', \tau') \to (S, \tau)$ define $f^* : \text{Clp}(\tau) \to \text{Clp}(\tau')$

$$f^*(X) := \{s' \in S' \mid fs' \in X\}$$
Stone duality

From Stone spaces to Boolean algebras: \((\cdot)^*\)

Objects Given \((S, \tau)\) take \((S, \tau)^* := (\text{Clp}(\tau), \cup, \sim_S, \emptyset)\)

Arrows Given \(f : (S', \tau') \to (S, \tau)\) define \(f^* : \text{Clp}(\tau) \to \text{Clp}(\tau')\)

\[
f^*(X) := \{s' \in S' \mid fs' \in X\}
\]

From Boolean algebras to Stone spaces: \((\cdot)^*_\)

Objects Given \(\mathbb{A} = (A, \lor, -, \bot)\) take \(A^*_\) := \((\text{Uf}(\mathbb{A}), \sigma_\mathbb{A})\), where
Stone duality

From Stone spaces to Boolean algebras: $(\cdot)^*$

Objects Given (S, τ) take $(S, \tau)^* := (\text{Clp}(\tau), \cup, \sim_S, \emptyset)$

Arrows Given $f : (S', \tau') \to (S, \tau)$ define $f^* : \text{Clp}(\tau) \to \text{Clp}(\tau')$

$$f^*(X) := \{s' \in S' \mid fs' \in X\}$$

From Boolean algebras to Stone spaces: $(\cdot)^*$

Objects Given $\mathbb{A} = (A, \lor, -, \bot)$ take $A^* := (\text{Uf}(\mathbb{A}), \sigma_{\mathbb{A}})$, where

- $\text{Uf}(\mathbb{A})$ is the set of ultrafilters of \mathbb{A} and
Stone duality

From Stone spaces to Boolean algebras: $(\cdot)^*$

Objects Given (S, τ) take $(S, \tau)^* := (\text{Clp}(\tau), \cup, \sim_S, \emptyset)$

Arrows Given $f : (S', \tau') \to (S, \tau)$ define $f^* : \text{Clp}(\tau) \to \text{Clp}(\tau')$

$$f^*(X) := \{ s' \in S' \mid fs' \in X \}$$

From Boolean algebras to Stone spaces: $(\cdot)_*$

Objects Given $\mathbb{A} = (A, \lor, \neg, \bot)$ take $A_* := (\text{Uf}(\mathbb{A}), \sigma_{\mathbb{A}})$, where

- $\text{Uf}(\mathbb{A})$ is the set of ultrafilters of \mathbb{A} and
- $\sigma_{\mathbb{A}}$ is generated by the basis $\{ \hat{a} \mid a \in A \}$
- with $\hat{a} := \{ u \in \text{UF}(\mathbb{A}) \mid a \in u \}$
Stone duality

From Stone spaces to Boolean algebras: $(\cdot)^*$

Objects Given (S, τ) take $(S, \tau)^* := (\text{Clp}(\tau), \cup, \sim_S, \emptyset)$

Arrows Given $f : (S', \tau') \rightarrow (S, \tau)$ define $f^* : \text{Clp}(\tau) \rightarrow \text{Clp}(\tau')$

\[
f^*(X) := \{s' \in S' \mid fs' \in X\}
\]

From Boolean algebras to Stone spaces: $(\cdot)_*$

Objects Given $\text{A} = (A, \lor, -, \bot)$ take $A_* := (\text{Uf}(\text{A}), \sigma_\text{A})$, where

\begin{itemize}
 \item $\text{Uf}(\text{A})$ is the set of ultrafilters of A and
 \item σ_A is generated by the basis $\{\hat{a} \mid a \in A\}$
 \item with $\hat{a} := \{u \in \text{UF}(\text{A}) \mid a \in u\}$
\end{itemize}

Arrows Given $h : A' \rightarrow A$ define $h_* : \text{Uf}(\text{A}) \rightarrow \text{Uf}(\text{A}')$ by

\[
h_*(u) := \{a' \in A' \mid ha' \in u\}
\]
Theorem
The functors \((\cdot)^{*}\) and \((\cdot)_{*}\) witness the dual equivalence of BA and Stone.
Stone duality 2

Theorem
The functors $(\cdot)^*$ and $(\cdot)_*$ witness the dual equivalence of BA and Stone.

This is a natural duality evolving around the schizophrenic object 2
Complex algebras

From Kripke structures to modal algebras: $(\cdot)^+$

Objects Given (S, R) take $(S, R)^+ := (PS, \cup, \sim_S, \emptyset, \langle R \rangle)$, where
Complex algebras

From Kripke structures to modal algebras: \((\cdot)^+\)

Objects Given \((S, R)\) take \((S, R)^+ := (PS, \cup, \sim_S, \emptyset, \langle R\rangle)\), where

\[
\langle R\rangle(X) := \{s \in S \mid R[s] \cap X \neq \emptyset\}
\]

Arrows Given \(f : (S', R') \to (S, R)\) define \(f^+\) as inverse image
Complex algebras

From Kripke structures to modal algebras: $(\cdot)^+$

Objects Given (S, R) take $(S, R)^+ := (PS, \cup, \sim_S, \emptyset, \langle R \rangle)$, where

$$\langle R \rangle(X) := \{ s \in S | R[s] \cap X \neq \emptyset \}$$

Arrows Given $f : (S', R') \to (S, R)$ define f^+ as inverse image

- The operation $\langle R \rangle$ encodes the semantics of the modal diamond
Complex algebras

From Kripke structures to modal algebras: $(\cdot)^+$

Objects Given (S, R) take $(S, R)^+ := (PS, \cup, \sim_S, \emptyset, \langle R \rangle)$, where

$$\langle R \rangle (X) := \{ s \in S \mid R[s] \cap X \neq \emptyset \}$$

Arrows Given $f : (S', R') \to (S, R)$ define f^+ as inverse image

- The operation $\langle R \rangle$ encodes the semantics of the modal diamond
- $(S, R)^+$ is the complex algebra of (S, R)
Complex algebras

From Kripke structures to modal algebras: \((\cdot)^+\)

Objects Given \((S, R)\) take \((S, R)^+ := (PS, \cup, \sim_S, \emptyset, \langle R \rangle)\), where

\[
\langle R \rangle(X) := \{s \in S \mid R[s] \cap X \neq \emptyset\}
\]

Arrows Given \(f : (S', R') \rightarrow (S, R)\) define \(f^+\) as inverse image

- The operation \(\langle R \rangle\) encodes the semantics of the modal diamond
- \((S, R)^+\) is the complex algebra of \((S, R)\)
- Complex algebras are perfect modal algebras (PMAs):
 - complete, atomic and completely additive
Complex algebras

