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The Catalan numbers are given by C, = (*")/(n + 1):

n
1,1,2,5,14,42, . ..
and are the solution to many counting problems. . .

There are C,, plane binary trees with n + 1 leaves:

VNN NN

There are C,, plane trees with n + 1 vertices:

VoY

There are C),, Dyck words of length 2n:
ububub uUubDDUD UDUUDD UuUDUDD UUUDDD



A Catalan family is a family of sets (A, )nen with
|A,| = C,.

Stanley’s “Enumerative combinatorics” and its
addendum lists 207 such families, which he invites the
reader to show are indeed Catalan families

“by exhibiting a stmple, elegant bijection
¢: A — B for each pair of families”

making a total of 21, 321 bijections in all.

The point, of course, is that a Catalan family bears
more structure than its mere sequence of cardinalities.



Fasy: plane trees versus Dyck words.

NV Y

ubububD UubDDUD UDUUDD UUDUDD UUUDDD

Harder: binary trees versus Dyck words.

The aim of this talk is to explain this latter bijection in
terms of logic, algebra and category theory.

(joint work with Geoff Edington-Cheater).



The Catalan family of binary trees (B),)nen is endowed
with the following structure:

1. There’s a constant e € By given by the trivial
binary tree e;

2. There’s an operation
(7) * (7): Bn X Bm — Bn+m+1 with

T 15
Tl , T2 — \ /
°

And (B))nen is initial among families with such
structure.



The Catalan family of Dyck words (D),)nen is endowed
with the following structure:

1. There’s a constant e € Dy—the empty Dyck word;
2. There’s an associative operation
(<) - (=): Dy x Dy, = Dy, with unit e, given by
concatenation of Dyck words;
3. There’s an operation s: D,, — D, .1 given by
W — UWD.

And (D,,)nen is initial among families with such
structure.



In fact, a further simplification is possible. If we take
the disjoint unions of these families, B = ¥, B,, and
D =>,D,, then we still have universal
characterisations:

» The set B of binary trees underlies the initial
pointed magma. A pointed magma is a set
equipped with a constant e: 1 — X and a binary
operation x: X x X — X.

» The set D of Dyck words underlies the initial
motor. A motor is a set X equipped with unital
semigroup structure (e, -) and a unary operation

s: X — X.



In both cases, the N-grading can be recovered from the
initiality.

» We make N into a pointed magma by taking e = 0
and n*m = n+ m + 1. Because B is an initial
pointed magma, we induce a map B — N. Its
fibres are the Catalan family of binary trees.

» We make N into a motor by taking e = 0,
n-m=n+m and s(n) =n+ 1. Because D is an
initial motor, we induce a map D — N. Its fibres
are the Catalan family of Dyck words.



To summarise:

» A pointed magma (X, e, *) is a set endowed with a
constant and a binary operation;

» A motor (X,e, -, s) is a set endowed with a unital
semigroup structure and a (non-homomorphic)
unary operation.

The Catalan question to be answered: why do the
initial pointed magma and the initial motor coincide?



Write PtMag and Motor for the categories of pointed
magmas and of motors. There is a forgetful functor

U: Motor — PtMag
sending (X, e, -, s) to (X, e, *), where

rxy=1x-s(y) .

We can exploit this functor in various ways to show
that the initial motor and initial pointed magma
coincide.

One possibility is to show that the initial pointed
magma lifts along U to an initial motor. This is
interesting, but much more fun is the converse.



Proposition

U: Motor — PtMag preserves the initial object.

The initial motor is the motor D = (D, e, -, s) of Dyck
words. To show that UD is an initial pointed magma,
we must exhibit a unique homomorphism UD — M
into any other pointed magma.

The only reasonable way to construct this
homomorphism is by exploiting initiality of D in
Motor. So we need to build a motor out of the pointed
magma M.



Elements of the initial motor D are Dyck words:
W =UDUUDDUUDUDD

which we view as instructions for a stack machine for a
function of type M — M, as follows:

(1) Push the input element m € M onto the stack.

(2) If W is exhausted, output the top of the stack and
stop.

(3) Otherwise, read the next unconsumed element of

wW.
» If it is U, push an e onto the stack;
» If it is D, pop 1, x5 off the stack, and push on x7 % x».

(4) Go to (2).



UDUUDDUUDUDD



™

UDUUDDUUDUDD



UDUUDDUUDUDD

mxe



UDUUDDUUDUDD

mxe



UDUUDDUUDUDD

mxe



UDUUDDUUDUDD

mxe
exe



UDUUDDUUDUDD

(mx*e)*(exe)



UDUUDDUUDUDD

(mx*e)*(exe)

(&



UDUUDDUUDUDD

(mx*e)*(exe)



UDUUDDUUDUDD

(mx*e)*(exe)

exe



UDUUDDUUDUDD

(mx*e)*(exe)



UDUUDDUUDUDD
(mx*e)*(exe)
(exe)xe



UDUUDDUUDUDD

(m*e)x(exe))*((exe)xe)



So W = UDUUDDUUDUDD encodes the function

ew(m) = ((mxe)x(exe))x((exe)xe) .
Doing similarly for all W € D, we get a function

@(,): D—>MM.

