L-S categories of simply-connected compact simple Lie groups of low rank

Norio Iwase and Mamoru Mimura

Abstract

We determine the L-S category of $S p(3)$ by showing that the 5 -fold reduced diagonal $\bar{\Delta}_{5}$ is given by ν^{2}, using a Toda bracket and a generalised cohomology theory h^{*} given by $h^{*}(X, A)=\{X / A, \mathcal{S}[0,2]\}$, where $\mathcal{S}[0,2]$ is the 3 -stage Postnikov piece of the sphere spectrum \mathcal{S}. This method also yields a general result that $\operatorname{cat}(S p(n)) \geq n+2$ for $n \geq 3$, which improves the result of Singhof [21].

1. Introduction

In this paper, we firstly discuss the L-S category of G_{2} as in Theorem 1.1 to illustrate the methods to be used later in the argument for $S p(3)$. Secondly, we prove $\operatorname{cat}(S p(3))=5$ as in Theorem 1.2, although an alternative proof of it can be deduced from public sources by Lucía Fernández-Suárez, Antonio Gómez-Tato, Jeffrey Strom and Daniel Tanré $[\mathbf{6}]$; the earlier version, however, appeared to the authors to contain an error ([5]). In fact, this is our starting point and motivation to write the present paper with a short and clear proof for $\operatorname{cat}(S p(3))=5$. Finally we show that this argument for $S p(3)$ partially extends to the general case as in Theorem 1.4.

From now on, each space is assumed to have the homotopy type of a CW complex. The (normalised) L-S category of X is the least number m such that there is a covering of X by $(m+1)$ open subsets each of which is contractible in X. Hence cat $\{*\}=0$. By Lusternik and Schnirelmann [14], the number of critical points of a smooth function on a manifold M is bounded below by cat $M+1$.
G. Whitehead showed that $\operatorname{cat}(X)$ coincides with the least number m such that the diagonal map $\Delta_{m+1}: X \rightarrow \prod^{m+1} X$ can be compressed into the 'fat wedge' $\mathrm{T}^{m+1}(X)$ (see Chapter X of $\left.[\mathbf{2 4}]\right)$. Since $\prod^{m+1} X / \mathrm{T}^{m+1}(X)$ is the $(m+1)$ fold smash product $\wedge^{m+1} X$, we have a weaker invariant wcat X, the weak $L-S$ category of X, given by the least number m such that the reduced diagonal map $\bar{\Delta}_{m+1}: X \rightarrow \wedge^{m+1} X$ is trivial. Hence w cat $X \leq \operatorname{cat} X$.

[^0]T. Ganea has also introduced a stronger invariant Cat X, the strong L - S category of X, by the least number m such that there is a space Y homotopy equivalent to X and a covering of Y by $(m+1)$ open subsets each of which is contractible in itself. Thus w cat $X \leq$ cat $X \leq \operatorname{Cat} X$. The weak and strong L-S categories usually give nice estimates of L-S category especially for manifolds. Actually, we do not know any example of a closed manifold whose strong L-S, L-S and weak L-S categories are not the same. The following problems are posed by Ganea [7]:
i) (Problem 1) Determine the L-S category of a manifold.
ii) (Problem 4) Describe the L-S category of a sphere-bundle over a sphere in terms of homotopy invariants of the characteristic map of the bundle.
Problem 1 has been studied by many authors, such as Singhof $[\mathbf{2 0}, \mathbf{2 1}, 22]$, Montejano [16], Schweizer [19], Gomez-Larrañaga and Gonzalez-Acuña [8], James and Singhof $[\mathbf{1 3}]$ and Rudyak $[\mathbf{1 7}, \mathbf{1 8}]$. In particular for compact simply-connected simple Lie groups, $\operatorname{cat}(S U(n+1))=n$ for $n \geq 1$ by [20], $\operatorname{cat}(S p(2))=3$ by [19] and $\operatorname{cat}(S p(n)) \geq n+1$ for $n \geq 2$ by [21]. It was also announced recently that Problem 4 was solved by the first-named author [10].

The method in the present paper also provides a result for G_{2}, and thus we have the following result.

ThEOREM 1.1. The following is the complete list of L-S categories of a simplyconnected compact simple Lie group of rank ≤ 2 :

Lie groups	$\operatorname{Sp}(1)=\operatorname{SU}(2)=\operatorname{Spin}(3)$	$\operatorname{SU}(3)$	$\operatorname{Sp}(2)=\operatorname{Spin}(5)$	G_{2}
wcat	1	2	3	4
cat	1	2	3	4
Cat	1	2	3	4

Although the above result is known for experts, we give a short proof for G_{2}. In fact, the result for G_{2} has never been published and is obtained in a similar but easier manner than the following result for $S p(3)$:

Theorem 1.2. $w \operatorname{cat}(S p(3))=\operatorname{cat}(S p(3))=\operatorname{Cat}(S p(3))=5$.
Remark 1.3. The argument given to prove Theorem 1.2 provides an alternative proof of Schweizer's result

$$
w \operatorname{cat}(S p(2))=\operatorname{cat}(S p(2))=\operatorname{Cat}(S p(2))=3 .
$$

The authors know that a similar result to Theorem 1.2 is obtained by Luciá Fernández-Suárez, Antonio Gómez-Tato, Jeffrey Strom and Daniel Tanré [6]. Our method is, however, much simpler and provides the following general result:

THEOREM 1.4. $n+2 \leq w \operatorname{cat}(S p(n)) \leq \operatorname{cat}(S p(n)) \leq \operatorname{Cat}(S p(n))$ for $n \geq 3$.
This improves Singhof's result: $\operatorname{cat}(S p(n)) \geq n+1$ for $n \geq 2$. We propose the following conjecture.

Conjecture 1.5. Let G be a simply-connected compact Lie group with $G=$ $\prod_{i=1}^{n} H_{i}$ where H_{i} is a simple Lie group. Then $w \operatorname{cat}(G)=\operatorname{cat}(G)=\operatorname{Cat}(G)$ and $\operatorname{cat}(G)=\sum_{i=1}^{n} \operatorname{cat}\left(H_{i}\right)$.

It might be difficult to say something about cat $S p(n)$, but an old conjecture says the following.

Conjecture 1.6. cat $S p(n)=2 n-1$ for all $n \geq 1$.
The authors thank John Harper for many helpful conversations and also the referee for giving them some comments, in particular, regarding Remark 2.4.

2. Proof of Theorem 1.1

Let us recall a CW decomposition of G_{2} from [15]:

$$
G_{2}=e^{0} \cup e^{3} \cup e^{5} \cup e^{6} \cup e^{8} \cup e^{9} \cup e^{11} \cup e^{14} .
$$

On the other hand, we have the following cone-decomposition.
TheOrem 2.1. There is a cone-decomposition of G_{2} as follows:

$$
\begin{aligned}
& G_{2}^{(5)}=\Sigma \mathbb{C} P^{2}, \quad S^{5} \cup e^{7} \rightarrow G_{2}^{(5)} \hookrightarrow G_{2}^{(8)} \\
& S^{8} \cup e^{10} \rightarrow G_{2}^{(8)} \hookrightarrow G_{2}^{(11)}, \quad S^{13} \rightarrow G_{2}^{(11)} \hookrightarrow G_{2}
\end{aligned}
$$

Proof. The first and the last formulae are obvious. So we show the 2nd and 3rd formulae: By taking the homotopy fibre F_{1} of $G_{2}^{(5)} \hookrightarrow G_{2}$, we can easily observe using the Serre spectral sequence that the fibre has a CW structure given by $S^{5} \cup$ $e^{7} \cup$ (cells in dimensions ≥ 7), where the cohomology generators corresponding to S^{5} and e^{7} are transgressive. Thus the mapping cone of $S^{5} \cup e^{7} \subset F_{1} \rightarrow G_{2}^{(5)}$ has the homotopy type of $G_{2}^{(8)}$. Similarly, the homotopy fibre F_{2} of $G_{2}^{(8)} \hookrightarrow G_{2}$ has a CW structure given by $S^{8} \cup e^{10} \cup$ (cells in dimensions ≥ 10), where the cohomology generators corresponding to S^{8} and e^{10} are transgressive. Thus the mapping cone of $S^{8} \cup e^{10} \subset F_{2} \rightarrow G_{2}^{(8)}$ has the homotopy type of $G_{2}^{(11)}$.
$Q E D$.
Corollary 2.1.1. $1 \geq \operatorname{Cat}\left(G_{2}^{(5)}\right) \geq \operatorname{Cat}\left(G_{2}^{(3)}\right), 2 \geq \operatorname{Cat}\left(G_{2}^{(8)}\right) \geq \operatorname{Cat}\left(G_{2}^{(6)}\right)$, $3 \geq \operatorname{Cat}\left(G_{2}^{(11)}\right) \geq \operatorname{Cat}\left(G_{2}^{(9)}\right)$ and $4 \geq \operatorname{Cat}\left(G_{2}\right)$.