From Kripke structures to modal algebras: $(\cdot)^+$

Objects Given (S, R) take $(S, R)^+ := (PS, \cup, \sim_S, \emptyset, \langle R \rangle)$, where

$\langle R \rangle(X) := \{s \in S \mid R[s] \cap X \neq \emptyset\}$

Arrows Given $f : (S', R') \to (S, R)$ define f^+ as inverse image

- The operation $\langle R \rangle$ encodes the semantics of the modal diamond
- $(S, R)^+$ is the complex algebra of (S, R)
- Complex algebras are perfect modal algebras (PMAs):
 - complete, atomic and completely additive
- $(\cdot)^+$ is part of a discrete duality between PMA and KS
Complex algebras

From Kripke structures to modal algebras: \((\cdot)^+\)

Objects Given \((S, R)\) take \((S, R)^+ := (PS, \cup, \sim_S, \emptyset, \langle R \rangle)\), where

\[
\langle R \rangle(X) := \{s \in S \mid R[s] \cap X \neq \emptyset\}
\]

Arrows Given \(f : (S', R') \to (S, R)\) define \(f^+\) as inverse image

- The operation \(\langle R \rangle\) encodes the semantics of the modal diamond
- \((S, R)^+\) is the complex algebra of \((S, R)\)
- Complex algebras are perfect modal algebras (PMAs):
 - complete, atomic and completely additive
- \((\cdot)^+\) is part of a discrete duality between PMA and KS
 (with the opposite functor \((\cdot)^+\) taking the atom structure of a PMA)
Ultrafilter structures

From modal algebras to Kripke structures:
Ultrafilter structures

From modal algebras to Kripke structures:

Objects With $\mathbb{A} = (A, \lor, \neg, \bot, \Diamond)$ take $\mathbb{A}_\bullet := (\text{Uf}(\mathbb{A}), Q\Diamond)$, where
Ultrafilter structures

From modal algebras to Kripke structures:

Objects With $\mathcal{A} = (A, \lor, \neg, \bot, \Diamond)$ take $\mathcal{A}^\bullet := (Uf(\mathcal{A}), Q^\Diamond)$, where

$Q^\Diamond uv$ iff $\forall a \in v. \Diamond a \in u$
From modal algebras to Kripke structures:

Objects With $\mathbb{A} = (A, \lor, -, \bot, \Diamond)$ take $\mathbb{A}_\bullet := (Uf(A), Q\Diamond)$, where

- $Q\Diamond uv$ iff $\forall a \in v. \Diamond a \in u$

Arrows Given $f : \mathbb{A}' \rightarrow \mathbb{A}$ define f_\bullet as inverse image

- These operations provide a functor: $\text{MA} \rightarrow \text{KS}$
Ultrafilter structures

From modal algebras to Kripke structures:

Objects With $\mathcal{A} = (A, \lor, -, \bot, \lozenge)$ take $\mathcal{A}_\bullet := (Uf(A), Q\lozenge)$, where

- $Q\lozenge uv$ iff $\forall a \in v. \lozenge a \in u$

Arrows Given $f : \mathcal{A}' \to \mathcal{A}$ define f_\bullet as inverse image

- These operations provide a functor: $\text{MA} \to \text{KS}$
- \mathcal{A}_\bullet is the **ultrafilter structure** or **canonical structure** of \mathcal{A}
Ultrafilter structures

From modal algebras to Kripke structures:

Objects With \(A = (A, \lor, -, \bot, \lozenge) \) take \(A_\bullet := (Uf(A), Q_\lozenge) \), where

\[Q_\lozenge uv \iff \forall a \in v. \lozenge a \in u \]

Arrows Given \(f : A' \to A \) define \(f_\bullet \) as inverse image

- These operations provide a functor: \(MA \to KS \)
- \(A_\bullet \) is the ultrafilter structure or canonical structure of \(A \)
- \(A \) embeds in its canonical extension \((A_\bullet)^+\)
Ultrafilter structures

From modal algebras to Kripke structures:

Objects With $\mathbb{A} = (A, \lor, -, \bot, \Diamond)$ take $\mathbb{A}_\bullet := (Uf(A), Q\Diamond)$, where

- $Q\Diamond uv$ iff $\forall a \in v. \Diamond a \in u$

Arrows Given $f : \mathbb{A}' \to \mathbb{A}$ define f_\bullet as inverse image

- These operations provide a functor: $\text{MA} \to \text{KS}$
- \mathbb{A}_\bullet is the **ultrafilter structure** or **canonical structure** of \mathbb{A}
- \mathbb{A} embeds in its **canonical extension** $(\mathbb{A}_\bullet)^+$
- **Open Problem** characterize the ultrafilter structures modulo isomorphism
A topological Kripke structure is a triple (S, R, τ) such that:
- (S, R) is a Kripke structure
- (S, τ) is a Stone space
A **topological Kripke structure** is a triple \((S, R, \tau)\) such that
- \((S, R)\) is a Kripke structure
- \((S, \tau)\) is a Stone space
- \(\langle R \rangle X\) is clopen if \(X \subseteq S\) is clopen
A **topological Kripke structure** is a triple \((S, R, \tau)\) such that

- \((S, R)\) is a Kripke structure
- \((S, \tau)\) is a Stone space
- \(<R>X\) is clopen if \(X \subseteq S\) is clopen
- \(R(s)\) is closed
A topological Kripke structure is a triple \((S, R, \tau)\) such that

- \((S, R)\) is a Kripke structure
- \((S, \tau)\) is a Stone space
- \(\langle R \rangle X\) is clopen if \(X \subseteq S\) is clopen
- \(R(s)\) is closed

TKS is the category with

- objects: topological Kripke structures
- arrows: continuous bounded morphism
Topological modal duality

From modal algebras to topological Kripke structures: $(\cdot)^*$

Objects Given $\mathbb{A} = (A, \lor, -, \bot, \Box)$ take $\mathbb{A}^* := (Uf(\mathbb{A}), Q\Diamond, \sigma_\mathbb{A})$

Arrows Given $h : \mathbb{A}' \to \mathbb{A}$ define h^* as inverse image

From topological Kripke structures to modal algebras: $(\cdot)^*$

Objects Given $\mathbb{S} = (S, R, \tau)$ take $\mathbb{S}^* := (Clp(\tau), \cup, \sim_S, \emptyset, \langle R \rangle)$

Arrows Given $f : \mathbb{S}' \to \mathbb{S}$ define f^* as inverse image

Theorem
The functors $(\cdot)^*$ and $(\cdot)^*$ witness the dual equivalence of MA and TKS:
Remarks

