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First step of an algebra of logic

Boolean Algebra (1847) : an algebra of logic!
B = (B,⊥,⊤,∧,∨, )

De Morgan’s Law (1864) : a formula of logic!
(x ∨ y) = x ∧ y , (x ∧ y) = x ∨ y .

Symbolic Computing : A merit of algebraic formalization!

(x ∨ y) ∧ (x ∧ y) = (x ∨ y) ∧ (x ∨ y)

= (x ∧ x) ∨ (x ∧ y) ∨ (y ∧ x) ∨ (y ∧ y)

= ⊥ ∨ (x ∧ y) ∨ (y ∧ x) ∨ ⊥ = (x ∧ y) ∨ (x ∧ y)
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Theory of Relational Calculus (1)

(1) A relation α from a set A into another set B is a subset of the
Cartesian product A× B and denoted by α : A ⇁ B.

A = {1, 2, 3}
B = {X ,Y ,Z}
α = {(1,X ), (1,Y ), (1,Z ), (3,X ), (3,Z )}
α ⊆ A× B
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Theory of Relational Calculus (2)

(2) The inverse relation α♯ : B ⇁ A of α is a relation such that
(b, a) ∈ α♯ if and only if (a, b) ∈ α.

We note α ⊆ A× B and α♯ ⊆ B × A.

(3) The composite α · β : A ⇁ C of α : A ⇁ B followed by β : B ⇁ C is
a relation such that (a, c) ∈ α · β if and only if there exists b ∈ B
with (a, b) ∈ α and (b, c) ∈ β.

We note α · β ⊆ A× C .
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Theory of Relational Calculus (3)

(4) As a relation of a set A into a set B is a subset of A× B, the
inclusion relation, union, intersection and difference of them are
available as usual and denoted by ⊑, ⊔, ⊓ and −, respectively.

(5) The identity relation idA : A ⇁ A is a relation with
idA = {(a, a) ∈ A× A |,a ∈ A}.

(6) The empty relation ϕ ⊆ A× B is denoted by 0AB . The entire set
A× B is called the universal relation and denoted by ∇AB .

(7) The one point set {∗} is denoted by I. We note that ∇II = idI .
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Theory of Relational Calculus (4)

Axiom

α · id = α
(α · β) · γ = α · (β · γ)
(α · β)♯ = β♯ · α♯

(α♯)♯ = α
If α ⊑ α′ then α♯ ⊑ α′♯.
(α · β) ⊔ γ ⊑ α · (β ⊓ (α♯ · γ))
...

Lemma

α · (β ⊔ γ) = (α · β) ⊔ (α · γ)
α · (β ⊓ γ) ⊑ (α · β) ⊓ (α · γ) ⊑ α · (β ⊓ (α♯ · α · γ))
α ⊑ α · α♯ · α
If β ⊑ β′ then α · β · γ ⊑ α · β′ · γ.
...
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composition of an injection and an injection is an injection
(relational formula)

Proposition

Let f : X → Y , g : Y → Z be injections. Then f · g : X → Z is an
injection.

(f · f ♯ ⊑ idX ) ∧ (g · g ♯ ⊑ idY ) ⇒ ((f · g) · (f · g)♯ ⊑ idX )

(f · g) · (f · g)♯
= (f · g) · (g ♯ · f ♯) (∵ (α · β)♯ = β♯ · α♯)
= f · (g · g ♯) · f ♯ (∵ associative law)
⊑ f · idY · f ♯ (∵ g · g ♯ ⊑ idY )
= f · f ♯ (∵ idY is unit)
⊑ idX (∵ f · f ♯ ⊑ idX )

Proof can be done using symbolic transformations.
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composition of an injection and an injection is an injection
(relational formula)

� �
Theorem injection_composite_rel_tactic

{X Y Z : eqType} {f : Rel X Y} {g : Rel Y Z}:

(f ・ (f #)) ⊆ Id X /\ (g ・ (g #)) ⊆ Id Y ->

((f ・ g) ・ ((f ・ g) #)) ⊆ Id X.

Proof.

Rel_simpl2.

Qed.� �
※ We can implement an automatic prover (Tactic).
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The long and winding load to the relational T-algebra

Algebra (Group,Ring,Field) → (Ω,E )-algebra (Universal Algebra)
→ T -algebra (SetT ) → relational T -algebra (Rel(T ))

Monad (Triple) (T , η, µ)

Kleisli Category (T , η, ◦)
Haskell’s monad (T , return, >>=)

ultrafilter monad (U , ηU , µU)
→ SetU ∼= CH → Rel(U) ∼= Top

Our goal is to refine those theories and introduce a formal proof using
relational calculus and Coq a proof assistant system.
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Category

Definition

A category C is defined by the following data and axioms.