Let us recall the following well-known fact due to Borel.
FACT 2.2. $\quad H^{*}\left(G_{2} ; \mathbb{Z} / 2 \mathbb{Z}\right) \cong \mathbb{Z} / 2 \mathbb{Z}\left[x_{3}, x_{5}\right] /\left(x_{3}^{4}, x_{5}^{2}\right)$.
Corollary 2.2.1. $\quad w \operatorname{cat}\left(G_{2}^{(5)}\right) \geq w \operatorname{cat}\left(G_{2}^{(3)}\right) \geq 1, w \operatorname{cat}\left(G_{2}^{(8)}\right) \geq w \operatorname{cat}\left(G_{2}^{(6)}\right)$ $\geq 2, w \operatorname{cat}\left(G_{2}^{(11)}\right) \geq w \operatorname{cat}\left(G_{2}^{(9)}\right) \geq 3$ and $w \operatorname{cat}\left(G_{2}\right) \geq 4$.

Corollaries 2.1.1 and 2.2.1 yield the following.
Theorem 2.3.

Skeleta	$G_{2}^{(3)}$	$G_{2}^{(5)}$	$G_{2}^{(6)}$	$G_{2}^{(8)}$	$G_{2}^{(9)}$	$G_{2}^{(11)}$	G_{2}
wcat	1	1	2	2	3	3	4
cat	1	1	2	2	3	3	4
Cat	1	1	2	2	3	3	4

This completes the proof of Theorem 1.1.
Remark 2.4. If we disregard the information of L-S categories of $C W$ filtrations of G_{2} and if we want only to deduce the equation $w \operatorname{cat}\left(G_{2}\right)=\operatorname{cat}\left(G_{2}\right)=$ $\operatorname{Cat}\left(G_{2}\right)=4$, we have an alternative short proof of it rather than the above elementary homotopy-theoretical argument: Since the manifold G_{2} is 2 -connected and of dimension 14 , we know that $\operatorname{cat}\left(G_{2}\right) \leq \frac{14}{3}$ by James $[\mathbf{1 1}]$. On the other hand, the cohomology algebra of G_{2} with coefficients in \mathbb{F}_{2} is well-known by Borel as in Fact 2.2, and hence its cup-length is 4 and we get immediately that $w \operatorname{cat}\left(G_{2}\right)=\operatorname{cat}\left(G_{2}\right)=4$. Concerning on the strong L-S category $\operatorname{Cat}\left(G_{2}\right)$ of a manifold G_{2}, we are in the range of validity of Corollary 5.9 of Clapp and Puppe [3] which implies immediately that $\operatorname{cat}\left(G_{2}\right)=\operatorname{Cat}\left(G_{2}\right)$.

3. The ring structure of $h^{*}(S p(3))$

To show Theorem 1.2, we introduce a cohomology theory $h^{*}(-)$ such that $h^{*}(X, A)$ $=\{X / A, \mathcal{S}[0,2]\}$, where $\mathcal{S}[0,2]$ is the spectrum obtained from the sphere spectrum \mathcal{S} by killing all homotopy groups of dimensions bigger than 2 . Then $\mathcal{S}[0,2]$ is a ring spectrum with $\pi_{*}^{S}(\mathcal{S}[0,2]) \cong \mathbb{Z}[\eta] /\left(\eta^{3}, 2 \eta\right)$, where η is the Hopf element in $\pi_{1}^{S}(\mathcal{S})=\pi_{1}^{S}(\mathcal{S}[0,2])$. Thus h^{*} is an additive and multiplicative cohomology theory with $h^{*}=h^{*}(p t) \cong \mathbb{Z}[\varepsilon] /\left(\varepsilon^{3}, 2 \varepsilon\right), \operatorname{deg} \varepsilon=-1$, where $\varepsilon \in h^{-1}=\pi_{0}^{S}\left(\Sigma^{-1} \mathcal{S}\right) \cong \pi_{1}^{S}(\mathcal{S})$ corresponds to η.

The characteristic map of the principal $S p(1)$-bundle

$$
S p(1) \hookrightarrow S p(2) \rightarrow S^{7}
$$

is given by $\omega=\left\langle\iota_{3}, \iota_{3}\right\rangle: S^{6} \rightarrow S p(1) \approx S^{3}$ the Samelson product of two copies of the identity $\iota_{3}: S^{3} \rightarrow S^{3}$, which is a generator of $\pi_{6}\left(S^{3}\right) \cong \mathbb{Z} / 12 \mathbb{Z}$. We state the following well-known fact (see Whitehead [24]).

FACT 3.1. Let $\mu: S^{3} \times S^{3} \rightarrow S^{3}$ be the multiplication of $S p(1) \approx S^{3}$. Then we have

$$
S p(2) \simeq S^{3} \cup_{\mu \circ(1 \times \omega)} S^{3} \times C\left(S^{6}\right)=S^{3} \cup_{\omega} C\left(S^{6}\right) \cup_{\hat{\mu} \circ\left[\iota_{3}, \omega\right]^{r}} C\left(S^{9}\right)
$$

where $\hat{\mu}: S^{3} \times S^{3} \cup_{* \times \omega}\{*\} \times C\left(S^{6}\right) \rightarrow S^{3} \cup_{\omega} C\left(S^{6}\right)$ is given by $\left.\hat{\mu}\right|_{S^{3} \times S^{3}}=\mu$ and $\left.\hat{\mu}\right|_{S^{3} \cup_{\omega} C\left(S^{6}\right)}=1$ the identity and $\left[\iota_{3}, \chi_{\omega}\right]^{r}: S^{9} \rightarrow S^{3} \times S^{3} \cup_{* \times \omega}\{*\} \times C\left(S^{6}\right)$ is the relative Whitehead product of the identity $\iota_{3}: S^{3} \rightarrow S^{3}$ and the characteristic map $\chi_{\omega}:\left(C\left(S^{6}\right), S^{6}\right) \rightarrow\left(S^{3} \cup e^{7}, S^{3}\right)$ of the 7 -cell. Thus we have $1 \geq \operatorname{Cat}\left(S p(2)^{(3)}\right)$, $2 \geq \operatorname{Cat}\left(S p(2)^{(7)}\right)$ and $3 \geq \operatorname{Cat}(S p(2))$.

Let $\nu: S^{7} \rightarrow S^{4}$ be the Hopf element whose suspension $\nu_{n}=\Sigma^{n-4} \nu(n \geq 4)$ gives a generator of $\pi_{n+3}\left(S^{n}\right) \cong \mathbb{Z} / 24 \mathbb{Z}$ for $n \geq 5$. Then we remark that $\omega_{n}=$ $\Sigma^{n-3} \omega(n \geq 3)$ satisfies the formula $\omega_{n}=2 \nu_{n} \in \bar{\pi}_{n+3}\left(S^{n}\right)$ for $n \geq 5$. By Zabrodsky [25], there is a natural splitting

$$
\Sigma\left(S^{3} \times S^{3} \cup\{*\} \times\left(S^{3} \cup_{\omega} e^{7}\right)\right) \simeq \Sigma S^{3} \vee \Sigma\left(S^{3} \cup_{\omega} e^{7}\right) \vee \Sigma S^{3} \wedge S^{3} .
$$

Then by the definition of a relative Whitehead product, the composition of $\left[\iota_{3}, \omega\right]^{r}$ with the projections to S^{3} and $S^{3} \cup_{\omega} e^{7}$ are trivial and the composition with the projection to $S^{3} \wedge S^{3}$ is given by $\iota_{3} \wedge \omega$. Thus we have

$$
\Sigma\left(\hat{\mu} \circ\left[\iota_{3}, \omega\right]^{r}\right)=H(\mu) \circ \Sigma\left(\iota_{3} \wedge \omega\right)= \pm \nu \circ \omega_{7}=2 \nu \circ \nu_{7} \neq 0
$$

in $\pi_{10}\left(S^{4}\right) \cong \mathbb{Z} / 24 \mathbb{Z}\left\langle\nu \circ \nu_{7}\right\rangle \oplus \mathbb{Z} / 2 \mathbb{Z}\left\langle\omega_{4} \circ \nu_{7}\right\rangle$, and hence we have

$$
\Sigma^{2}\left(\hat{\mu} \circ\left[\iota_{3}, \omega\right]^{r}\right)=\nu_{5} \circ \omega_{8}=2 \nu_{5}^{2}=0 \in \pi_{11}\left(S^{5}\right) \cong \mathbb{Z} / 2 \mathbb{Z}
$$

by Proposition 5.11 of Toda [23]. Thus we have the following well-known facts.
FACT 3.2. We have the following homotopy equivalences:

$$
\begin{aligned}
& S p(2) / S^{3} \simeq\left(S^{3} \times C\left(S^{6}\right)\right) /\left(S^{3} \times S^{6}\right)=S_{+}^{3} \wedge \Sigma\left(S^{6}\right)=S^{7} \vee S^{10} \\
& \Sigma^{2} S p(2) \simeq \Sigma^{2}\left(S^{3} \cup_{\omega} C\left(S^{6}\right)\right) \vee \Sigma^{2} S^{10}=S^{5} \cup_{\omega_{5}} C\left(S^{8}\right) \vee S^{12}
\end{aligned}
$$

FACT 3.3. The 11-skeleton $X_{3,2}^{(11)}$ of $X_{3,2}=S p(3) / S p(1)$ has the homotopy type of $S^{7} \cup_{\nu_{7}} e^{11}$.