History:

■ Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, . . .
Remarks

History:
- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, . . .
- algebraic logic || modal logic
Remarks

History:
- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, . . .
- algebraic logic || modal logic

Research Topics:
Remarks

History:

- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, . . .
- algebraic logic || modal logic

Research Topics:

- (canonicity) Which varieties are closed under \((A \mapsto (A\bullet)^+)\)
Remarks

History:
- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, . . .
- algebraic logic || modal logic

Research Topics:
- (canonicity) Which varieties are closed under \((A \rightarrow (A \bullet)^+)\)
- (correspondence) FO properties of \(S \sim\) equational prop's of \(S^+\)
 - e.g. \(S \models \forall v R vv\) iff \(S^+ \models x \leq \Diamond x\)
Remarks

History:
- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
- algebraic logic || modal logic

Research Topics:
- (canonicity) Which varieties are closed under \((A \mapsto (A \cdot)^+)\)
- (correspondence) FO properties of \(S \sim\) equational prop’s of \(S^+\)
 - e.g. \(S \models \forall v R v v\) iff \(S^+ \models x \leq \Diamond x\)
- (canonicity & correspondence) Sahlqvist theorem
Remarks

History:
- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, . . .
- algebraic logic || modal logic

Research Topics:
- (canonicity) Which varieties are closed under $(A \mapsto (A \bullet)^+)$
- (correspondence) FO properties of $S \sim$ equational prop's of S^+
 - e.g. $S \models \forall v R v v$ iff $S^+ \models x \leq \Diamond x$
- (canonicity & correspondence) Sahlqvist theorem
- (completeness) Which varieties are generated by their PMAs?
Remarks

History:
- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
- algebraic logic \| modal logic

Research Topics:
- (canonicity) Which varieties are closed under \((A \mapsto (A \cdot)^+)\)
- (correspondence) FO properties of \(S \sim\) equational prop's of \(S^+\)
 - e.g. \(S \models \forall vRvv\) iff \(S^+ \models x \leq \Diamond x\)
- (canonicity & correspondence) Sahlqvist theorem
- (completeness) Which varieties are generated by their PMAs?
- (completions) canonical extensions, MacNeille completions, ...
Remarks

History:
- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, . . .
- algebraic logic || modal logic

Research Topics:
- (canonicity) Which varieties are closed under \((A \iff (A \bullet)^+)\)
- (correspondence) FO properties of \(S \sim\) equational prop's of \(S^+\)
 - e.g. \(S \models \forall v R vv\) iff \(S^+ \models x \leq \Diamond x\)
- (canonicity & correspondence) Sahlqvist theorem
- (completeness) Which varieties are generated by their PMAs?
- (completions) canonical extensions, MacNeille completions, . . .
- study free modal algebras
Remarks

History:

- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
- algebraic logic || modal logic

Research Topics:

- (canonicity) Which varieties are closed under \((A \rightarrow (A \bullet)^+)\)
- (correspondence) FO properties of \(S \sim\) equational prop's of \(S^+\)
 - e.g. \(S \models \forall v R v v\) iff \(S^+ \models x \leq \Diamond x\)
- (canonicity & correspondence) Sahlqvist theorem
- (completeness) Which varieties are generated by their PMAs?
- (completions) canonical extensions, MacNeille completions, ...
- study free modal algebras
- ...
Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks
Subdirect Irreducibility

- Given an algebra \mathbb{A}, let $\text{Con}\mathbb{A}$ be its lattice of congruences.

- \mathbb{A} is simple if $\text{Con}\mathbb{A} \cong 2$.

- \mathbb{A} is subdirectly irreducible if $\text{Con}\mathbb{A}$ has a least non-identity element.

- Birkhoff: every variety is generated by its s.i. members.

Question

What is the dual of an s.i. modal algebra?

Folklore

Subdirect irreducibility is related to rootedness.
Subdirect Irreducibility

- Given an algebra \mathbb{A}, let $\text{Con}\mathbb{A}$ be its lattice of congruences.
- \mathbb{A} is simple if $\text{Con}\mathbb{A} \cong \mathbb{2}$.
- \mathbb{A} is subdirectly irreducible if $\text{Con}\mathbb{A}$ has a least non-identity element.
Subdirect Irreducibility

- Given an algebra \mathbb{A}, let $\text{Con}\mathbb{A}$ be its lattice of congruences.
- \mathbb{A} is simple if $\text{Con}\mathbb{A} \cong 2$
- \mathbb{A} is subdirectly irreducible if $\text{Con}\mathbb{A}$ has a least non-identity element.
- Birkhoff: every variety is generated by its s.i. members.
Subdirect Irreducibility

- Given an algebra \mathbb{A}, let $\text{Con}\mathbb{A}$ be its lattice of congruences.
- \mathbb{A} is simple if $\text{Con}\mathbb{A} \cong \mathbb{2}$.
- \mathbb{A} is subdirectly irreducible if $\text{Con}\mathbb{A}$ has a least non-identity element.
- Birkhoff: every variety is generated by its s.i. members.

Question What is the dual of an s.i. modal algebra?
Subdirect Irreducibility

- Given an algebra \mathbb{A}, let $\text{Con}\mathbb{A}$ be its lattice of congruences.
- \mathbb{A} is **simple** if $\text{Con}\mathbb{A} \cong 2$.
- \mathbb{A} is **subdirectly irreducible** if $\text{Con}\mathbb{A}$ has a least non-identity element.
- Birkhoff: every variety is generated by its s.i. members.

Question What is the dual of an s.i. modal algebra?

Folklore Subdirect irreducibility is related to **rootedness**.
Auxiliary definitions

\[R^\omega := \bigcup_{n>0} R^n, \]

where \(R^0 := \text{Id}_S \) and \(R^{n+1} := R \circ R^n \)
Auxiliary definitions

- $R^\omega := \bigcup_{n>0} R^n$,
 - where $R^0 := \text{Id}_S$ and $R^{n+1} := R \circ R^n$
- $R(s) := \{ t \in S \mid Rst \}$

$r \in S$ is a root of S if $S = R^\omega(r)$

S is rooted if its collection \mathcal{W}_S of roots is non-empty
Auxiliary definitions

- $R^\omega := \bigcup_{n > 0} R^n$, where $R^0 := \text{Id}_S$ and $R^{n+1} := R \circ R^n$
- $R(s) := \{ t \in S \mid Rst \}$
- $r \in S$ is a root of S if $S = R^\omega(r)$
- S is rooted if its collection W_S of roots is non-empty
Subdirect Irreducibility and Rootedness

Proposition (folklore)
\[W_S \neq \emptyset \quad (\text{\$ is rooted}) \quad \text{iff} \quad \mathbb{S}^+ \text{ is s.i.} \]
Proposition (folklore)
\(\mathcal{W}_S \neq \emptyset \) (\(S \) is rooted) iff \(S^+ \) is s.i.

