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groups of low rank
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Abstract. We determine the L-S category of Sp(3) by showing that the 5-fold

reduced diagonal ∆5 is given by ν2, using a Toda bracket and a generalised
cohomology theory h∗ given by h∗(X, A) = {X/A,S[0, 2]}, where S[0, 2] is the

3-stage Postnikov piece of the sphere spectrum S. This method also yields a
general result that cat(Sp(n)) ≥ n + 2 for n ≥ 3, which improves the result of

Singhof [21].

1. Introduction

In this paper, we firstly discuss the L-S category of G2 as in Theorem 1.1 to
illustrate the methods to be used later in the argument for Sp(3). Secondly, we
prove cat(Sp(3)) = 5 as in Theorem 1.2, although an alternative proof of it can
be deduced from public sources by Lućia Fernández-Suárez, Antonio Gómez-Tato,
Jeffrey Strom and Daniel Tanré [6]; the earlier version, however, appeared to the
authors to contain an error ([5]). In fact, this is our starting point and motivation
to write the present paper with a short and clear proof for cat(Sp(3)) = 5. Finally
we show that this argument for Sp(3) partially extends to the general case as in
Theorem 1.4.

From now on, each space is assumed to have the homotopy type of a CW
complex. The (normalised) L-S category of X is the least number m such that
there is a covering of X by (m + 1) open subsets each of which is contractible in
X. Hence cat {∗} = 0. By Lusternik and Schnirelmann [14], the number of critical
points of a smooth function on a manifold M is bounded below by catM + 1.

G. Whitehead showed that cat(X) coincides with the least number m such
that the diagonal map ∆m+1 : X → ∏m+1

X can be compressed into the ‘fat
wedge’ Tm+1(X) (see Chapter X of [24]). Since

∏m+1
X/Tm+1(X) is the (m+1)-

fold smash product ∧m+1X, we have a weaker invariant wcatX, the weak L-S
category of X, given by the least number m such that the reduced diagonal map
∆m+1 : X → ∧m+1X is trivial. Hence wcatX ≤ catX.
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T. Ganea has also introduced a stronger invariant CatX, the strong L-S cate-
gory of X, by the least number m such that there is a space Y homotopy equivalent
to X and a covering of Y by (m + 1) open subsets each of which is contractible
in itself. Thus wcatX ≤ catX ≤ CatX. The weak and strong L-S categories
usually give nice estimates of L-S category especially for manifolds. Actually, we
do not know any example of a closed manifold whose strong L-S, L-S and weak L-S
categories are not the same. The following problems are posed by Ganea [7]:

i) (Problem 1) Determine the L-S category of a manifold.
ii) (Problem 4) Describe the L-S category of a sphere-bundle over a sphere

in terms of homotopy invariants of the characteristic map of the bundle.
Problem 1 has been studied by many authors, such as Singhof [20, 21, 22],

Montejano [16], Schweizer [19], Gomez-Larrañaga and Gonzalez-Acuña [8], James
and Singhof [13] and Rudyak [17, 18]. In particular for compact simply-connected
simple Lie groups, cat(SU(n + 1)) = n for n ≥ 1 by [20], cat(Sp(2)) = 3 by [19]
and cat(Sp(n)) ≥ n + 1 for n ≥ 2 by [21]. It was also announced recently that
Problem 4 was solved by the first-named author [10].

The method in the present paper also provides a result for G2, and thus we
have the following result.

Theorem 1.1. The following is the complete list of L-S categories of a simply-
connected compact simple Lie group of rank ≤ 2:

Lie groups Sp(1) = SU(2) = Spin(3) SU(3) Sp(2) = Spin(5) G2

wcat 1 2 3 4
cat 1 2 3 4
Cat 1 2 3 4

Although the above result is known for experts, we give a short proof for G2.
In fact, the result for G2 has never been published and is obtained in a similar but
easier manner than the following result for Sp(3):

Theorem 1.2. wcat(Sp(3)) = cat(Sp(3)) = Cat(Sp(3)) = 5.
Remark 1.3. The argument given to prove Theorem 1.2 provides an alternative

proof of Schweizer’s result

wcat(Sp(2)) = cat(Sp(2)) = Cat(Sp(2)) = 3.