Restricting the principal $S p(1)$-bundle $S p(1) \hookrightarrow S p(3) \xrightarrow{q} X_{3,2}$ to the subspace $X_{3,2}^{(11)}=S^{7} \cup_{\nu_{7}} e^{11}$ of $X_{3,2}$, we obtain the subspace $q^{-1}\left(X_{3,2}^{(11)}\right)=S p(3)^{(14)}$ of $S p(3)$ as the total space of the principal $S p(1)$-bundle $S p(1) \hookrightarrow S p(3)^{(14)} \xrightarrow{q} \Sigma\left(S^{6} \cup_{\nu_{6}} e^{10}\right)$
with a characteristic map $\phi: S^{6} \cup_{\nu_{6}} e^{10} \rightarrow S p(1) \approx S^{3}$, which is an extension of $\omega: S^{6} \rightarrow S^{3}$.

Proposition 3.4. We have the following homotopy equivalences:

$$
\begin{aligned}
& S p(3)^{(14)} \simeq S^{3} \cup_{\mu \circ(1 \times \phi)} S^{3} \times C\left(S^{6} \cup_{\nu_{6}} e^{10}\right) \\
& \quad=S^{3} \cup_{\phi} C\left(S^{6} \cup_{\nu_{6}} e^{10}\right) \cup C\left(S^{9} \cup_{\nu_{9}} e^{13}\right), \\
& \begin{aligned}
S p(3)^{(14)} / S^{3} \simeq & \left.\simeq S^{3} \times C\left(S^{6} \cup_{\nu_{6}} e^{10}\right)\right) /\left(S^{3} \times\left(S^{6} \cup_{\nu_{6}} e^{10}\right)\right) \\
\quad & =S_{+}^{3} \wedge \Sigma\left(S^{6} \cup_{\nu_{6}} e^{10}\right)=\left(S^{7} \cup_{\nu_{7}} e^{11}\right) \vee\left(S^{10} \cup_{\nu_{10}} e^{14}\right), \\
S p(n) \simeq & S p(n-1) \cup S p(n-1) \times C\left(S^{4 n-2}\right),
\end{aligned}
\end{aligned}
$$

where $S p(n-1) \subset S p(n)^{((2 n+1) n-11)}$ for $n \geq 3$, and hence

$$
\begin{aligned}
S p(n) / & S p(n)^{((2 n+1) n-11)} \\
\simeq & \left(S p(n-1) \times C\left(S^{4 n-2}\right)\right) /\left(S p(n-1) \times S^{4 n-2}\right. \\
& \left.\cup S p(n-1)^{((2 n-1)(n-1)-11)} \times C\left(S^{4 n-2}\right)\right) \\
= & \left(S p(n-1) / S p(n-1)^{((2 n-1)(n-1)-11)}\right) \wedge \Sigma S^{4 n-2} \\
= & \cdots=(S p(2) / \emptyset) \wedge \Sigma S^{10} \wedge \cdots \wedge \Sigma S^{4 n-2}=\left(S p(2)_{+}\right) \wedge S^{(2 n+1) n-10} \\
= & S^{(2 n+1) n-10} \vee S^{(2 n+1) n-10} \wedge S p(2) \\
= & S^{(2 n+1) n-10} \vee\left(S^{(2 n+1) n-7} \cup_{\omega_{(2 n+1) n-7}} e^{(2 n+1) n-3}\right) \vee S^{(2 n+1) n}, \quad \text { for } n \geq 3 .
\end{aligned}
$$

This yields the following result.
Proposition 3.5. Let $\hat{\mu}: S^{3} \times S^{3} \cup_{* \times \phi}\{*\} \times\left(S^{3} \cup_{\phi} C\left(S^{6} \cup_{\nu_{6}} e^{10}\right)\right) \rightarrow S^{3} \cup_{\phi}$ $C\left(S^{6} \cup_{\nu_{6}} e^{10}\right)$ be the map given by $\left.\hat{\mu}\right|_{S^{3} \times S^{3}}=\mu$ and $\left.\hat{\mu}\right|_{S^{3} \cup_{\phi} C\left(S^{6} \cup_{\nu_{6}} e^{10}\right)}=1$ the identity. Then we have the following cone decomposition of $\operatorname{Sp}(3)$:

$$
S p(3) \simeq S^{3} \cup_{\phi} C\left(S^{6} \cup_{\nu_{6}} e^{10}\right) \cup_{\hat{\mu} \circ \hat{\phi}} C\left(S^{9} \cup_{\nu_{9}} e^{13}\right) \cup C\left(S^{17}\right) \cup C\left(S^{20}\right)
$$

Corollary 3.5.1. $1 \geq \operatorname{Cat}\left(S p(3)^{(3)}\right), 2 \geq \operatorname{Cat}\left(S p(3)^{(7)}\right), 3 \geq \operatorname{Cat}\left(S p(3)^{(14)}\right)$ $\geq \operatorname{Cat}\left(S p(3)^{(11)}\right) \geq \operatorname{Cat}\left(S p(3)^{(10)}\right), 4 \geq \operatorname{Cat}\left(S p(3)^{(18)}\right)$ and $5 \geq \operatorname{Cat}(S p(3))$.

To determine the ring structures of $h^{*}(S p(2))$ and $h^{*}(S p(3))$, we show the following lemma.

Lemma 3.6. Let h^{*} be any multiplicative generalised cohomology theory and let $Q=S^{r} \cup_{f} e^{q}$ for a given map $f: S^{q-1} \rightarrow S^{r}$ with $h^{*}(Q) \cong h^{*}\langle 1, x, y\rangle$, where x and y correspond to the generators of $h^{*}\left(S^{r}\right) \cong h^{*}\left\langle x_{0}\right\rangle$ and $h^{*}\left(S^{q}\right) \cong h^{*}\left\langle y_{0}\right\rangle$. Then

$$
x^{2}= \pm \bar{H}_{1}^{h}(f) \cdot y \quad \text { in } \quad h^{*}(Q),
$$

where \bar{H}_{1}^{h} is the composition $\rho^{h} \circ \lambda_{2}$ of the Boardman-Steer Hopf invariant λ_{2} : $\pi_{q-1}\left(S^{r}\right) \rightarrow \pi_{q}\left(S^{2 r}\right)$ (see Boardman and Steer [2]) with the Hurewicz homomorphism $\rho^{h}: \pi_{q}\left(S^{2 r}\right) \rightarrow h^{2 r}\left(S^{q}\right) \cong h^{2 r-q}$ given by $\rho^{h}(g)=\Sigma_{*}^{-q} g^{*}\left(x_{0} \otimes x_{0}\right)$.

Remark 3.7. By $[\mathbf{2}], \lambda_{2}(f)$ is equal to $\Sigma h_{2}^{J}(f)$ the suspension of the 2nd James Hopf invariant $h_{2}^{J}(f)$. Hence by Remarks 2.5 and 4.3 of $[\mathbf{9}], \lambda_{2}(f)=\Sigma h_{2}(f)$ gives the Berstein-Hilton crude Hopf invariant $\bar{H}_{1}(f)$ (see Berstein-Hilton [1] or [9]).