Example (Sambin)
There are rooted TKSs of which the dual algebra is not s.i.
Subdirect Irreducibility and Rootedness

Proposition (folklore)
\[\mathcal{W}_S \neq \emptyset \text{ (} S \text{ is rooted) iff } S^+ \text{ is s.i.} \]

Example (Sambin)
There are rooted TKSs of which the dual algebra is not s.i.

Proposition (Sambin)
(1) If \(\text{Int}(\mathcal{W}_{\mathbb{A}^*}) \neq \emptyset \) then \(\mathbb{A} \) is s.i.
Proposition (folklore)
$\mathcal{W}_S \neq \emptyset$ (S is rooted) iff S^+ is s.i.

Example (Sambin)
There are rooted TKSs of which the dual algebra is not s.i.

Proposition (Sambin)
(1) If $Int(\mathcal{W}_{A^*}) \neq \emptyset$ then A is s.i.
(2) If A is s.i. then $Int(\mathcal{W}_{A^*}) \neq \emptyset$
Proposition (folklore)
$\mathcal{W}_S \neq \emptyset$ (S is rooted) iff S^+ is s.i.

Example (Sambin)
There are rooted TKSs of which the dual algebra is not s.i.

Proposition (Sambin)
(1) If $\text{Int}(W_{A^*}) \neq \emptyset$ then A is s.i.
(2) If A is s.i. then $\text{Int}(W_{A^*}) \neq \emptyset$, provided A is (ω-)transitive.
Proposition (folklore)
\(W_S \neq \emptyset \) (\(S \) is rooted) iff \(S^+ \) is s.i.

Example (Sambin)
There are rooted TKSs of which the dual algebra is not s.i.

Proposition (Sambin)
(1) If \(Int(W_{A^*}) \neq \emptyset \) then \(A \) is s.i.
(2) If \(A \) is s.i. then \(Int(W_{A^*}) \neq \emptyset \), provided \(A \) is (\(\omega \)-)transitive.

Example (Kracht)
There are simple algebras of which the dual structure has no roots.
Subdirect Irreducibility and Rootedness

Proposition (folklore)
$W_S \neq \emptyset$ (S is rooted) iff S^+ is s.i.

Example (Sambin)
There are rooted TKSs of which the dual algebra is not s.i.

Proposition (Sambin)
(1) If $\text{Int}(W_{A^*}) \neq \emptyset$ then A is s.i.
(2) If A is s.i. then $\text{Int}(W_{A^*}) \neq \emptyset$, provided A is (ω-)transitive.

Example (Kracht)
There are simple algebras of which the dual structure has no roots.

Proposition (Rautenberg)
A is s.i. iff A^* has a largest nontrivial, closed hereditary subset.
Fix a modal algebra \mathbb{A}.

- r is a root of \mathbb{A}^* iff $Q^\omega_\diamondsuit(r) = Uf(\mathbb{A})$
Fix a modal algebra \mathbb{A}.

- r is a root of \mathbb{A}^* iff $Q_\omega^\ast(r) = Uf(\mathbb{A})$
- $Q_\omega^\ast uv$ iff $\exists n \in \omega \forall a \in v. \Diamond^n a \in u$
Fix a modal algebra \mathbb{A}.

- r is a root of \mathbb{A}^* iff $Q^\omega(r) = Uf(\mathbb{A})$.
- $Q^\omega(\mathbb{A})$ iff $\exists n \in \omega: \forall a \in v. \diamond^n a \in u$.
- Define Q^\star by putting
 $Q^\star(\mathbb{A})$ iff $\forall a \in v: \exists n \in \omega. \diamond^n a \in u$.
Fix a modal algebra \mathbb{A}.

- r is a root of \mathbb{A} if $Q^\omega (r) = Uf(\mathbb{A})$
- $Q^\omega uv$ iff $\exists n \in \omega \forall a \in v. \Diamond^n a \in u$
- Define Q^* by putting
 $Q^* uv$ iff $\forall a \in v \exists n \in \omega. \Diamond^n a \in u$
- Call $r \in Uf(\mathbb{A})$ a topo-root if $Q^\Diamond (r) = Uf(\mathbb{A})$
Fix a modal algebra \mathbb{A}.

- r is a root of \mathbb{A}_* iff $Q^{\omega}_r(r) = Uf(\mathbb{A})$
- $Q^{\omega}_r uv$ iff $\exists n \in \omega \forall a \in v. \diamond^n a \in u$
- Define Q^*_r by putting $Q^*_r uv$ iff $\forall a \in v \exists n \in \omega. \diamond^n a \in u$
- Call $r \in Uf(\mathbb{A})$ a topo-root if $Q^*_r(r) = Uf(\mathbb{A})$
- Let $T_{\mathbb{A}_*}$ denote the collection of topo-roots of \mathbb{A}_*
Observations

Proposition For any modal algebra A:

1. Q^* is transitive
2. $Q^\omega \subseteq Q^*$
3. $Q^*(u)$ is hereditary for any ultrafilter u
4. $Q^*(u)$ is closed for any ultrafilter u
5. $Q^*(u) = Q^\omega(u)$ for any ultrafilter u
6. $\langle Q^* \rangle$ maps opens to opens
7. If Q is transitive then $Q = Q^\omega = Q^*$
Characterizations

Theorem For any modal algebra \mathbb{A}:

(1) \mathbb{A} is simple iff $T_{A^*} = Uf(A)$
Characterizations

Theorem For any modal algebra \mathbb{A}:

1. \mathbb{A} is simple iff $T_{\mathbb{A}^*} = Uf(\mathbb{A})$
2. \mathbb{A} is s.i. iff $\text{Int}(T_{\mathbb{A}^*}) \neq \emptyset$

Note: Earlier results follow from this.

Theorem (Birchall) Similar results for distributive modal algebras (based on distr. lattices).

Suggestion Develop the modal theory of \mathbb{Q}^\star.
Characterizations

Theorem For any modal algebra \mathbb{A}:

1. \mathbb{A} is simple iff $T_{\mathbb{A}^*} = Uf(\mathbb{A})$
2. \mathbb{A} is s.i. iff $Int(T_{\mathbb{A}^*}) \neq \emptyset$

Note Earlier results follow from this.
Characterizations

Theorem For any modal algebra \mathbb{A}:
(1) \mathbb{A} is simple iff $T_{\mathbb{A}^\ast} = Uf(\mathbb{A})$
(2) \mathbb{A} is s.i. iff $Int(T_{\mathbb{A}^\ast}) \neq \emptyset$

Note Earlier results follow from this.