The authors know that a similar result to Theorem 1.2 is obtained by Lućia
Fernández-Suárez, Antonio Gómez-Tato, Jeffrey Strom and Daniel Tanré [6]. Our
method is, however, much simpler and provides the following general result:

Theorem 1.4. n+ 2 ≤ wcat(Sp(n)) ≤ cat(Sp(n)) ≤ Cat(Sp(n)) for n ≥ 3.
This improves Singhof’s result: cat(Sp(n)) ≥ n+ 1 for n ≥ 2. We propose the

following conjecture.
Conjecture 1.5. Let G be a simply-connected compact Lie group with G =∏n

i=1Hi where Hi is a simple Lie group. Then wcat(G) = cat(G) = Cat(G) and
cat(G) =

∑n
i=1 cat(Hi).

It might be difficult to say something about catSp(n), but an old conjecture
says the following.

Conjecture 1.6. catSp(n) = 2n− 1 for all n ≥ 1.
The authors thank John Harper for many helpful conversations and also the

referee for giving them some comments, in particular, regarding Remark 2.4.
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2. Proof of Theorem 1.1

Let us recall a CW decomposition of G2 from [15]:

G2 = e0 ∪ e3 ∪ e5 ∪ e6 ∪ e8 ∪ e9 ∪ e11 ∪ e14.

On the other hand, we have the following cone-decomposition.

Theorem 2.1. There is a cone-decomposition of G2 as follows:

G
(5)
2 = ΣCP 2, S5 ∪ e7 → G

(5)
2 ↪→ G

(8)
2 ,

S8 ∪ e10 → G
(8)
2 ↪→ G

(11)
2 , S13 → G

(11)
2 ↪→ G2.

Proof. The first and the last formulae are obvious. So we show the 2nd and 3rd
formulae: By taking the homotopy fibre F1 of G(5)

2 ↪→ G2, we can easily observe
using the Serre spectral sequence that the fibre has a CW structure given by S5 ∪
e7 ∪ (cells in dimensions ≥ 7), where the cohomology generators corresponding to
S5 and e7 are transgressive. Thus the mapping cone of S5 ∪ e7 ⊂ F1 → G

(5)
2 has

the homotopy type of G(8)
2 . Similarly, the homotopy fibre F2 of G(8)

2 ↪→ G2 has a
CW structure given by S8 ∪e10∪ (cells in dimensions ≥ 10), where the cohomology
generators corresponding to S8 and e10 are transgressive. Thus the mapping cone
of S8 ∪ e10 ⊂ F2 → G

(8)
2 has the homotopy type of G(11)

2 . QED.

Corollary 2.1.1. 1 ≥ Cat(G(5)
2 ) ≥ Cat(G(3)

2 ), 2 ≥ Cat(G(8)
2 ) ≥ Cat(G(6)

2 ),
3 ≥ Cat(G(11)

2 ) ≥ Cat(G(9)
2 ) and 4 ≥ Cat(G2).

Let us recall the following well-known fact due to Borel.

Fact 2.2. H∗(G2; Z/2Z) ∼= Z/2Z[x3, x5]/(x4
3, x

2
5).

Corollary 2.2.1. wcat(G(5)
2 ) ≥ wcat(G(3)

2 ) ≥ 1, wcat(G(8)
2 ) ≥ wcat(G(6)

2 )
≥ 2, wcat(G(11)

2 ) ≥ wcat(G(9)
2 ) ≥ 3 and wcat(G2) ≥ 4.

Corollaries 2.1.1 and 2.2.1 yield the following.
Theorem 2.3.

Skeleta G
(3)
2 G

(5)
2 G

(6)
2 G

(8)
2 G

(9)
2 G

(11)
2 G2

wcat 1 1 2 2 3 3 4
cat 1 1 2 2 3 3 4
Cat 1 1 2 2 3 3 4

This completes the proof of Theorem 1.1.