Proof. By [2], $\bar{\Delta}: Q=S^{r} \cup_{f} e^{q} \rightarrow Q \wedge Q$ equals the composition $\left(i_{Q} \wedge i_{Q}\right) \circ \lambda_{2}(f) \circ q_{Q}$, where $q_{Q}: Q \rightarrow Q / S^{r}=S^{q}$ is the collapsing map and $i_{Q}: S^{r} \hookrightarrow Q$ is the bottomcell inclusion. Then we have $i_{Q}^{*}(x)=x_{0}$ and $q_{Q}^{*}\left(y_{0}\right)=y$, and hence we obtain

$$
\begin{aligned}
x^{2} & =\bar{\Delta}^{*}(x \otimes x)=\left(\left(i_{Q} \wedge i_{Q}\right) \circ \lambda_{2}(f) \circ q_{Q}\right)^{*}(x \otimes x) \\
& =q_{Q}^{*}\left(\lambda_{2}(f)^{*}\left(i_{Q}^{*}(x) \otimes i_{Q}^{*}(x)\right)\right)=q_{Q}^{*}\left(\lambda_{2}(f)^{*}\left(x_{0} \otimes x_{0}\right)\right)=q_{Q}^{*}\left(\Sigma_{*}^{q} \circ \rho^{h}\left(\lambda_{2}(f)\right)\right) .
\end{aligned}
$$

Since $\Sigma_{*}^{q} \circ \rho^{h}\left(\lambda_{2}(f)\right)$ is $\bar{H}_{1}^{h}(f) \cdot y_{0} \in h^{2 r}\left(S^{q}\right)$ up to sign, we proceed as

$$
x^{2}=q_{Q}^{*}\left(\pm \bar{H}_{1}^{h}(f) \cdot y_{0}\right)= \pm \bar{H}_{1}^{h}(f) \cdot q_{Q}^{*}\left(y_{0}\right)= \pm \bar{H}_{1}^{h}(f) \cdot y .
$$

This completes the proof of the lemma.
$Q E D$.
Using cohomology long exact sequences derived from the cell structure of $S p(3)$ and a direct calculation using Proposition 3.4 and Lemma 3.6 with the fact that $\lambda_{2}(\omega)=\eta_{6}$, we deduce the following result for the cohomology theory h^{*} considered at the beginning of this section.

ThEOREM 3.8. The ring structures of $h^{*}(S p(2))$ and $h^{*}(S p(3))$ are as follows:

$$
\begin{aligned}
& h^{*}(S p(2)) \cong h^{*}\left\{1, x_{3}, x_{7}, y_{10}\right\} \\
& h^{*}(S p(3)) \cong h^{*}\left\{1, x_{3}, x_{7}, x_{11}, y_{10}, y_{14}, y_{18}, z_{21}\right\}
\end{aligned}
$$

where the suffix of each additive generator indicates its degree in the graded algebras $h^{*}(S p(2))$ and $h^{*}(S p(3))$. Moreover we have $x_{3}^{2}=\varepsilon \cdot x_{7}, x_{7}^{2}=0, x_{11}^{2}=0, x_{3} x_{7}=$ $y_{10}, x_{3} x_{11}=y_{14}, x_{7} x_{11}=y_{18}$ and $x_{3} x_{7} x_{11}=z_{21}$.

REMARK 3.9. The two possible attaching maps: $S^{10} \rightarrow S^{3} \cup_{\omega} e^{7}$ of e^{11} found by Lucía Fernández-Suárez, Antonio Gómez-Tato and Daniel Tanré [4] are homotopic in $S p(2)$. So, we can not make any effective difference in the ring structure of $h^{*}(S p(3))$ by altering, as is performed in [6], the attaching map of e^{11}.

COROLLARY 3.9.1. $\quad w \operatorname{cat}\left(S p(3)^{(3)}\right) \geq 1, w \operatorname{cat}\left(S p(3)^{(7)}\right) \geq 2, w \operatorname{cat}\left(S p(3)^{(18)}\right)$ $\geq w \operatorname{cat}\left(S p(3)^{(14)}\right) \geq w \operatorname{cat}\left(S p(3)^{(11)}\right) \geq w \operatorname{cat}\left(S p(3)^{(10)}\right) \geq 3$ and $w \operatorname{cat}(S p(3)) \geq 4$, together with $w \operatorname{cat}\left(S p(2)^{(3)}\right) \geq 1$, $w \operatorname{cat}\left(S p(2)^{(7)}\right) \geq 2$ and $w \operatorname{cat}(S p(2)) \geq 3$.

Corollary 3.9.2.

Skeleta	$S p(2)^{(3)}$	$S p(2)^{(7)}$	$S p(2)$
wcat	1	2	3
cat	1	2	3
Cat	1	2	3

4. Proof of Theorem 1.2

By Facts 3.1 and 3.2, the smash products $\wedge^{4} S p(3)$ and $\wedge^{5} S p(3)$ satisfy

$$
\begin{aligned}
& \left(\wedge^{4} S p(3)\right)^{(19)} \simeq S^{12} \cup_{\omega_{12}} e^{16} \vee\left(S^{16} \vee S^{16} \vee S^{16}\right) \vee\left(S^{19} \vee S^{19} \vee S^{19} \vee S^{19}\right) \\
& \left(\wedge^{5} S p(3)\right)^{(22)} \simeq S^{15} \cup_{\omega_{15}} e^{19} \vee\left(S^{19} \vee S^{19} \vee S^{19}\right) \vee\left(S^{22} \vee S^{22} \vee S^{22} \vee S^{22}\right)
\end{aligned}
$$

Then we have the following two propositions.
Proposition 4.1. The bottom-cell inclusions $i: S^{12} \hookrightarrow \wedge^{4} S p(3)^{(18)}$ and i^{\prime} : $S^{15} \hookrightarrow \wedge^{5} S p(3)$ induce injective homomorphisms

$$
i_{*}: \pi_{18}\left(S^{12}\right) \rightarrow \pi_{18}\left(\wedge^{4} S p(3)^{(18)}\right) \quad \text { and } \quad i_{*}^{\prime}: \pi_{21}\left(S^{15}\right) \rightarrow \pi_{21}\left(\wedge^{5} S p(3)\right)
$$

respectively.

Proof. We have the following two exact sequences

$$
\begin{aligned}
& \pi_{18}\left(S^{15}\right) \xrightarrow{\psi} \pi_{18}\left(S^{12}\right) \xrightarrow{i_{*}} \pi_{18}\left(\wedge^{4} S p(3)^{(18)}\right) \rightarrow \pi_{18}\left(S^{16} \vee S^{16} \vee S^{16} \vee S^{16}\right), \\
& \pi_{21}\left(S^{18}\right) \xrightarrow{\psi^{\prime}} \pi_{21}\left(S^{15}\right) \xrightarrow{i_{*}^{\prime}} \pi_{21}\left(\wedge^{5} S p(3)\right) \rightarrow \pi_{21}\left(S^{19} \vee S^{19} \vee S^{19} \vee S^{19} \vee S^{19}\right),
\end{aligned}
$$

where $\pi_{18}\left(S^{12}\right) \cong \pi_{21}\left(S^{15}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \nu_{15}^{2}$ and ψ and ψ^{\prime} are induced from $\omega_{12}=2 \nu_{12}$ and $\omega_{15}=2 \nu_{15}$. Thus ψ and ψ^{\prime} are trivial, and hence i_{*} and i_{*}^{\prime} are injective. $Q E D$.

Proposition 4.2. The collapsing maps $q: S p(3)^{(18)} \rightarrow S p(3)^{(18)} / S p(3)^{(14)}=$ S^{18} and $q^{\prime}: S p(3) \rightarrow S p(3) / S p(3)^{(18)}=S^{21}$ induce injective homomorphisms

$$
\begin{aligned}
& q^{*}: \pi_{18}\left(\wedge^{4} S p(3)^{(18)}\right) \rightarrow\left[S p(3)^{(18)}, \wedge^{4} S p(3)^{(18)}\right] \quad \text { and } \\
& q^{\prime *}: \pi_{21}\left(\wedge^{5} S p(3)\right) \rightarrow\left[S p(3), \wedge^{5} S p(3)\right]
\end{aligned}
$$

respectively.
Proof. Firstly, we show that $q^{\prime *}$ is injective: Since we have $\left[S p(3), \wedge^{5} S p(3)\right]=$ $\left[\left(S^{14} \cup_{\omega_{14}} e^{18}\right) \vee S^{21}, \wedge^{5} S p(3)\right]=\left[S^{14} \cup_{\omega_{14}} e^{18}, \wedge^{5} S p(3)\right] \oplus \pi_{21}\left(\wedge^{5} S p(3)\right)$ by Proposition $3.4, q^{\prime *}$ is clearly injective.