Datum1 Obj(C): a class of objects in C.
Datum2 C(A,B): a class of C-morphisms for objects A and B.

Datum3 idA ∈ C(A,A): the identity morphism idA for any object A.

Datum4 g · f ∈ C(A,C ) is defined by f ∈ C(A,B) and g ∈ C(B,C ).

Axiom1 For any f ∈ C(A,B), g ∈ C(B,C ) and h ∈ C(C ,D),
h · (g · f ) = (h · g) · f .

Axiom2 For any f ∈ C(A,B), f · idA = f = idB · f .
Axiom3 If A ̸= A′ and B ̸= B ′ then C(A,B) ∩ C(A′,B ′) = ϕ.
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Functor

Definition

Let C and D be categories. A functor H : C → D is defined by the
following data and axioms.

Datum1 HA ∈ Obj(D) is defined by A ∈ Obj(C).
Datum2 Hf ∈ D(HA,HB) is defined by f ∈ C(A,B).
Axiom1 HidA = idHA.

Axiom2 For any f ∈ C(A,B) and g ∈ C(B,C ), H(g · f ) = Hg · Hf .
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Natural transformation

Definition

HA
Hf−−−→ HByαA

yαB

H ′A −−−→
H′f

H ′B

Let H,H ′ : C → D be functors. A natural transformation α : H → H ′ is
defined by the following datum and axiom.

Datum αA ∈ D(HA,H ′A) is defined by A ∈ Obj(C).
Axiom For any f ∈ C(A,B), the following diagram commutes.

Example

Set(sets and functions), Lin(linear spaces and linear maps), Grp(groups
and homomorphisms).
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Ω-algebra

Definition

Let Ωn be a label set of n-ary operators for n = 0, 1, . . . and
Ω = {Ωn|n = 0, 1, . . .}. For a given set X , δ = {δω|ω ∈ Ωn, n = 0, 1, . . .}
is a set of n-ary functions δω : X n → X . A pair (X , δ) is called a
Ω-algebra.
Let (X , δ) and (Y , γ) are Ω-algebras. A function f : X → Y is an
Ω-morphism if

f · δω(x1, x2, · · · , xn) = γω(f (x1), f (x2), · · · , f (xn))

for any ω ∈ Ωn.
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Ω-term

Definition

Let A be a set. The set ΩA of all ω-terms over A is defined as follows.

1 a ∈ A ⇒ a ∈ ΩA

2 ω ∈ Ωn, p1, . . . , pn ∈ ΩA ⇒ ω(p1, . . . , pn) ∈ ΩA.

Definition

Let V = {v1, v2, . . . , vn, . . .} be a set of variables. For two elements
e1, e2 ∈ ΩV , a set {e1, e2} is called Ω-equation. A pair (Ω,E ) of Ω and a
set E of Ω-equation is called an equational presentation.
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Example

Example

Let m(multiple), i(inverse) and e(unit) be labels of operators. Let
Ω0 = {e}, Ω1 = {i}, Ω2 = {m} and E = {{m(v1,m(v2, v3)),
m(m(v1, v2), v3)}, {m(v1, e), v1}, {m(e, v1), v1}, {m(v1, i(v1), e},
{m(i(v1), v1), e}}. Then a group X can be considered as an Ω-algebra.

Example

For a division function d(x , y) = m(x , i(y)) in a group, we define
Ω2 = {d} and

E = {{d(x , d(d(d(d(x , x), y), z), d(d(d(x , x), x), z))), y}}.

Then an (Ω,E)-algebra can be considered as a group[4].
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Ω-algebra

Example (The Total Description Map)

Let (X , δ) be an Ω-algebra. δ can be naturally extended to δ@ : ΩX → X .

δ@(x) = x(x ∈ X ),

δ@(ω(p1, · · · , pn)) = δω(δ
@(p1), · · · , δ@(pn))(ω ∈ Ωn).

Definition (Ω-algebra)

For a given Ω-algebra (X , δ) and an assignment r : V → X , an extension

map r
♯
: ΩV → X is defined by δ@ · Ωr . Let {e1, e2} be a Ω-equation. If

r
♯
(e1) = r

♯
(e2) for any r : V → X then we say (X , δ) satisfies {e1, e2}. If

an Ω-algebra satisfies all equations in E , then it is called as an
(Ω,E)-algebra.
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Ω-morphism

Definition

For a given set A, we define an equivalence relation EA over ΩA by

EA = {(p, q)|∀(X , δ) : Ω− algebra, ∀f : A → X , f
♯
(p) = f

♯
(q)}.

We denote a quotient set of ΩA by an equivalence relation EA as
TA = ΩA/EA. We denote an equivalence class including p ∈ ΩA as
ρA(p) = [p]. Then ρA : ΩA → TA.