Remark 2.4. If we disregard the information of L-S categories of CW filtra-
tions of G2 and if we want only to deduce the equation wcat(G2) = cat(G2) =
Cat(G2) = 4, we have an alternative short proof of it rather than the above elemen-
tary homotopy-theoretical argument: Since the manifoldG2 is 2-connected and of di-

mension 14, we know that cat(G2) ≤ 14
3

by James [11]. On the other hand, the co-
homology algebra of G2 with coefficients in F2 is well-known by Borel as in Fact 2.2,
and hence its cup-length is 4 and we get immediately that wcat(G2) = cat(G2) = 4.
Concerning on the strong L-S category Cat(G2) of a manifold G2, we are in the
range of validity of Corollary 5.9 of Clapp and Puppe [3] which implies immediately
that cat(G2) = Cat(G2).
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3. The ring structure of h∗(Sp(3))

To show Theorem 1.2, we introduce a cohomology theory h∗(−) such that h∗(X,A)
= {X/A,S[0, 2]}, where S[0, 2] is the spectrum obtained from the sphere spectrum
S by killing all homotopy groups of dimensions bigger than 2. Then S[0, 2] is a
ring spectrum with πS∗ (S[0, 2]) ∼= Z[η]/(η3, 2η), where η is the Hopf element in
πS1 (S) = πS1 (S[0, 2]). Thus h∗ is an additive and multiplicative cohomology theory
with h∗ = h∗(pt) ∼= Z[ε]/(ε3, 2ε), deg ε = −1, where ε ∈ h−1 = πS0 (Σ−1S) ∼= πS1 (S)
corresponds to η.

The characteristic map of the principal Sp(1)-bundle

Sp(1) ↪→ Sp(2) → S7

is given by ω = 〈ι3, ι3〉 : S6 → Sp(1) ≈ S3 the Samelson product of two copies of
the identity ι3 : S3 → S3 , which is a generator of π6(S3) ∼= Z/12Z. We state the
following well-known fact (see Whitehead [24]).

Fact 3.1. Let µ : S3×S3 → S3 be the multiplication of Sp(1) ≈ S3. Then we
have

Sp(2) ' S3 ∪µ◦(1×ω) S
3×C(S6) = S3 ∪ω C(S6) ∪µ̂◦[ι3,ω]r C(S9),

where µ̂ : S3×S3 ∪∗×ω {∗}×C(S6) → S3 ∪ω C(S6) is given by µ̂|S3×S3 = µ and
µ̂|S3∪ωC(S6) = 1 the identity and [ι3, χω]r : S9 → S3×S3 ∪∗×ω {∗}×C(S6) is the
relative Whitehead product of the identity ι3 : S3 → S3 and the characteristic map
χω : (C(S6), S6) → (S3 ∪ e7, S3) of the 7-cell. Thus we have 1 ≥ Cat(Sp(2)(3)),
2 ≥ Cat(Sp(2)(7)) and 3 ≥ Cat(Sp(2)).

Let ν : S7 → S4 be the Hopf element whose suspension νn = Σn−4ν (n ≥ 4)
gives a generator of πn+3(Sn) ∼= Z/24Z for n ≥ 5. Then we remark that ωn =
Σn−3ω (n ≥ 3) satisfies the formula ωn = 2νn ∈ πn+3(Sn) for n ≥ 5. By Zabrodsky
[25], there is a natural splitting

Σ(S3×S3 ∪ {∗}×(S3 ∪ω e7)) ' ΣS3 ∨ Σ(S3 ∪ω e7) ∨ ΣS3∧S3.

Then by the definition of a relative Whitehead product, the composition of [ι3, ω]r

with the projections to S3 and S3 ∪ω e7 are trivial and the composition with the
projection to S3∧S3 is given by ι3∧ω. Thus we have

Σ(µ̂◦[ι3, ω]r) = H(µ)◦Σ(ι3∧ω) = ±ν◦ω7 = 2ν◦ν7 6= 0

in π10(S4) ∼= Z/24Z〈ν◦ν7〉⊕Z/2Z〈ω4◦ν7〉, and hence we have

Σ2(µ̂◦[ι3, ω]r) = ν5◦ω8 = 2ν2
5 = 0 ∈ π11(S5) ∼= Z/2Z

by Proposition 5.11 of Toda [23]. Thus we have the following well-known facts.
Fact 3.2. We have the following homotopy equivalences:

Sp(2)/S3 ' (S3×C(S6))/(S3×S6) = S3
+∧Σ(S6) = S7 ∨ S10,

Σ2Sp(2) ' Σ2(S3 ∪ω C(S6)) ∨ Σ2S10 = S5 ∪ω5 C(S8) ∨ S12.