Secondly, we show that q^{*} is injective: Similarly we have $\left[S p(3)^{(18)}, \wedge^{4} S p(3)^{(18)}\right]$ $=\left[S^{14} \cup_{\omega_{14}} e^{18}, \wedge^{4} S p(3)^{(18)}\right]$ by Proposition 3.4. Thus it is sufficient to show that $\bar{q}^{*}: \pi_{18}\left(\wedge^{4} S p(3)^{(18)}\right) \rightarrow\left[S^{14} \cup_{\omega_{14}} e^{18}, \wedge^{4} S p(3)^{(18)}\right]$ is injective, where $\bar{q}: S^{14} \cup_{\omega_{14}}$ $e^{18} \rightarrow S^{18}$ is the collapsing map. In the exact sequence

$$
\pi_{15}\left(\wedge^{4} S p(3)^{(18)}\right) \xrightarrow{\omega_{15^{*}}} \pi_{18}\left(\wedge^{4} S p(3)^{(18)}\right) \xrightarrow{\bar{q}^{*}}\left[S^{14} \cup_{\omega_{14}} e^{18}, \wedge^{4} S p(3)^{(18)}\right]
$$

we know that $\pi_{15}\left(\wedge^{4} S p(3)^{(18)}\right) \cong \pi_{15}\left(S^{12} \cup_{\omega_{12}} e^{16}\right)=\mathbb{Z} / 2 \mathbb{Z}$ is generated by the composition of ν_{12} and the bottom-cell inclusion. Since $\nu_{12} \circ \omega_{15}=0 \in \pi_{18}\left(S^{12}\right)$, the homomorphism $\omega_{15}{ }^{*}$ is trivial, and hence \bar{q}^{*} is injective.
$Q E D$.
Then the following lemma implies that $\bar{\Delta}_{4}$ and $\bar{\Delta}_{5}$ are non-trivial by Propositions 4.1 and 4.2 .

Lemma 4.3. We obtain that $\bar{\Delta}_{4}=i \circ \nu_{12}^{2} \circ q: S p(3)^{(18)} \rightarrow \wedge^{4} S p(3)^{(18)}$ and that $\bar{\Delta}_{5}=i^{\prime} \circ \nu_{15}^{2} \circ q^{\prime}: S p(3) \rightarrow \wedge^{5} S p(3)$.
Proof. Firstly, we show that $\bar{\Delta}_{4}=i \circ \nu_{12}^{2} \circ q$ implies $\bar{\Delta}_{5}=i^{\prime} \circ \nu_{15}^{2} \circ q^{\prime}$. For dimensional reasons, the image of $\bar{\Delta}: S p(3) \rightarrow S p(3) \wedge S p(3)$ is in $S p(3)^{(18)} \wedge S p(3)^{(14)} \cup$ $S^{3} \wedge S p(3)^{(18)}$. Since $S p(3)^{(14)}$ is of cone-length 3 by Corollary 3.5.1, the restriction of the map $1 \wedge \bar{\Delta}_{4}$ to $S p(3)^{(18)} \wedge S p(3)^{(14)}$ is trivial. Thus $\bar{\Delta}_{5}$ is given as

$$
\bar{\Delta}_{5}: S p(3) \rightarrow S^{3} \wedge\left(S p(3)^{(18)} / S p(3)^{(14)}\right) \xrightarrow{1 \wedge\left(i \circ \nu_{12}^{2}\right)} \wedge^{5} S p(3)^{(18)} \subset \wedge^{5} S p(3)
$$

since $\bar{\Delta}_{4}=i \circ \nu_{12}^{2} \circ q$. Thus we observe that $\bar{\Delta}_{5}=i^{\prime} \circ\left(\iota_{3} \wedge \nu_{12}^{2}\right) \circ q^{\prime}=i^{\prime} \circ \nu_{15}^{2} \circ q^{\prime}$.
So, we are left to show $\bar{\Delta}_{4}=i \circ \nu_{12}^{2} \circ q$. For dimensional reasons, the image of $\bar{\Delta}: S p(3)^{(18)} \rightarrow S p(3)^{(18)} \wedge S p(3)^{(18)}$ is in $S p(3)^{(14)} \wedge S^{3} \cup S p(3)^{(11)} \wedge S p(3)^{(7)} \cup$ $S p(3)^{(7)} \wedge S p(3)^{(11)} \cup S^{3} \wedge S p(3)^{(14)}$. Since $S^{3} \cup_{\phi} C\left(S^{6} \cup_{\nu_{6}} e^{10}\right)$ is of cone-length 2 by Corollary 3.5.1, the restriction of $\bar{\Delta}_{3}: S p(3)^{(18)} \rightarrow \wedge^{3} S p(3)^{(18)}$ to $S^{3} \cup_{\phi} C\left(S^{6} \cup_{\nu_{6}} e^{10}\right)$ is trivial. Hence $1 \wedge \bar{\Delta}_{3}: S p(3)^{(14)} \wedge S^{3} \cup S p(3)^{(11)} \wedge S p(3)^{(7)} \cup S p(3)^{(7)} \wedge S p(3)^{(11)} \cup$ $S^{3} \wedge S p(3)^{(14)} \rightarrow \wedge^{4} S p(3)^{(18)}$ is given as
$1 \wedge \bar{\Delta}_{3}:(S p(3) \wedge S p(3))^{(18)} \xrightarrow{\alpha}\left(S^{3} \cup_{\omega} e^{7}\right) \wedge S^{10} \cup S^{3} \wedge\left(S^{10} \cup_{\nu_{10}} e^{14}\right) \xrightarrow{1 \wedge \beta} \wedge^{4}\left(S^{3} \cup_{\omega} e^{7}\right)$.
The map $\alpha \circ \bar{\Delta}: S p(3)^{(18)} \rightarrow\left(S^{3} \cup_{\omega} e^{7}\right) \wedge S^{10} \cup S^{3} \wedge\left(S^{10} \cup_{\nu_{10}} e^{14}\right)$ is given as

$$
\alpha \circ \bar{\Delta}: S p(3)^{(18)} \rightarrow S^{14} \cup_{\omega_{14}} e^{18} \rightarrow\left(S^{3} \cup_{\omega} e^{7}\right) \wedge S^{10} \cup S^{3} \wedge\left(S^{10} \cup_{\nu_{10}} e^{14}\right)
$$

Collapsing the subspace $S^{3} \wedge\left(S^{10} \cup_{\nu_{10}} e^{14}\right)$ of $\left(S^{3} \cup_{\omega} e^{7}\right) \wedge S^{10} \cup S^{3} \wedge\left(S^{10} \cup_{\nu_{10}} e^{14}\right)$, we obtain a map

$$
q^{\prime} \circ \alpha \circ \bar{\Delta}: S p(3)^{(18)} \rightarrow S^{7} \wedge S^{10}
$$

where $q^{\prime}:\left(S^{3} \cup_{\omega} e^{7}\right) \wedge S^{10} \cup S^{3} \wedge\left(S^{10} \cup_{\nu_{10}} e^{14}\right) \rightarrow S^{3} \wedge S^{10}$ is the collapsing map. For dimensional reasons, $q^{\prime} \circ \alpha \circ \bar{\Delta}$ is as follows:

$$
q^{\prime} \circ \alpha \circ \bar{\Delta}: S p(3)^{(18)} \rightarrow S p(3)^{(18)} / S p(3)^{(14)}=S^{18} \xrightarrow{\gamma} S^{7} \wedge S^{10}
$$

If γ were non-trivial, then γ would be $\eta_{17}: S^{18} \rightarrow S^{17}$, and hence we should have $x_{7} y_{10}=\varepsilon \cdot y_{18} \neq 0$. However, from the ring structure of $h^{*}(S p(3))$ given in Theorem 3.8, we know $x_{7} y_{10}=0$, and hence we obtain $\gamma=0$. Then the image of $\alpha \circ \bar{\Delta}$ is in the subspace $S^{3} \wedge\left(S^{10} \cup_{\nu_{10}} e^{14}\right)$ of $\left(S^{3} \cup_{\omega} e^{7}\right) \wedge S^{10} \cup S^{3} \wedge\left(S^{10} \cup_{\nu_{10}} e^{14}\right)$, since they are 12-connected. Hence $\bar{\Delta}_{4}=\left(1 \wedge \bar{\Delta}_{3}\right) \circ \bar{\Delta}$ is given as

$$
\bar{\Delta}_{4}: S p(3)^{(18)} \xrightarrow{\alpha 0 \bar{\Delta}} S^{3} \wedge\left(S^{10} \cup_{\nu_{10}} e^{14}\right) \xrightarrow{1 \wedge \beta} S^{3} \wedge\left(\wedge^{3}\left(S^{3} \cup_{\omega} e^{7}\right)\right)^{(15)} \subset \wedge^{4} S p(3)^{(18)}
$$

where $\left(\wedge^{3}\left(S^{3} \cup_{\omega} e^{7}\right)\right)^{(15)}$ is $\left(S^{3} \cup_{\omega} e^{7}\right) \wedge S^{3} \wedge S^{3} \cup S^{3} \wedge\left(S^{3} \cup_{\omega} e^{7}\right) \wedge S^{3} \cup S^{3} \wedge S^{3} \wedge\left(S^{3} \cup_{\omega}\right.$ $\left.e^{7}\right)$. Collapsing the subspace $\wedge^{3} S^{3}$ of $\left(\wedge^{3}\left(S^{3} \cup_{\omega} e^{7}\right)\right)^{(15)}$, we obtain a map

$$
q^{\prime \prime} \circ \beta: S^{10} \cup_{\nu_{10}} e^{14} \rightarrow S^{7} \wedge S^{3} \wedge S^{3} \cup S^{3} \wedge S^{7} \wedge S^{3} \cup S^{3} \wedge S^{3} \wedge S^{7}
$$

where $q^{\prime \prime}:\left(\wedge^{3}\left(S^{3} \cup_{\omega} e^{7}\right)\right)^{(15)} \rightarrow S^{7} \wedge S^{3} \wedge S^{3} \cup S^{3} \wedge S^{7} \wedge S^{3} \cup S^{3} \wedge S^{3} \wedge S^{7}$ is the collapsing map. For dimensional reasons, $q^{\prime \prime} \circ \beta$ is given as

$$
q^{\prime \prime} \circ \beta: S^{10} \cup_{\nu_{10}} e^{14} \rightarrow S^{14} \xrightarrow{\gamma^{\prime}} S^{7} \wedge S^{3} \wedge S^{3} \vee S^{3} \wedge S^{7} \wedge S^{3} \vee S^{3} \wedge S^{3} \wedge S^{7}
$$