Theorem (Birchall)
Similar results for distributive modal algebras (based on distr. lattices).
Theorem For any modal algebra \mathbb{A}:
(1) \mathbb{A} is simple iff $T_{\mathbb{A}^*} = Uf(\mathbb{A})$
(2) \mathbb{A} is s.i. iff $Int(T_{\mathbb{A}^*}) \neq \emptyset$

Note Earlier results follow from this.

Theorem (Birchall)
Similar results for distributive modal algebras (based on distr. lattices).

Suggestion Develop the modal theory of Q^*
Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks
The Vietoris construction

Let $X = \langle X, \tau \rangle$ be a topological space. $K(X)$ denotes the collection of compact sets. With $U \subseteq \omega \tau$, define $\nabla U := \{ F \in K(X) | (F, U) \in P(\in) \}$, where $(F, U) \in P(\in)$ if F is 'properly covered' by U: $\forall s \in F \exists U \in U. s \in U$ and $\forall U \in U \exists s \in F. s \in U$. These sets ∇U together provide a basis for a topology on $K(X)$, the Vietoris topology $\nu \tau$. $V(X) := \langle K(X), \nu \tau \rangle$ is the Vietoris space of X.
The Vietoris construction

- Let $X = \langle X, \tau \rangle$ be a topological space.
- $K(X)$ denotes the collection of compact sets.
The Vietoris construction

- Let $\mathbb{X} = \langle X, \tau \rangle$ be a topological space.
- $K(\mathbb{X})$ denotes the collection of compact sets
- With $\mathcal{U} \subseteq \wp(\tau)$, define
 \[
 \nabla \mathcal{U} := \{ F \in K(\mathbb{X}) \mid (F, \mathcal{U}) \in \mathcal{P}(\mathcal{E}) \},
 \]
- $\nabla \mathcal{U}$ together provide a basis for a topology on $K(\mathbb{X})$, the Vietoris topology $\nu(\mathbb{X}) := \langle K(\mathbb{X}), \nu(\tau) \rangle$ is the Vietoris space of \mathbb{X}.
Let $\mathcal{X} = \langle X, \tau \rangle$ be a topological space.

$K(\mathcal{X})$ denotes the collection of compact sets.

With $\mathcal{U} \subseteq \omega \tau$, define

$$\nabla \mathcal{U} := \{ F \in K(\mathcal{X}) \mid (F, \mathcal{U}) \in \mathcal{P}(\epsilon) \},$$

where $(F, \mathcal{U}) \in \mathcal{P}(\epsilon)$ if F is ‘properly covered’ by \mathcal{U}.
The Vietoris construction

- Let $X = \langle X, \tau \rangle$ be a topological space.
- $K(X)$ denotes the collection of compact sets.
- With $\mathcal{U} \subseteq \omega \tau$, define

$$\nabla U := \{ F \in K(X) \mid (F, U) \in P(\in) \},$$

where $(F, U) \in P(\in)$ if F is ‘properly covered’ by U:

- $\forall s \in F \exists U \in \mathcal{U}. s \in U$ and
- $\forall U \in \mathcal{U} \exists s \in F. s \in U$
The Vietoris construction

Let $\mathbb{X} = \langle X, \tau \rangle$ be a topological space.

$K(\mathbb{X})$ denotes the collection of compact sets

With $\mathcal{U} \subseteq_\omega \tau$, define

$$\nabla \mathcal{U} := \{ F \in K(\mathbb{X}) | (F, \mathcal{U}) \in \overline{P}() \},$$

where $(F, \mathcal{U}) \in \overline{P}()$ if F is ‘properly covered’ by \mathcal{U}:

- $\forall s \in F \exists U \in \mathcal{U}. s \in U$ and
- $\forall U \in \mathcal{U} \exists s \in F. s \in U$

These sets $\nabla \mathcal{U}$ together provide a basis for a topology on $K(\mathbb{X})$.

The Vietoris construction

Let \(X = \langle X, \tau \rangle \) be a topological space.
\(K(X) \) denotes the collection of compact sets
With \(U \subseteq \omega \tau \), define
\[
\nabla U := \{ F \in K(X) \mid (F, U) \in \overline{P}(\in) \},
\]
where \((F, U) \in \overline{P}(\in)\) if \(F \) is ‘properly covered’ by \(U \):
\[\begin{align*}
\forall s \in F & \exists U \in U. \ s \in U \quad \text{and} \\
\forall U \in U & \exists s \in F \ . \ s \in U
\end{align*}\]
These sets \(\nabla U \) together provide a basis for a topology on \(K(X) \),
the Vietoris topology \(\nu_\tau \).
The Vietoris construction

Let $X = \langle X, \tau \rangle$ be a topological space.

$K(X)$ denotes the collection of compact sets.

With $\mathcal{U} \subseteq_\omega \tau$, define

$$\nabla \mathcal{U} := \{ F \in K(X) \mid (F, \mathcal{U}) \in \overline{P}(\in) \},$$

where $(F, \mathcal{U}) \in \overline{P}(\in)$ if F is ‘properly covered’ by \mathcal{U}:
- $\forall s \in F \exists U \in \mathcal{U}. s \in U$ and
- $\forall U \in \mathcal{U} \exists s \in F. s \in U$

These sets $\nabla \mathcal{U}$ together provide a basis for a topology on $K(X)$, the Vietoris topology ν_τ.

$V(X) := \langle K(X), \nu_\tau \rangle$ is the Vietoris space of X.
Different presentation:

- **For** $a \in \tau$, **define**

 - $\Diamond a := \{ F \in K(\mathbb{R}) | F \cap a \neq \emptyset \}$
 - $\Box a := \{ F \in K(\mathbb{R}) | F \subseteq a \}$
Different presentation:

- For \(a \in \tau \), define

\[
\Diamond a := \{ F \in K(X) \mid F \cap a \neq \emptyset \}
\]

\[
\Box a := \{ F \in K(X) \mid F \subseteq a \}
\]

- Generate \(\nu_\tau \) from \(\{ \langle \exists \rangle a, [\exists] \mid a \in \tau \} \) as a subbasis.
Different presentation:

- For \(a \in \tau \), define

 \[
 \Diamond a := \{ F \in K(\mathbb{X}) \mid F \cap a \neq \emptyset \}
 \]

 \[
 \Box a := \{ F \in K(\mathbb{X}) \mid F \subseteq a \}
 \]

- Generate \(\nu_\tau \) from \(\{ \langle \exists \rangle a, [\exists] \mid a \in \tau \} \) as a subbasis.