Proposition

Let ωn ∈ Ωn, ωn([p1], · · · , [pn]) = [ωn(p1, · · · , pn)] and
ω = {ωn|n = 0, 1, . . .}. An Ω-algebra (TA, ω) is an (Ω,E )-algebra and
ρA : ΩA → TA is an Ω-morphism.
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(Ω,E )-algebra (1)

Definition

We denote (TA, ω) as TA and it is called a free (Ω,E )-algebra over A.

Proposition (The Universal Property of TA)

A function ηA : A → TA is defined by ηA(a) = [a]. For any (Ω,E )-algebra
(X , δ) and a function f : A → X, there exists a unique Ω-morphism

f
♯♯
: TA → (X , δ) of f such that f

♯♯ · ηA = f .
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Monad (Triple)

Definition (Algebraic theory and monad)

A monad type algebraic theory over a category C is a triple
T = (T , η, µ) satisfies followings.
T : C → C is a functor.
η : I → T , µ : TT → T is a natural transformation.
µA · ηTA = idTA, µA · TηA = idTA and µA · TµA = µA · µTA hold for any
A ∈ Obj(C).
A category CT of T -algebra and T -homomorphisms is defined by

Obj(CT ) = {(X , x) |X ∈ Obj(C), x : TX → X , x ·ηX = idX , x ·Tx = x ·µX}

and
CT ((X , x), (X ′, x ′)) = {f ∈ C(X ,X ′) | x ′ · Tf = f · x}.

We call an object in CT as T -algebra and a morphism as
T -homomorphism.
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Kleisli Category

Definition (Algebraic theory and Kleisli category)

A clone type algebraic theory over a category C is a triple T = (T , η, ◦)
satisfies followings.
T is a map T : Obj(C) → Obj(C).
A morphism ηA : A → TA is defined for any object A ∈ Obj(C).
◦ is a map ◦ : C(A,TB)× C(B,TC ) → C(A,TC ).
For any f ∈ C(A,B), f ∆ : A → TB is defined by f ∆ = A

f−−−→B
ηB−−−→TB.

For any morphisms α ∈ C(A,TB), β ∈ C(B,TC ) and γ ∈ C(C ,TD), the
followings hold.

(α ◦ β) ◦ γ = α ◦ (β ◦ γ)
α ◦ ηB = α

β ◦ α∆ = (βα)∆

A Kleisli category CT is a category defined by Obj(CT ) = Obj(C),
CT (A,B) = C(A,TB) and a composition of morphisms are defined by ◦.
We note the identity idA ∈ CT (A,A) is ηA : A → TA.
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Monad and Kleisli category

Theorem ([7])

There exists a bijective correspondence between a clone type algebraic
theory T = (T , η, ◦) and a monad type algebraic theory T = (T , η, µ).

Theorem

A category of (Ω,E )-algebra is isomorphic to a category of SetT defined
by its algebraic theory T = (T , η, ◦).
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Example

Example

Let Ω0 = {zero}, Ω1 = {succ}, Ω2 = {plus}, E = {{plus(zero, x), x},
{plus(succ(x), y), succ(plus(x , y))}}. For (Ω,E ), we have

(Ω,E ) ⊢ plus(succ(zero), zero) = succ(zero)
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(Ω,E )-algebra (2)

Definition

A clone category Set(Ω,E ) of (Ω,E ) is defined as follows.

Object Obj(Set(Ω,E )) = Obj(Set)

Morphism Set(Ω,E )(A,B) = Set(A,TB). For any α : A → TB and
β : B → TC , we define

(A
α−−−→B) ◦ (B β−−−→C ) = A

α−−−→TB
β
♯

−−−→TC .

Identity idA ∈ Set(Ω,E )(A,A) is idA = ηA : A → TA.

Proposition

Set(Ω,E ) is a category and Tϕ is the initial object in Set(Ω,E ).
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Haskell’s monad (1)

Let Set be the category of sets and functions.

Let List be the category of free monoids and homomorphisms.

Let A = Integer (the set of all integers).

Let F : Set → List be a functor creating a free monoid.
We note 1, 2, 3 ∈ A and [1, 2, 3] ∈ FA.
For f : A → B we define Ff : FA → FB as Ff = (map f ).
Ff[1,2,3] = (map f [1,2,3]) = [f(1),f(2),f(3)]

concat : FFA → FA is a natural transfromation.
concat[[1, 2], [3], [4, 5, 6]] = [1, 2, 3, 4, 5, 6]

return : A → FA is a natural transformation.
return x = [x ]
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Haskell’s monad (2)

Haskell’s monad is constructed by a triple (F , return, >>=).