If γ^{\prime} were non-trivial, then its projection to S^{13} would be $\eta_{13}: S^{14} \rightarrow S^{13}$, and hence we should have $x_{3}^{2} x_{7}=\varepsilon \cdot y_{14} \neq 0$. However, from the ring structure of $h^{*}(S p(3))$ given in Theorem 3.8, we know $x_{3}^{2} x_{7}=\varepsilon \cdot x_{7}^{2}=0$, and hence we obtain $\gamma^{\prime}=0$. Hence the image of β lies in the subspace $\wedge^{3} S^{3}$ of $\wedge^{3} S p(3)^{(18)}$.

On the other hand, for dimensional reasons, $\alpha_{\circ} \bar{\Delta}$ is given as

$$
\alpha \circ \bar{\Delta}: S p(3)^{(18)} \rightarrow S^{14} \cup_{\omega_{14}} e^{18} \xrightarrow{\alpha^{\prime}} S^{3} \wedge\left(S^{10} \cup_{\nu_{10}} e^{14}\right)
$$

where the restriction $\left.\alpha^{\prime}\right|_{S^{14}}$ is given as

$$
\left.\alpha^{\prime}\right|_{S^{14}}: S^{14} \xrightarrow{\gamma^{\prime \prime}} S^{13} \hookrightarrow S^{3} \wedge\left(S^{10} \cup_{\nu_{10}} e^{14}\right) .
$$

If it were non-trivial, then $\gamma^{\prime \prime}$ would be $\eta_{13}: S^{14} \rightarrow S^{13}$, and hence we should have $x_{3} y_{10}=\varepsilon \cdot y_{14} \neq 0$. However, from the ring structure of $h^{*}(S p(3))$ given in Theorem 3.8, we know $x_{3} y_{10}=x_{3}^{2} x_{7}=\varepsilon \cdot x_{7}^{2}=0$, and hence $\gamma^{\prime \prime}=0$. Hence $\alpha \circ \bar{\Delta}$ is given as

$$
\alpha \circ \bar{\Delta}: S p(3)^{(18)} \xrightarrow{q} S^{18} \xrightarrow{\alpha^{\prime \prime}} S^{3} \wedge\left(S^{10} \cup_{\nu_{10}} e^{14}\right)
$$

and hence $\bar{\Delta}_{4}$ is given as

$$
\bar{\Delta}_{4}: S p(3)^{(18)} \xrightarrow{q} S^{18} \xrightarrow{\alpha^{\prime \prime}} S^{3} \wedge\left(S^{10} \cup_{\nu_{10}} e^{14}\right) \xrightarrow{1 \wedge \beta} S^{3} \wedge\left(\wedge^{3} S^{3}\right) \stackrel{i}{\hookrightarrow} \wedge^{4} S p(3)^{(18)} .
$$

Now, we are ready to determine $\bar{\Delta}_{4}$: By Theorem 3.8, we know $x_{3}^{2} x_{11}=\varepsilon \cdot z_{18}$ and $x_{3}^{2}=\varepsilon \cdot x_{7}$, hence $\alpha^{\prime \prime}: S^{18} \rightarrow S^{13} \cup_{\nu_{13}} e^{17}$ is a co-extension of $\eta_{16}: S^{17} \rightarrow S^{16}$ on $S^{13} \cup_{\nu_{13}} e^{17}$ and $1 \wedge \beta: S^{13} \cup_{\nu_{13}} e^{17} \rightarrow S^{12}$ is an extension of $\eta_{12}: S^{13} \rightarrow S^{12}$. Thus the composition $(1 \wedge \beta) \circ \alpha^{\prime \prime}$ is an element of the Toda bracket $\left\{\eta_{12}, \nu_{13}, \eta_{16}\right\}$ which contains a single element ν_{12}^{2} by Lemma 5.12 of [23], and hence $\bar{\Delta}_{4}=i \circ \nu_{12}^{2} \circ q . Q E D$.

Corollary 4.3.1. $w \operatorname{cat}\left(S p(3)^{(18)}\right) \geq 4$ and $w \operatorname{cat}(S p(3)) \geq 5$.
This yields the following result.

Theorem 4.4.

Skeleta	$S p(3)^{(3)}$	$S p(3)^{(7)}$	$S p(3)^{(10)}$	$S p(3)^{(11)}$	$S p(3)^{(14)}$	$S p(3)^{(18)}$	$S p(3)$
wcat	1	2	3	3	3	4	5
cat	1	2	3	3	3	4	5
Cat	1	2	3	3	3	4	5

This completes the proof of Theorem 1.2.

5. Proof of Theorem 1.4

We know that for $n \geq 4$,

$$
\begin{aligned}
& S p(n)^{(16)}=S p(4)^{(15)}=S p(3)^{(14)} \cup e^{15}, \\
& S p(n)^{(19)}= \begin{cases}S p(4)^{(15)} \cup\left(e^{18} \vee e^{18}\right) & n=4, \\
S p(4)^{(15)} \cup\left(e^{18} \vee e^{18}\right) \cup e^{19} & n \geq 5,\end{cases} \\
& S p(n)^{(21)}=S p(n)^{(19)} \cup e^{21}
\end{aligned}
$$

and that $w \operatorname{cat}\left(S p(3)^{(14)}\right)=\operatorname{cat}\left(S p(3)^{(14)}\right)=\operatorname{Cat}\left(S p(3)^{(14)}\right)=3$. Firstly, we show the following.

Proposition 5.1. $\quad w \operatorname{cat}\left(S p(4)^{(15)}\right)=3$.
Proof. Since the pair $\left(S p(4)^{(15)}, S p(3)^{(11)}\right)$ is 13 -connected, $w \operatorname{cat}\left(S p(3)^{(11)}\right)=3$ implies that $\bar{\Delta}_{3}: S p(4)^{(15)} \rightarrow \wedge^{3} S p(4)^{(15)}$ is non-trivial, and hence $w \operatorname{cat}\left(S p(4)^{(15)}\right) \geq$ 3. Thus we are left to show $w \operatorname{cat}\left(S p(4)^{(15)}\right) \leq 3$: For dimensional reasons, $\bar{\Delta}_{4}=$ $(\bar{\Delta} \wedge \bar{\Delta}) \circ \bar{\Delta}: S p(4)^{(15)} \rightarrow \wedge^{4} S p(4)^{(15)}$ is given as

$$
\bar{\Delta}_{4}: S p(4)^{(15)} \xrightarrow{\alpha_{0}} S p(4)^{(11)} \wedge S p(4)^{(11)} \xrightarrow{\bar{\Delta} \wedge \bar{\Delta}} \wedge^{4} S p(4)^{(11)} \hookrightarrow \wedge^{4} S p(4)^{(15)}
$$

for some α_{0}. By Fact $3.2, \bar{\Delta}: S p(4)^{(11)} \rightarrow \wedge^{2} S p(4)^{(11)}$ is given as

$$
\bar{\Delta}: S p(4)^{(11)} \xrightarrow{\beta_{0}}\left(S^{7} \vee S^{10}\right) \cup e^{11} \xrightarrow{\gamma_{0}} \wedge^{2}\left(S^{3} \cup_{\omega} e^{7}\right) \hookrightarrow \wedge^{2} S p(4)^{(11)},
$$

for some β_{0} and γ_{0}. Then for dimensional reasons, $\left(\beta_{0} \wedge \beta_{0}\right) \circ \alpha_{0}: S p(4)^{(15)} \rightarrow$ $\left(\left(S^{7} \vee S^{10}\right) \cup e^{11}\right) \wedge\left(\left(S^{7} \vee S^{10}\right) \cup e^{11}\right)$ and $\left.\left(\gamma_{0} \wedge \gamma_{0}\right)\right|_{S^{7} \wedge S^{7}}: S^{7} \wedge S^{7} \rightarrow \wedge^{4}\left(S^{3} \cup_{\omega} e^{7}\right)$ are respectively equal to the compositions