Having constructed ¢ ) in a hands-on way, we can now
reconstruct it much more efficiently ...



Indeed, we have that:
> pe(m) = m;
> P, (m) - ¢W2(90W1 (m))7
> puwn(m) = m* pw(e);
so we can construct ¢ by recursion over D.

Explicitly, to each pointed magma M, we associate the
motor M = (M™ 1)/, s) where - and s are defined by

(p-9)(m) = P(p(m))  and  s(p)(m) =m=p(e) .

Because D is the initial motor, we induce a unique
motor homomorphism D — M, which must equal ¢ )
since it satisfies the same defining clauses.



Proposition
U: Motor — PtMag preserves the initial object.

Proof.

Let D be the initial motor of Dyck words. We show
that UD is an initial pointed magma.

For any M € PtMag, we construct the motor M as
above, and the unique homomorphism ¢ y: D — M.
Applying U gives a map of pointed magmas

Up(y: UD — UM .
We now check that evaluation at e is a map of pointed
magmas ev.: UM — M, and so obtain a composite:

uy: UD 25 UM &4 M in PtMag.



It remains to show unicity: thus, if f: UD — M is
another map of pointed magmas, then f = uy,.

To do so, we prove by induction on W that the
following commutes for all W € D:

p 9" p
! !
M 2Y 0

Evaluating at e € D gives f(W) = pw(e) = up (W)
for each W, whence f = uy,. H

We can immediately generalise this proof!



Consider a stack machine for sets endowed with:

» A constant e;

» A family of operations (f;);c; with

arity(f;) = a; + 1.

This receives instructions composed of commands:

» U: “push e”; and

» D;: “pop a; + 1 elements, apply f;, and push”.
(Le., RPN for the constant e and operators (fi)icr.)

This language is the free unital semigroup M equipped
with operations (s;);c; of respective arities a;. The
semigroup operation is still concatenation, while

S;. M% — M
(Wl,. . .,Wa) — UWlUWQ...UWaiDm .

i



The preceding proof now generalises as follows. We say:

» An d-motoris a unital semigroup endowed with a
family of functions (s;);c; of respective arities a;.

» A pointed a-magma is a set endowed with a
constant e and a family of functions (f;);c; of
respectively arities a; + 1.

There is a forgetful functor U: a-Motor — Pt-a-Mag
sending (X, e, -, (si)ier) to (X, e, (fi)ier) where

fi(zoy ... xa) = x0 - 8i(T1,...,T4,) -
Proposition

U: a-Motor — Pt-a-Mag preserves the initial object.



A special case of this: let each a; = 0.

So each operation f; have arity 1, and each
corresponding s; has arity 0. Then our result identifies:

» The initial unital semigroup endowed with [
constants, i.e., the free unital semigroup I* on I;
and

» The initial set endowed with a constant and [
unary operations: i.e., the initial set X with a
constant nil and a function cons: I x X — X.

Even more special case: take I = 1. Then we identify
the free monoid on one generator with the free set with
a constant 0 and a unary operation s.



Further generalisation: let F': Set — Set be an
endofunctor.

» An F-motoris a unital semigroup X endowed
with a function s: FF.X — X.

» A pointed F-magma is a set X endowed with a
constant e and a function x: X x FX — X.

There is a forgetful functor U: F-Motor — Pt-F-Mag
sending (X, e, -, s) to (X, e, *) where x is the composite

idxs

XxFX ——XxX->X.
Proposition

U: F-Motor — Pt-F-Mag preserves the initial object.



Further? generalisation: let C be a cartesian closed
category and F': C — C an endofunctor.

» An F-motor is a unital semigroup X in C endowed
with a morphism s: F.X — X.

» A pointed F'-magma is an object X € C endowed
with a constant e: 1 — X and a morphism
*: X X FX — X.

There is still a forgetful functor
U: F-Motor — Pt-F'-Mag.

Proposition

U: F-Motor — Pt-F'-Mag preserves the initial object.



Further® generalisation: let C be a right-closed
monoidal category and F': C — C an endofunctor.

» An F-motor is a unital semigroup X in C endowed
with a morphism s: F.X — X.

» A pointed F'-magma is an object X € C endowed
with a constant e: I — X and a morphism
*x: XQQFX — X.

There is still a forgetful functor
U: F-Motor — Pt-F'-Mag.

Proposition

U: F-Motor — Pt-F'-Mag preserves the initial object.



Questions:

» Are there interesting new instantiations of these
more general results?

» What does all of this have to do with the
Fiore-Plotkin—Turi theory of variable binding?