Fact 3.3. The 11-skeleton X
(11)
3,2 of X3,2 = Sp(3)/Sp(1) has the homotopy

type of S7 ∪ν7 e11.

Restricting the principal Sp(1)-bundle Sp(1) ↪→ Sp(3) q→ X3,2 to the subspace
X

(11)
3,2 = S7 ∪ν7 e11 of X3,2, we obtain the subspace q−1(X(11)

3,2 ) = Sp(3)(14) of Sp(3)
as the total space of the principal Sp(1)-bundle Sp(1) ↪→ Sp(3)(14) q→ Σ(S6 ∪ν6 e10)
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with a characteristic map φ : S6 ∪ν6 e10 → Sp(1) ≈ S3, which is an extension of
ω : S6 → S3.

Proposition 3.4. We have the following homotopy equivalences:

Sp(3)(14) ' S3 ∪µ◦(1×φ) S
3×C(S6 ∪ν6 e10)

= S3 ∪φ C(S6 ∪ν6 e10) ∪ C(S9 ∪ν9 e13),

Sp(3)(14)/S3 ' (S3×C(S6 ∪ν6 e10))/(S3×(S6 ∪ν6 e10))

= S3
+∧Σ(S6 ∪ν6 e10) = (S7 ∪ν7 e11) ∨ (S10 ∪ν10 e14),

Sp(n) ' Sp(n − 1) ∪ Sp(n − 1)×C(S4n−2),

where Sp(n − 1) ⊂ Sp(n)((2n+1)n−11) for n ≥ 3, and hence

Sp(n)/Sp(n)((2n+1)n−11)

' (Sp(n − 1)×C(S4n−2))/(Sp(n − 1)×S4n−2

∪ Sp(n − 1)((2n−1)(n−1)−11)×C(S4n−2))

= (Sp(n − 1)/Sp(n − 1)((2n−1)(n−1)−11))∧ΣS4n−2

= · · · = (Sp(2)/∅)∧ΣS10∧ · · ·∧ΣS4n−2 = (Sp(2)+)∧S(2n+1)n−10

= S(2n+1)n−10 ∨ S(2n+1)n−10∧Sp(2)

= S(2n+1)n−10 ∨ (S(2n+1)n−7 ∪ω(2n+1)n−7 e
(2n+1)n−3) ∨ S(2n+1)n, for n ≥ 3.

This yields the following result.

Proposition 3.5. Let µ̂ : S3×S3 ∪∗×φ {∗}×(S3 ∪φ C(S6 ∪ν6 e10)) → S3 ∪φ
C(S6 ∪ν6 e10) be the map given by µ̂|S3×S3 = µ and µ̂|S3∪φC(S6∪ν6e

10) = 1 the
identity. Then we have the following cone decomposition of Sp(3):

Sp(3) ' S3 ∪φ C(S6 ∪ν6 e10) ∪µ̂◦φ̂ C(S9 ∪ν9 e13) ∪ C(S17) ∪ C(S20).

Corollary 3.5.1. 1 ≥ Cat(Sp(3)(3)), 2 ≥ Cat(Sp(3)(7)), 3 ≥ Cat(Sp(3)(14))
≥ Cat(Sp(3)(11)) ≥ Cat(Sp(3)(10)), 4 ≥ Cat(Sp(3)(18)) and 5 ≥ Cat(Sp(3)).

To determine the ring structures of h∗(Sp(2)) and h∗(Sp(3)), we show the
following lemma.

Lemma 3.6. Let h∗ be any multiplicative generalised cohomology theory and let
Q = Sr ∪f eq for a given map f : Sq−1 → Sr with h∗(Q) ∼= h∗〈1, x, y〉, where x and
y correspond to the generators of h∗(Sr) ∼= h∗〈x0〉 and h∗(Sq) ∼= h∗〈y0〉. Then

x2 = ±H̄h
1 (f)·y in h∗(Q),

where H̄h
1 is the composition ρh◦λ2 of the Boardman-Steer Hopf invariant λ2 :

πq−1(Sr) → πq(S2r) (see Boardman and Steer [2]) with the Hurewicz homomor-
phism ρh : πq(S2r) → h2r(Sq) ∼= h2r−q given by ρh(g) = Σ−q

∗ g∗(x0⊗x0).