$$
\begin{aligned}
& \left(\beta_{0} \wedge \beta_{0}\right) \circ \alpha_{0}: S p(4) \xrightarrow{(15)} \xrightarrow{\alpha_{0}^{\prime}} S^{7} \wedge S^{7} \hookrightarrow\left(\left(S^{7} \vee S^{10}\right) \cup e^{11}\right) \wedge\left(\left(S^{7} \vee S^{10}\right) \cup e^{11}\right), \\
& \left.\left(\gamma_{0} \wedge \gamma_{0}\right)\right|_{S^{7} \wedge S^{7}}: S^{7} \wedge S^{7} \xrightarrow{\gamma_{0}^{\prime}} \wedge^{4} S^{3} \hookrightarrow \wedge^{4}\left(S^{3} \cup_{\omega} e^{7}\right),
\end{aligned}
$$

for some α_{0}^{\prime} and γ_{0}^{\prime}. Hence $\bar{\Delta}_{4}: S p(4)^{(15)} \rightarrow \Lambda^{4} S p(4)^{(15)}$ is given as

$$
\bar{\Delta}_{4}: S p(4)^{(15)} \xrightarrow{\alpha_{0}^{\prime}} S^{7} \wedge S^{7} \xrightarrow{\gamma_{0}^{\prime}} \wedge^{4} S^{3} \hookrightarrow \wedge^{4} S p(4)^{(15)}
$$

where $S p(4)^{(15)}=S p(3)^{(14)} \cup e^{15}$. By Theorem 3.8, $x_{7}^{2}=0$ in $h^{*}(S p(3))$, and hence α_{0}^{\prime} annihilates $S p(3)^{(14)}$. Thus $\bar{\Delta}_{4}: S p(4)^{(15)} \rightarrow \wedge^{4} S p(4)^{(15)}$ is given as

$$
\bar{\Delta}_{4}: S p(4)(15) \xrightarrow{q^{\prime \prime}} S^{15} \xrightarrow{\beta_{0}^{\prime}} S^{14} \xrightarrow{\gamma_{0}^{\prime}} S^{12} \xrightarrow{i^{\prime \prime}} \Lambda^{4} S p(4)^{(15)}
$$

for some β_{0}^{\prime}, where $q^{\prime \prime}: S p(4)^{(15)} \rightarrow S p(4)^{(15)} / S p(4)^{(14)}=S^{15}$ is the projection and $i^{\prime \prime}: S^{12}=S^{3} \wedge S^{3} \wedge S^{3} \wedge S^{3} \hookrightarrow \wedge^{4} S p(4)^{(15)}$ is the inclusion. Hence the non-triviality of $\bar{\Delta}_{4}$ implies the non-triviality of β_{0}^{\prime} and γ_{0}^{\prime}. Therefore $\bar{\Delta}_{4}$ should be $i^{\prime \prime} \circ \eta_{12}^{3} \circ q^{\prime \prime}$, if it were non-trivial. However, we also know from (5.5) of [23] that η_{12}^{3} is $12 \nu_{12}=6 \omega_{12}$ and that $i^{\prime \prime}{ }^{\circ} \omega_{12}$ is trivial by Fact 3.1. Therefore, $\bar{\Delta}_{4}: S p(4)^{(15)} \rightarrow \wedge^{4} S p(4)^{(15)}$ is trivial, and hence $w \operatorname{cat} S p(4)^{(15)} \leq 3$. This implies that $w \operatorname{cat} S p(4)^{(15)}=3 . Q E D$.

Secondly, we show the following.
Proposition 5.2. $w \operatorname{cat}\left(S p(n)^{(19)}\right) \leq 4$ for $n \geq 4$.
Proof. Let $n \geq 4$. Since $\bar{\Delta}_{5}=\left(\left(1_{S p(n)}\right) \wedge \bar{\Delta}_{4}\right) \circ \bar{\Delta}: S p(n)^{(19)} \rightarrow \wedge^{5} S p(n)^{(19)}$, it is given as

$$
\begin{aligned}
\bar{\Delta}_{5}: S p(n)^{(19)} & \xrightarrow{\bar{\Delta}} S p(n)^{(16)} \wedge S p(n)^{(16)}=S p(4)^{(15)} \wedge S p(4)^{(15)} \\
& \xrightarrow[\left(1_{S p(4)}^{(15)}\right) \wedge \bar{\Delta}_{4}]{\rightarrow} \wedge^{5} S p(4)^{(15)} \hookrightarrow \wedge^{5} S p(n)^{(19)},
\end{aligned}
$$

which is trivial, since $\bar{\Delta}_{4}: S p(4)^{(15)} \rightarrow \wedge^{4} S p(4)^{(15)}$ is trivial by Proposition 5.1. Thus $w \operatorname{cat}\left(S p(n)^{(19)}\right) \leq 4$ when $n \geq 4$.
$Q E D$.
Let $p_{j}: S p(n) \rightarrow X_{n, j}=S p(n) / S p(n-j)$ be the projection for $j \geq 1$. Then we have the following.

Proposition 5.3. Let $q^{\prime \prime \prime}: S p(n) \rightarrow S p(n) / S p(n)^{((2 n+1) n-3)}=S^{(2 n+1) n}$ be the collapsing map and $i^{\prime \prime \prime}: S^{(2 n+1) n-6} \hookrightarrow\left(\wedge^{5} S p(n)\right) \wedge X_{n, n-3} \wedge \cdots \wedge X_{n, 1}$ the inclusion. Then

$$
q^{\prime \prime \prime *} \circ i^{\prime \prime \prime}{ }_{*}: \pi_{(2 n+1) n}\left(S^{(2 n+1) n-6}\right) \rightarrow\left[S p(n),\left(\wedge^{5} S p(n)\right) \wedge X_{n, n-3} \wedge \cdots \wedge X_{n, 1}\right]
$$

is injective.
Proof. Firstly, we have the following exact sequence

$$
\begin{aligned}
& \pi_{(2 n+1) n}\left(S^{(2 n+1) n-3}\right) \xrightarrow{\psi^{\prime \prime \prime}} \pi_{(2 n+1) n}\left(S^{(2 n+1) n-6}\right) \\
& \quad \stackrel{i^{\prime \prime \prime}}{\rightarrow} \pi_{(2 n+1) n}\left(\left(\wedge^{5} S p(n)\right) \wedge X_{n, n-3} \wedge \cdots \wedge X_{n, 1}\right) \rightarrow \pi_{(2 n+1) n}\left(\vee_{5} S^{(2 n+1) n-2}\right),
\end{aligned}
$$

where $\pi_{(2 n+1) n}\left(S^{(2 n+1) n-6}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \nu_{(2 n+1) n-6}^{2}$ and $\psi^{\prime \prime \prime}$ is induced from $\omega_{(2 n+1) n-6}$ $=2 \nu_{(2 n+1) n-6}$. Thus $\psi^{\prime \prime \prime}$ is trivial, and hence $i^{\prime \prime \prime}{ }_{*}$ is injective.

Secondly, since $\left.\left(\wedge^{5} S p(n)\right) \wedge X_{n, n-3} \wedge \cdots \wedge X_{n, 1}\right)$ is $(n(2 n+1)-11)$-connected, we have

$$
\begin{aligned}
& {\left[S p(n),\left(\wedge^{5} S p(n)\right) \wedge X_{n, n-3} \wedge \cdots \wedge X_{n, 1}\right]} \\
& =\left[\left(S^{(2 n+1) n-7} \cup_{\omega_{(2 n+1) n-7}} e^{(2 n+1) n-3}\right) \vee S^{(2 n+1) n},\left(\wedge^{5} S p(n)\right) \wedge X_{n, n-3} \wedge \cdots \wedge X_{n, 1}\right] \\
& =\left[S^{(2 n+1) n-7} \cup_{\omega_{(2 n+1) n-7}} e^{(2 n+1) n-3},\left(\wedge^{5} S p(n)\right) \wedge X_{n, n-3} \wedge \cdots \wedge X_{n, 1}\right] \\
& \quad \oplus \pi_{(2 n+1) n}\left(\left(\wedge^{5} S p(n)\right) \wedge X_{n, n-3} \wedge \cdots \wedge X_{n, 1}\right)
\end{aligned}
$$

by Proposition 3.4, and hence $q^{\prime \prime \prime *}$ is injective. Thus $q^{\prime \prime \prime *} \circ i^{\prime \prime \prime}{ }_{*}$ is injective. $Q E D$.
Then the following lemma implies that $\left(\left(1_{\wedge^{5} S p(n)}\right) \wedge p_{n-3} \wedge \cdots \wedge p_{1}\right) \circ \bar{\Delta}_{n+2}$ is nontrivial by Proposition 5.3, and hence we obtain Theorem 1.4.

