
Catalan families in categories

Richard Garner

Macquarie University

14 February 2018

The Catalan numbers are given by Cn =
(
2n
n

)
/(n+ 1):

1, 1, 2, 5, 14, 42, . . .
and are the solution to many counting problems. . .

There are Cn plane binary trees with n+ 1 leaves:

There are Cn plane trees with n+ 1 vertices:

There are Cn Dyck words of length 2n:

UDUDUD UUDDUD UDUUDD UUDUDD UUUDDD

A Catalan family is a family of sets (An)n∈N with
|An| = Cn.

Stanley’s “Enumerative combinatorics” and its
addendum lists 207 such families, which he invites the
reader to show are indeed Catalan families

“by exhibiting a simple, elegant bijection
φ : A→ B for each pair of families”

making a total of 21, 321 bijections in all.

The point, of course, is that a Catalan family bears
more structure than its mere sequence of cardinalities.

Easy: plane trees versus Dyck words.

UDUDUD UUDDUD UDUUDD UUDUDD UUUDDD

Harder: binary trees versus Dyck words.

The aim of this talk is to explain this latter bijection in
terms of logic, algebra and category theory.

(joint work with Geoff Edington-Cheater).

The Catalan family of binary trees (Bn)n∈N is endowed
with the following structure:

1. There’s a constant e ∈ B0 given by the trivial
binary tree •;

2. There’s an operation
(–) ? (–) : Bn ×Bm → Bn+m+1 with

T1, T2 7→
T1 T2

•
.

And (Bn)n∈N is initial among families with such
structure.

The Catalan family of Dyck words (Dn)n∈N is endowed
with the following structure:

1. There’s a constant e ∈ D0—the empty Dyck word;

2. There’s an associative operation
(–) · (–) : Dn ×Dm → Dn+m with unit e, given by
concatenation of Dyck words;

3. There’s an operation s : Dn → Dn+1 given by
W 7→ UWD.

And (Dn)n∈N is initial among families with such
structure.

In fact, a further simplification is possible. If we take
the disjoint unions of these families, B = ΣnBn and
D = ΣnDn, then we still have universal
characterisations:

I The set B of binary trees underlies the initial
pointed magma. A pointed magma is a set
equipped with a constant e : 1→ X and a binary
operation ? : X ×X → X.

I The set D of Dyck words underlies the initial
motor. A motor is a set X equipped with unital
semigroup structure (e, ·) and a unary operation
s : X → X.

In both cases, the N-grading can be recovered from the
initiality.

I We make N into a pointed magma by taking e = 0
and n ? m = n+m+ 1. Because B is an initial
pointed magma, we induce a map B → N. Its
fibres are the Catalan family of binary trees.

I We make N into a motor by taking e = 0,
n ·m = n+m and s(n) = n+ 1. Because D is an
initial motor, we induce a map D → N. Its fibres
are the Catalan family of Dyck words.

To summarise:

I A pointed magma (X, e, ?) is a set endowed with a
constant and a binary operation;

I A motor (X, e, ·, s) is a set endowed with a unital
semigroup structure and a (non-homomorphic)
unary operation.

The Catalan question to be answered: why do the
initial pointed magma and the initial motor coincide?

Write PtMag and Motor for the categories of pointed
magmas and of motors. There is a forgetful functor

U : Motor→ PtMag

sending (X, e, ·, s) to (X, e, ?), where

x ? y = x · s(y) .

We can exploit this functor in various ways to show
that the initial motor and initial pointed magma
coincide.

One possibility is to show that the initial pointed
magma lifts along U to an initial motor. This is
interesting, but much more fun is the converse.

Proposition

U : Motor→ PtMag preserves the initial object.

The initial motor is the motor D = (D, e, ·, s) of Dyck
words. To show that UD is an initial pointed magma,
we must exhibit a unique homomorphism UD →M
into any other pointed magma.

The only reasonable way to construct this
homomorphism is by exploiting initiality of D in
Motor. So we need to build a motor out of the pointed
magma M .

Elements of the initial motor D are Dyck words:

W = UDUUDDUUDUDD

which we view as instructions for a stack machine for a
function of type M →M , as follows:

(1) Push the input element m ∈M onto the stack.

(2) If W is exhausted, output the top of the stack and
stop.

(3) Otherwise, read the next unconsumed element of
W .

I If it is U, push an e onto the stack;
I If it is D, pop x1, x2 off the stack, and push on x1 ? x2.

(4) Go to (2).

UDUUDDUUDUDD
m

UDUUDDUUDUDD
m

e

UDUUDDUUDUDD
m ? e

UDUUDDUUDUDD
m ? e

e

UDUUDDUUDUDD
m ? e

e

e

UDUUDDUUDUDD
m ? e

e ? e

UDUUDDUUDUDD
(m ? e) ? (e ? e)

UDUUDDUUDUDD
(m ? e) ? (e ? e)

e

UDUUDDUUDUDD
(m ? e) ? (e ? e)

e

e

UDUUDDUUDUDD
(m ? e) ? (e ? e)

e ? e

UDUUDDUUDUDD
(m ? e) ? (e ? e)

e ? e

e

UDUUDDUUDUDD
(m ? e) ? (e ? e)

(e ? e) ? e

UDUUDDUUDUDD
((m ? e) ? (e ? e)) ? ((e ? e) ? e)

So W = UDUUDDUUDUDD encodes the function

ϕW (m) = ((m ? e) ? (e ? e)) ? ((e ? e) ? e) .