Fact The Vietoris construction preserves various properties, including:

- compactness
- compact Hausdorffness
- zero-dimensionality
The Vietoris functor

From now on we restrict to the category KHaus of

- objects: compact Hausdorff spaces
- arrows: continuous maps

Fact Given \(f : X \to Y \),
From now on we restrict to the category KHaus of
- objects: compact Hausdorff spaces
- arrows: continuous maps

Fact Given $f : X \to Y$, let $Vf : K(X) \to P(Y)$ be given by

$$Vf(F) := f[F] = \{fx \mid x \in F\}$$
The Vietoris functor

From now on we restrict to the category KHaus of

- objects: compact Hausdorff spaces
- arrows: continuous maps

Fact Given \(f : X \to Y \), let \(Vf : K(X) \to P(Y) \) be given by

\[
Vf(F) := f[F] = \{fx \mid x \in F\}
\]

Then \(Vf \) maps compact sets to compact sets.
From now on we restrict to the category KHaus of

- objects: compact Hausdorff spaces
- arrows: continuous maps

Fact Given $f : X \to Y$, let $Vf : K(X) \to P(Y)$ be given by

$$Vf(F) : = f[F] \quad \left(= \{fx \mid x \in F\} \right)$$

Then Vf maps compact sets to compact sets.

Fact

V is a functor on the categories KHaus and Stone.
Two observations

Observation Stone duality and the Vietoris functor:

- **BA** \(\xrightarrow{S} \text{Stone}\)
- **P** \(\xleftarrow{S} \text{BA}\)

In a TKS \((S, R, \tau)\),

\[
R : S \to P(S)
\]

Theorem

Topological Kripke frames are Vietoris coalgebras over Stone.
Two observations

Observation Stone duality and the Vietoris functor:

\[S : \text{BA} \rightarrow \text{P} \]

\[R : \text{(S, } \tau) \rightarrow \text{V(S, } \tau) \]

Theorem Topological Kripke frames are Vietoris coalgebras over Stone
Observation Stone duality and the Vietoris functor:
Two observations

Observation Stone duality and the Vietoris functor:

\[\text{BA} \xrightarrow{?} \text{S} \xrightarrow{\text{V}} \text{Stone} \xrightarrow{P} \text{P}(S) \]

Observation (Esakia)
In a TKS \((S, R, \tau)\), \(R : S \rightarrow \text{P}(S)\)
Two observations

Observation Stone duality and the Vietoris functor:

[Diagram]

Observation (Esakia)
In a TKS \((S, R, \tau)\), \(R : S \to P(S)\) is an arrow \(R : (S, \tau) \to V(S, \tau)\)
Two observations

Observation Stone duality and the Vietoris functor:

- **BA**
- **S**
- **Stone**
- **V**

Observation (Esakia)
In a TKS \((S, R, \tau)\), \(R : S \to P(S)\) is an arrow \(R : (S, \tau) \to V(S, \tau)\)

Theorem
Topological Kripke frames are Vietoris coalgebras over Stone
Universal Coalgebra

Universal Coalgebra (Rutten, 2000) is a general mathematical theory for evolving systems.
Universal Coalgebra

- **Universal Coalgebra** (Rutten, 2000) is a general mathematical theory for evolving systems.
- It provides a natural framework for notions like behavior.
Universal Coalgebra (Rutten, 2000) is a general mathematical theory for evolving systems. It provides a natural framework for notions like behavior, bisimulation/behavioral equivalence, and sufficiently general to model notions like input, output, non-determinism, interaction, probability, etc.
Universal Coalgebra

- **Universal Coalgebra** (Rutten, 2000) is a general mathematical theory for evolving systems.
- It provides a natural framework for notions like:
 - behavior
 - bisimulation/behavioral equivalence
 - invariants
Universal Coalgebra (Rutten, 2000) is a general mathematical theory for evolving systems. It provides a natural framework for notions like behavior, bisimulation/behavioral equivalence, and invariants. Sufficiently general to model notions like input, output, non-determinism, interaction, probability, . . .
Let $T : C \to C$ be an endofunctor on the category C.

Examples:

- Kripke structures are P-coalgebras over Set
- Deterministic finite automata are coalgebras over Set
Coalgebras and their morphisms

Let $T : C \to C$ be an endofunctor on the category C.

- An T-coalgebra is a pair $(c, \gamma : c \to Tc)$.

Examples:
- Kripke structures are P-coalgebras over Set
- Deterministic finite automata are coalgebras over Set.
Let $T : C \to C$ be an endofunctor on the category C

- An T-coalgebra is a pair $(c, \gamma : c \to Tc)$.
- A coalgebra morphism between two coalgebras (c', γ') and (c, γ) is an arrow $f : c' \to C$ with

\[
\begin{array}{ccc}
 c' & \xrightarrow{f} & c \\
 \downarrow{\gamma'} & & \downarrow{\gamma} \\
 Tc' & \xrightarrow{Tf} & Tc
\end{array}
\]
Coalgebras and their morphisms

Let \(T : C \to C \) be an endofunctor on the category \(C \)

- An \(T \)-coalgebra is a pair \((c, \gamma : c \to Tc)\).
- A coalgebra morphism between two coalgebras \((c', \gamma')\) and \((c, \gamma)\) is an arrow \(f : c' \to C \) with

\[
\begin{array}{c}
c' \\
\gamma' \\
Tc'
\end{array} \xrightarrow{f} \begin{array}{c}c \\
\gamma \\
Tc
\end{array}
\]

Examples:

- Kripke structures are \(P \)-coalgebras over \(\text{Set} \)
- Deterministic finite automata are coalgebras over \(\text{Set} \)
Theorem \(\text{TKS} \cong \text{Coalg}_V(\text{Stone}) \)
Vietoris coalgebras

Theorem \(\text{TKS} \cong \text{Coalg}_V(\text{Stone}) \)

Manifestations:
- The final \(V \)-coalgebra \(\sim \) the canonical general frame \((C, R, \tau) \),
Vietoris coalgebras

Theorem $\text{TKS} \cong \text{Coalg}_V(\text{Stone})$

Manifestations:
- The final V-coalgebra \sim the canonical general frame (C, R, τ),
- the map $s \mapsto R(s)$ is a homeomorphism $R : (C, \tau) \to V(C, \tau)$
Vietoris coalgebras

Theorem $\text{TKS} \cong \text{Coalg}_V(\text{Stone})$

Manifestations:
- The final V-coalgebra \sim the canonical general frame (C, R, τ),
- the map $s \mapsto R(s)$ is a homeomorphism $R : (C, \tau) \to V(C, \tau)$

Duality:
Vietoris coalgebras

Theorem $\text{TKS} \cong \text{Coalg}_V(\text{Stone})$

Manifestations:
- The final V-coalgebra \sim the canonical general frame (C, R, τ),
- the map $s \mapsto R(s)$ is a homeomorphism $R : (C, \tau) \to V(C, \tau)$

Duality:
Modal Logic Dualizes the Vietoris Functor

Johnstone: describe M via generators and relations
- Given a BA B, M_B is the Boolean algebra generated by the set $\{3b : b \in B\}$ modulo the relations $3(a \lor b) = 3a \lor 3b$ and $3\top = \top$.