F : Obj(Set) → Obj(Set).

return : A → FA (for A ∈ Obj(Set))

>>=: Set(A,FA) → Set(FA,FB)
We denote >>= (f )(la) as l >>= f .
la >>= f is defined as (concat (map f la)).

[1, 2, 3] >>= (λ x .[x , 2x ])

= concat (map (λ x .[x , 2x ]) [1, 2, 3])

= concat [[1, 2], [2, 4], [3, 6]]

= [1, 2, 2, 4, 3, 6]
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Haskell’s monad (3)

Haskell’s monad is a triple (F , return, >>=).

return : A → FA
>>=: (A → FB) → (FA → FB)

Kleisli category is a triple (F , η, ◦).
η : A → FA
◦ : (A → FB)× (B → FC ) → (A → FC )

Correspondence between (F , return, >>=) and (F , η, ◦).
η = return
α ◦ β = λ x .((α x) >>= β).
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Ultra filter monad

Let U : Set → Set be a functer, and ηU : 1Set → U and µU : U2 → U
natural transformations. For a set X , UX is a set of ultra filters over X .
For a set Y and a function Ψ : X → Y , we define UΨ : UX → UY ,
ηUX : X → UX , and µUX : U2X → UX by

UΨ(U) := {B ⊑ Y |Ψ♯ · B ∈ U}
ηUX (a) := {A ⊑ X | a ∈ A}

µUX (U ) := {A ⊑ X |πUX (A) ∈ U }.

where πUX (A) := {U ⊑ 2X |A ∈ U}.
We note U = (U, η, µ) is a monad over Set and called ultra filter monad.
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Relational T-algebra

Let T = (T , η, µ) a monad on Set. If x · Tx ⊑ x · µX，and 1X ⊑ x · ηX
holds for a pair (X , x) of a set X and a function x : TX ⇁ X , then (X , x)
is called a relational T-algebra. For two relational T-algebra (X , x), and
(X ′, x ′), A function f : (X , x) → (X ′, x ′)is called a relational T-morphism
if f · x ⊑ x ′ · Tf . We denote the category of relational T-algebra and
relational T-relations as Rel(T).

T 2X

Tx
�

µX //

⊑

TX

x
�

TX x
/ X

X

1X 00

ηX //

⊑

TX

x
�
X

TX
Tf /

x
�

⊑

TX ′

x ′

�
X

f
// X ′
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A proof using relational calculus

T̄ 2Y1

T̄ 2α
�

µY1 //

⊑

T̄Y1

T̄α
�

T̄ 2Y2
µY2

// T̄Y2

i.e.
µY2 · T̄ 2α ⊑ T̄α · µY1

can be proved as follows:

µY2 · T̄ 2α
= µY2 · T 2gα · (T 2fα)

♯

⊑ µY2 · T 2gα · (µRα)
♯ · (Tfα)♯ · µY1

⊑ µY2 · (µY2)
♯ · Tgα · (Tfα)♯ · µY1

⊑ Tgα · (Tfα)♯ · µY1

⊑ T̄α · µY1

Our motivation of formalization of mathematics using relational calculus
includes above proofs.Y.Mizoguchi Relational T-algebra 2018/02/14 30 / 34



Closure Space

Let X be a set, α, α′ : I ⇁ X subsets in X. Then Γ : 2X → 2X holds: (a1)，
(a2)，and (a3) then Γ is called a closure of X , further if it satisfies (b)
then its called a closure system.

(a1) α ⊑ Γα

(a2) α ⊑ α′ → Γα ⊑ Γα′

(a3) Γ2α = Γα

(b) Γ(α ⊔ α′) = Γα ⊔ Γα′

For closure systems (X , Γ), and (X ′, Γ′), a function f : (X , Γ) → (X ′, Γ′) is
continuous if for all α : I ⇁ X such that f · Γα ⊑ ∆(f · α).
We denote the closure space as Clos. and the category of topological
spaces and continuous functions as Top.
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Conclusion

Definition

We define C : Rel(T) → Clos as follows: For a relational T-algebra (X , x), we
define C (X , x) = (X , Γx), where Γx : 2X → 2X is defined for α : I ⇁ X by
Γxα = x · T̄α · ηI . We define Cf := f for a T-morphism f : (X , x) → (X ′, x ′).

Definition

We define J : Top → Rel(U) as follows: for a topological space (X , Γ)
J(X , Γ) := (X , rΓ). where，

(U , a) ∈ rΓ ↔ a ∈ limU (= ⊓F∈UΓF )

For a topological space (X ′, Γ′) and a continuous function Ψ : (X , Γ) → (X ′, Γ′),
we define JΨ := Ψ.

Theorem (Barr(1970))

C · J = 1Top, J · C = 1Rel(U), Rel(U) ∼= Top
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