Doing similarly for all W ∈ D, we get a function

ϕ(–) : D →MM .

Having constructed ϕ(–) in a hands-on way, we can now
reconstruct it much more efficiently . . .

Indeed, we have that:

I ϕε(m) = m;

I ϕW1W2
(m) = ϕW2

(ϕW1
(m));

I ϕUWD(m) = m ? ϕW (e);

so we can construct ϕ(–) by recursion over D.

Explicitly, to each pointed magma M , we associate the
motor M̃ = (MM , 1M , ·, s) where · and s are defined by

(ϕ · ψ)(m) = ψ(ϕ(m)) and s(ϕ)(m) = m ? ϕ(e) .

Because D is the initial motor, we induce a unique
motor homomorphism D → M̃ , which must equal ϕ(–)

since it satisfies the same defining clauses.

Proposition

U : Motor→ PtMag preserves the initial object.

Proof.

Let D be the initial motor of Dyck words. We show
that UD is an initial pointed magma.

For any M ∈ PtMag, we construct the motor M̃ as
above, and the unique homomorphism ϕ(–) : D → M̃ .
Applying U gives a map of pointed magmas

Uϕ(–) : UD → UM̃ .

We now check that evaluation at e is a map of pointed
magmas eve : UM̃ →M , and so obtain a composite:

uM : UD
ϕ(–)−−→ UM̃

eve−→M in PtMag.

It remains to show unicity: thus, if f : UD →M is
another map of pointed magmas, then f = uM .

To do so, we prove by induction on W that the
following commutes for all W ∈ D:

D
(–)·W

//

f
��

D
f
��

M
ϕW
//M

Evaluating at e ∈ D gives f(W) = ϕW (e) = uM(W)
for each W , whence f = uM .

We can immediately generalise this proof!

Consider a stack machine for sets endowed with:
I A constant e;
I A family of operations (fi)i∈I with

arity(fi) = ai + 1.

This receives instructions composed of commands:
I U: “push e”; and
I Di: “pop ai + 1 elements, apply fi, and push”.

(I.e., RPN for the constant e and operators (fi)i∈I .)

This language is the free unital semigroup M equipped
with operations (si)i∈I of respective arities ai. The
semigroup operation is still concatenation, while

si : M
ai →M

(W1, . . . ,Wai) 7→ UW1UW2 . . .UWaiDm .

The preceding proof now generalises as follows. We say:

I An ~a-motor is a unital semigroup endowed with a
family of functions (si)i∈I of respective arities ai.

I A pointed ~a-magma is a set endowed with a
constant e and a family of functions (fi)i∈I of
respectively arities ai + 1.

There is a forgetful functor U : ~a-Motor→ Pt-~a-Mag
sending (X, e, ·, (si)i∈I) to (X, e, (fi)i∈I) where

fi(x0, . . . , xai) = x0 · si(x1, . . . , xai) .

Proposition

U : ~a-Motor→ Pt-~a-Mag preserves the initial object.

A special case of this: let each ai = 0.

So each operation fi have arity 1, and each
corresponding si has arity 0. Then our result identifies:

I The initial unital semigroup endowed with I
constants, i.e., the free unital semigroup I∗ on I;
and

I The initial set endowed with a constant and I
unary operations: i.e., the initial set X with a
constant nil and a function cons : I ×X → X.

Even more special case: take I = 1. Then we identify
the free monoid on one generator with the free set with
a constant 0 and a unary operation s.

Further generalisation: let F : Set→ Set be an
endofunctor.

I An F -motor is a unital semigroup X endowed
with a function s : FX → X.

I A pointed F -magma is a set X endowed with a
constant e and a function ? : X × FX → X.

There is a forgetful functor U : F -Motor→ Pt-F -Mag
sending (X, e, ·, s) to (X, e, ?) where ? is the composite

X × FX id×s−−→ X ×X ·−→ X .

Proposition

U : F -Motor→ Pt-F -Mag preserves the initial object.

Further2 generalisation: let C be a cartesian closed
category and F : C → C an endofunctor.

I An F -motor is a unital semigroup X in C endowed
with a morphism s : FX → X.

I A pointed F -magma is an object X ∈ C endowed
with a constant e : 1→ X and a morphism
? : X × FX → X.

There is still a forgetful functor
U : F -Motor→ Pt-F -Mag.

Proposition

U : F -Motor→ Pt-F -Mag preserves the initial object.

Further3 generalisation: let C be a right-closed
monoidal category and F : C → C an endofunctor.

I An F -motor is a unital semigroup X in C endowed
with a morphism s : FX → X.

I A pointed F -magma is an object X ∈ C endowed
with a constant e : I → X and a morphism
? : X ⊗ FX → X.

There is still a forgetful functor
U : F -Motor→ Pt-F -Mag.

Proposition

U : F -Motor→ Pt-F -Mag preserves the initial object.

Questions:

I Are there interesting new instantiations of these
more general results?

I What does all of this have to do with the
Fiore–Plotkin–Turi theory of variable binding?