Theorem (Kupke, Kurz & Venema) ModAlg $\cong \text{ALg BA}(M)$.

The topological modal duality is an algebra | coalgebra duality.
Modal Logic Dualizes the Vietoris Functor

Johnstone: describe M via generators and relations
Modal Logic Dualizes the Vietoris Functor

- Johnstone: describe M via generators and relations
- Given a BA \mathbb{B}, $M_{\mathbb{B}}$ is the Boolean algebra
 - generated by the set $\{\Diamond b : b \in B\}$
 - modulo the relations $\Diamond (a \lor b) = \Diamond a \lor \Diamond b$ and $\Diamond \top = \top$
Modal Logic Dualizes the Vietoris Functor

Johnstone: describe M via generators and relations

Given a BA B, M_B is the Boolean algebra

- generated by the set $\{\Diamond b : b \in B\}$
- modulo the relations $\Diamond(a \lor b) = \Diamond a \lor \Diamond b$ and $\Diamond \top = \top$

Theorem (Kupke, Kurz & Venema) $\text{ModAlg} \cong \text{ALg}_{BA}(M)$.
Modal Logic Dualizes the Vietoris Functor

Johnstone: describe M via generators and relations

Given a BA B, M_B is the Boolean algebra

- generated by the set $\{\Diamond b : b \in B\}$
- modulo the relations $\Diamond(a \lor b) = \Diamond a \lor \Diamond b$ and $\Diamond \top = \top$

Theorem (Kupke, Kurz & Venema) $\text{ModAlg} \cong \text{ALg}_{BA}(M)$.

The topological modal duality is an algebra|coalgebra duality
Variation: Pointfree Topology

Frames/Locales provide pointfree versions of topologies.
Frames/Locales provide pointfree versions of topologies.

\[
\text{KRFr} \leftrightarrow \text{K Haus}
\]

Variation: Pointfree Topology
Frames/Locales provide pointfree versions of topologies.

Variation: Pointfree Topology

Geometric modal logic dualizes/axiomatizes the Vietoris functor (Johnstone)
Variation: Pointfree Topology

Frames/Locales provide pointfree versions of topologies.

\[\text{M} \rightarrow \text{KRFr} \leftarrow \text{P} \rightarrow \text{Khaus} \rightarrow \text{V} \]
Variation: Pointfree Topology

Frames/Locales provide pointfree versions of topologies.

Geometric modal logic dualizes/axiomatizes the Vietoris functor (Johnstone)
Vietoris pointfree (Johnstone Functor)

Given a frame \mathbb{L}, define $L\Box := \{\Box a \mid a \in L\}$ and $L\Diamond := \{\Diamond a \mid a \in L\}$.

$$M\mathbb{L} := \text{Fr}\langle L\Box \cup L\Diamond \mid \Box(\bigwedge A) = \bigwedge_{a \in A} \Box a \quad (A \in P_\omega L)
\Diamond(\bigvee A) = \bigvee_{a \in A} \Diamond a \quad (A \in P_\omega L)
\Box a \land \Diamond b \leq \Diamond(a \land b)
\Box(a \lor b) \leq \Box a \lor \Diamond b
\Box(\bigcup A) = \bigcup_{a \in A} \Box a \quad (A \in PL \text{ directed})
\Diamond(\bigcup A) = \bigcup_{a \in A} \Diamond a \quad (A \in PL \text{ directed}) \rangle$$
Vietoris and the Cover Modality ∇

- Vietoris used the ∇-constructor on P_{ω^τ}
Vietoris and the Cover Modality ∇

- Vietoris used the ∇-constructor on P_{ω^τ}
- Now think of ∇ as a primitive modality
Vietoris and the Cover Modality ∇

- Vietoris used the ∇-constructor on P_{ω^τ}
- Now think of ∇ as a primitive modality
- This modality has many manifestations in modal logic
 - normal forms (Fine)
 - coalgebraic modal logic (Moss)
 - automata theory (Walukiewicz)
Vietoris and the Cover Modality ∇

- Vietoris used the ∇-constructor on P_{ω^τ}
- Now think of ∇ as a primitive modality
- This modality has many manifestations in modal logic
 - normal forms (Fine)
 - coalgebraic modal logic (Moss)
 - automata theory (Walukiewicz)
- May develop ∇-logic . . .
Vietoris and the Cover Modality ∇

- Vietoris used the ∇-constructor on P_{ω^τ}
- Now think of ∇ as a primitive modality
- This modality has many manifestations in modal logic
 - normal forms (Fine)
 - coalgebraic modal logic (Moss)
 - automata theory (Walukiewicz)
- May develop ∇-logic . . .
- . . . and formulate the functor M accordingly, in terms of ∇
New directions

Fix a standard set functor T that preserves weak pullbacks.

Define the T-powerlocale of a frame L as $M^T_L := \text{Fr} \langle T \omega L \mid (\nabla_1), (\nabla_2), (\nabla_3) \rangle$, where the relations are as follows:

$(\nabla_1) \nabla \alpha \leq \nabla \beta (\alpha T \leq \beta)$

$(\nabla_2) \wedge \gamma \in \Gamma \nabla \gamma \leq \bigvee \{\nabla (T \wedge) \Psi \mid \Psi \in \text{SRD}(\Gamma) \}$ ($\Gamma \in \text{P} \omega T \omega L$)

$(\nabla_3) \nabla (T \bigvee) \Phi \leq \bigvee \{\nabla \beta \mid \beta T \in \Phi \}$ ($\Phi \in T \omega \text{P} L$)
New directions

Fix a standard set functor T that preserves weak pullbacks.
Fix a standard set functor T that preserves weak pullbacks.

Define the T-powerlocale of a frame \mathbb{L} as

$$M_T \mathbb{L} := \text{Fr} \langle T_\omega \mathbb{L} \mid (\nabla 1), (\nabla 2), (\nabla 3) \rangle,$$
New directions

Fix a standard set functor T that preserves weak pullbacks.