LEMMA 5.4. $\left(\left(1_{\wedge^{5} S p(n)}\right) \wedge p_{n-3} \wedge p_{n-4} \wedge \cdots \wedge p_{1}\right) \circ \bar{\Delta}_{n+2}=i^{\prime \prime \prime} \circ \nu_{(2 n+1) n-6}^{2} \circ q^{\prime \prime \prime}$. Proof. We have

$$
\begin{gathered}
\left(\left(1_{\wedge^{5} S p(n)}\right) \wedge p_{n-3} \wedge \cdots \wedge p_{1}\right) \circ \bar{\Delta}_{n+2}=\left(\bar{\Delta}_{5} \wedge p_{n-3} \wedge \cdots \wedge p_{1}\right) \circ \bar{\Delta}_{n-2} \\
=\left(\bar{\Delta}_{5} \wedge\left(1_{\wedge^{n-3} S p(n)}\right)\right) \circ\left(\left(1_{S p(n)}\right) \wedge p_{n-3} \wedge \cdots \wedge p_{1}\right) \circ \bar{\Delta}_{n-2}
\end{gathered}
$$

For dimensional reasons, the image of $\left(\left(1_{S p(n)}\right) \wedge p_{n-3} \wedge \cdots \wedge p_{1}\right) \circ \bar{\Delta}_{n-2}$ lies in

$$
S p(n)^{(21)} \wedge S^{15} \wedge \cdots \wedge S^{4 n-1} \cup S p(n)^{(19)} \wedge X_{n, n-3} \wedge \cdots \wedge X_{n, 1}
$$

From Proposition 5.2, it follows that $\bar{\Delta}_{5}$ annihilates $S p(n)^{(19)}$, and hence $\bar{\Delta}_{5}$ is given as

$$
\bar{\Delta}_{5}: S p(n)^{(21)} \rightarrow S^{21} \xrightarrow{\delta} \wedge^{5} S p(n)^{(21)}
$$

for some $\delta \in \pi_{21}\left(\wedge^{5} S p(3)\right)$. Using Lemma 4.3, we obtain the following diagram except for the dotted arrow, which is commutative up to homotopy:

Since the pair $\left(\wedge^{5} S p(n), \wedge^{5} S p(3)\right)$ is 26 -connected for $n \geq 4$, we can compress δ into $\wedge^{5} S p(3)$ as $\delta \sim j \circ \delta_{0}$. Thus we have a homotopy relation

$$
j \circ \delta_{0} \circ q^{\prime} \sim \delta \circ q^{\prime} \sim j \circ \bar{\Delta}_{5} \sim j \circ i^{\prime} \circ \nu_{15}^{2} \circ q^{\prime}
$$

Now we know that $\operatorname{dim} S p(3)=21<26-1$, and hence we can drop j from the above homotopy relation and obtain

$$
\delta_{0} \circ q^{\prime} \sim i^{\prime} \circ \nu_{15}^{2} \circ q^{\prime}
$$

By Proposition 4.2, $q^{\prime *}: \pi_{21}\left(\wedge^{5} S p(3)\right) \rightarrow\left[S p(3), \wedge^{5} S p(3)\right]$ is injective, and hence we obtain a homotopy relation

$$
\delta_{0} \sim i^{\prime} \circ \nu_{15}^{2} .
$$

Thus $\bar{\Delta}_{5}$ is given as

$$
\bar{\Delta}_{5}: S p(n)^{(21)} \rightarrow S^{21} \xrightarrow{\nu_{15}^{2}} S^{15} \hookrightarrow \wedge^{5} S p(n)^{(21)}
$$

Thus $\left(\left(1_{\wedge^{5} S p(n)}\right) \wedge p_{n-3} \wedge \cdots \wedge p_{1}\right) \circ \bar{\Delta}_{n+2}$ is given as

$$
\left.\left.\begin{array}{rl}
\left(\left(1_{\wedge} S p(n)\right.\right.
\end{array}\right) \wedge p_{n-3} \wedge \cdots \wedge p_{1}\right) \circ \bar{\Delta}_{n+2}: S p(n) \rightarrow S^{21} \wedge S^{(2 n+7)(n-3)}, ~\left(\wedge^{5} S p(n)\right) \wedge X_{n, n-3} \wedge \cdots \wedge X_{n, 1} .
$$

This completes the proof of the lemma.

References

[1] I. Berstein and P. J. Hilton, Category and generalized Hopf invariants, Illinois. J. Math. 12 (1968), 421-432.
[2] J.M. Boardman and B. Steer, On Hopf invariants, Comment. Math. Helv. 42 (1967), 180221.
[3] M. Clapp and D. Puppe, Invariants of the Lusternik-Schnirelmann type and the topology of critical sets, Trans. Amer. Math. Soc. 298 (1986), 603-620.
[4] L. Fernández-Suárez, A. Gómez-Tato and D. Tanré, Hopf-Ganea invariants and weak LS category, Top. Appl. 115 (2001), 305-316.
[5] L. Fernández-Suárez, A. Gómez-Tato, J. Strom and D. Tanré, The Lusternik-Schnirelmann category of $S p(3)$, ftp://hopf.math.purdue.edu/pub/Fernandez-Suarez-Gomez-Tato-StromTanre/Sp(3).abstract.
[6] L. Fernández-Suárez, A. Gómez-Tato, J. Strom and D. Tanré, The Lusternik-Schnirelmann category of $S p(3)$, http://xxx.arXiv.org/pdf/math.AT/0111263.
[7] T. Ganea, Some problems on numerical homotopy invariants, Symposium on Algebraic Topology, Lect. Notes in Math. 249, Springer Verlag, Berlin (1971), 13-22.
[8] J. C. Gómez-Larrañaga and F. González-Acuña, Lusternik-Schnirelmann category of 3manifolds, Topology 31 (1992), 791-800.
[9] N. Iwase, $A_{\infty-m e t h o d ~ i n ~ L u s t e r n i k-S c h n i r e l m a n n ~ c a t e g o r y, ~ T o p o l o g y ~} 41$ (2002), 695-723.
[10] N. Iwase, L-S category of a sphere-bundle over a sphere, Topology, to appear.
[11] I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), 331-348.
[12] I. James, The topology of Stiefel manifolds, Cambridge University Press, Cambridge, 1976, London Math. Soc. Lec. Notes 24.
[13] I. James and W. Singhof, On the category of fiber bundles, Lie groups, and Frobenius maps, Contemp. Math. 227 (1999), 177-189.
[14] L. Lusternik and L. Schnirelmann, Méthodes topologiques dans les Problèmes variationnels, Hermann, Paris, 1934.
[15] M. Mimura and T. Nishimoto, On the cellular decomposition of the exceptional Lie group G_{2}, Proc. Amer. Math. Soc. 130 (2002), 2451-2459.
[16] L. Montejano, A quick proof of Singhof's cat $\left(M \times S^{1}\right)=\operatorname{cat}(M)+1$ theorem, Manuscripta Math. 42 (1983), 49-52.
[17] Y. B. Rudyak, On the Ganea conjecture for manifolds, Proc. Amer. Math. Soc. 125 (1997), 2511-2512.
[18] Y. B. Rudyak, On category weight and its applications, Topology 38 (1999), 37-55.
[19] P. A. Schweizer, Secondary cohomology operations induced by the diagonal mapping, Topology 3 (1965), 337-355.
[20] W. Singhof, On the Lusternik-Schnirelmann category of Lie groups, Math. Z. 145 (1975), 111-116.
[21] W. Singhof, On the Lusternik-Schnirelmann category of Lie groups II, Math. Z. 151 (1976), 143-148.
[22] W. Singhof, Minimal coverings of manifolds with balls, Manuscripta Math. 29 (1979), 385415.
[23] H. Toda, Composition methods in homotopy groups of spheres, Princeton Univ. Press, Princeton, 1962, Ann. of Math. Studies, 49.
[24] G. W. Whitehead, Elements of homotopy theory, Springer Verlag, Berlin, 1978, GTM series 61.
[25] A. Zabrodsky, Hopf spaces, North-Holland, Amsterdam, 1976, North-Holland Math. Studies, 22.
(N. Iwase) Faculty of Mathematics, Kyushu University, Ropponmatsu Fukuoka 8108560, JAPAN.

E-mail address: iwase@math.kyushu-u.ac.jp
(M. Mimura) Department of Mathematics, Okayama University, Okayama 700-8530, JAPAN.

E-mail address: mimura@math.okayama-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 55M30, Secondary 55N20, 22E20.
 Key words and phrases. Lie group, Lusternik-Schnirelmann category, cohomology theory.
 The authors are partially supported by the Grant-in-Aids for Scientific Research \#14654016 and \#12640025 from the Japan Society of Promotion of Science.