Define the T-powerlocale of a frame \mathbb{L} as

$$M_T\mathbb{L} := \text{Fr}(T_\omega L \mid (\nabla 1), (\nabla 2), (\nabla 3)),$$

where the relations are as follows:
New directions

Fix a standard set functor T that preserves weak pullbacks.

Define the T-powerlocale of a frame \mathbb{L} as

$$M_T \mathbb{L} := \text{Fr}(T_\omega L \mid (\nabla 1), (\nabla 2), (\nabla 3)),$$

where the relations are as follows:

$$(\nabla 1) \quad \nabla \alpha \leq \nabla \beta \quad (\alpha \ T \leq \beta)$$
Fix a standard set functor T that preserves weak pullbacks.

Define the T-powerlocale of a frame L as

$$M_T L := \text{Fr}\langle T_\omega L \mid (\nabla 1), (\nabla 2), (\nabla 3) \rangle,$$

where the relations are as follows:

1. $(\nabla 1)$ $\nabla \alpha \leq \nabla \beta$ $\quad (\alpha \overline{T} \leq \beta)$
2. $(\nabla 2)$ $\bigwedge_{\gamma \in \Gamma} \nabla \gamma \leq \bigvee \{ \nabla (T \land) \psi \mid \psi \in SRD(\Gamma) \}$ $\quad (\Gamma \in \mathcal{P}_\omega T_\omega L)$
Fix a standard set functor T that preserves weak pullbacks.

Define the T-powerlocale of a frame \mathbb{L} as

$$M_T \mathbb{L} := \text{Fr}\langle T_\omega \mathbb{L} \mid (\nabla 1), (\nabla 2), (\nabla 3) \rangle,$$

where the relations are as follows:

\begin{align*}
(\nabla 1) & \quad \nabla \alpha \leq \nabla \beta \\
(\nabla 2) & \quad \bigwedge_{\gamma \in \Gamma} \nabla \gamma \leq \bigvee \{ \nabla (T \wedge) \Psi \mid \Psi \in \text{SRD}(\Gamma) \} & (\Gamma \in P_\omega T_\omega \mathbb{L}) \\
(\nabla 3) & \quad \nabla (T \vee) \Phi \leq \bigvee \{ \nabla \beta \mid \beta \bar{T} \in \Phi \} & (\Phi \in T_\omega \mathbb{P} \mathbb{L})
\end{align*}
Some results

Theorem (V., Vickers & Vosmaer)

Given a set functor T that preserves weak pullbacks:

- M_T provides a functor on the category Fr of frames.
- M_T generalizes Johnstone's M: $M_T \sim M_P$.
- M_T preserves regularity, zero-dimensionality, and Stone-ness.
- M_T restricts to a functor on KRFr (compact regular frames) provided T preserves finiteness.
Some results

Theorem (V., Vickers & Vosmaer)
Given a set functor T that preserves weak pullbacks:

- M_T provides a functor on the category Fr of frames.
Some results

Theorem (V., Vickers & Vosmaer)
Given a set functor T that preserves weak pullbacks:

- M_T provides a functor on the category Fr of frames.
- M_T generalizes Johnstone’s M: $M \cong M_P$.
Some results

Theorem (V., Vickers & Vosmaer)
Given a set functor T that preserves weak pullbacks:

- M_T provides a functor on the category Fr of frames.
- M_T generalizes Johnstone's M: $M \cong M_P$.
- M_T preserves regularity, zero-dimensionality, and Stone-ness.
Some results

Theorem (V., Vickers & Vosmaer)
Given a set functor T that preserves weak pullbacks:
- M_T provides a functor on the category Fr of frames.
- M_T generalizes Johnstone’s M: $M \cong M_P$.
- M_T preserves regularity, zero-dimensionality, and Stone-ness.
- M_T restricts to a functor on KRFr (compact regular frames) provided T preserves finiteness.
Some results

Theorem \((V., \text{Vickers \& Vosmaer})\)
Given a set functor \(T\) that preserves weak pullbacks:

- \(M_T\) provides a functor on the category \(\text{Fr}\) of frames.
- \(M_T\) generalizes Johnstone’s \(M\): \(M \cong M_P\).
- \(M_T\) preserves regularity, zero-dimensionality, and Stone-ness.
- \(M_T\) restricts to a functor on \(\text{KRFr}\) (compact regular frames) provided \(T\) preserves finiteness

Question

\[
\begin{array}{c}
\text{KRFr} \\
\overset{S}{\rightarrow}
\end{array}
\begin{array}{c}
\text{KHaus} \\
\overset{P}{\rightarrow}
\end{array}
\]
Some results

Theorem (V., Vickers & Vosmaer)
Given a set functor T that preserves weak pullbacks:

- M_T provides a functor on the category Fr of frames.
- M_T generalizes Johnstone’s M: $M \cong M_P$.
- M_T preserves regularity, zero-dimensionality, and Stone-ness.
- M_T restricts to a functor on $KRFr$ (compact regular frames) provided T preserves finiteness

Question

\[
\begin{array}{c}
M_T \\
\downarrow S \\
KRFr \quad S \\
\downarrow P \\
K_{\text{Haus}}
\end{array}
\]
Some results

Theorem (V., Vickers & Vosmaer)
Given a set functor T that preserves weak pullbacks:

- M_T provides a functor on the category Fr of frames.
- M_T generalizes Johnstone’s M: $M \simeq M_P$.
- M_T preserves regularity, zero-dimensionality, and Stone-ness.
- M_T restricts to a functor on $KRFr$ (compact regular frames) provided T preserves finiteness.

Question

```
M_T  KRFr  S  K Haus  P
```
Some results

Theorem (V., Vickers & Vosmaer)
Given a set functor T that preserves weak pullbacks:

- M_T provides a functor on the category Fr of frames.
- M_T generalizes Johnstone’s M: $M \cong M_P$.
- M_T preserves regularity, zero-dimensionality, and Stone-ness.
- M_T restricts to a functor on $KRFr$ (compact regular frames) provided T preserves finiteness.

Question

Describe the dual of M_T for an arbitrary set functor T!
Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks
Final Remarks

- Dualities are particularly useful if both categories are concrete
Final Remarks

- Dualities are particularly useful if both categories are concrete.
- Dualities can be used ‘on the other side’ to:
 - solve problems.
Final Remarks

- Dualities are particularly useful if both categories are concrete

- Dualities can be used ‘on the other side’ to
 - solve problems
 - isolate interesting concepts
Final Remarks

Dualities are particularly useful if both categories are concrete.

Dualities can be used ‘on the other side’ to:
- solve problems
- isolate interesting concepts
- trigger interesting questions
References

http://staff.fnwi.uva.nl/y.venema