Remark 3.7. By [2], λ2(f) is equal to ΣhJ2 (f) the suspension of the 2nd James
Hopf invariant hJ2 (f). Hence by Remarks 2.5 and 4.3 of [9], λ2(f) = Σh2(f) gives
the Berstein-Hilton crude Hopf invariant H̄1(f) (see Berstein-Hilton [1] or [9]).
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Proof. By [2], ∆ : Q = Sr ∪f eq → Q∧Q equals the composition (iQ∧iQ)◦λ2(f)◦qQ,
where qQ : Q→ Q/Sr = Sq is the collapsing map and iQ : Sr ↪→ Q is the bottom-
cell inclusion. Then we have i∗Q(x) = x0 and q∗Q(y0) = y, and hence we obtain

x2 = ∆
∗
(x⊗x) = ((iQ∧iQ)◦λ2(f)◦qQ)∗(x⊗x)

= q∗Q(λ2(f)∗(i∗Q(x)⊗i∗Q(x))) = q∗Q(λ2(f)∗(x0⊗x0)) = q∗Q(Σq∗◦ρ
h(λ2(f))).

Since Σq∗◦ρh(λ2(f)) is H̄h
1 (f)·y0 ∈ h2r(Sq) up to sign, we proceed as

x2 = q∗Q(±H̄h
1 (f)·y0) = ±H̄h

1 (f)·q∗Q(y0) = ±H̄h
1 (f)·y.

This completes the proof of the lemma. QED.

Using cohomology long exact sequences derived from the cell structure of Sp(3)
and a direct calculation using Proposition 3.4 and Lemma 3.6 with the fact that
λ2(ω) = η6, we deduce the following result for the cohomology theory h∗ considered
at the beginning of this section.

Theorem 3.8. The ring structures of h∗(Sp(2)) and h∗(Sp(3)) are as follows:

h∗(Sp(2)) ∼= h∗{1, x3, x7, y10},
h∗(Sp(3)) ∼= h∗{1, x3, x7, x11, y10, y14, y18, z21}

where the suffix of each additive generator indicates its degree in the graded algebras
h∗(Sp(2)) and h∗(Sp(3)). Moreover we have x2

3 = ε·x7, x2
7 = 0, x2

11 = 0, x3x7 =
y10, x3x11 = y14, x7x11 = y18 and x3x7x11 = z21.

Remark 3.9. The two possible attaching maps : S10 → S3∪ωe7 of e11 found by
Lucía Fernández-Suárez, Antonio Gómez-Tato and Daniel Tanré [4] are homotopic
in Sp(2). So, we can not make any effective difference in the ring structure of
h∗(Sp(3)) by altering, as is performed in [6], the attaching map of e11.

Corollary 3.9.1. wcat(Sp(3)(3)) ≥ 1, wcat(Sp(3)(7)) ≥ 2, wcat(Sp(3)(18))
≥ wcat(Sp(3)(14)) ≥ wcat(Sp(3)(11)) ≥ wcat(Sp(3)(10)) ≥ 3 and wcat(Sp(3)) ≥ 4,
together with wcat(Sp(2)(3)) ≥ 1, wcat(Sp(2)(7)) ≥ 2 and wcat(Sp(2)) ≥ 3.

Corollary 3.9.2.
Skeleta Sp(2)(3) Sp(2)(7) Sp(2)

wcat 1 2 3
cat 1 2 3
Cat 1 2 3

4. Proof of Theorem 1.2

By Facts 3.1 and 3.2, the smash products ∧4Sp(3) and ∧5Sp(3) satisfy

(∧4Sp(3))(19) ' S12 ∪ω12 e
16 ∨ (S16 ∨ S16 ∨ S16) ∨ (S19 ∨ S19 ∨ S19 ∨ S19),

(∧5Sp(3))(22) ' S15 ∪ω15 e
19 ∨ (S19 ∨ S19 ∨ S19) ∨ (S22 ∨ S22 ∨ S22 ∨ S22).

Then we have the following two propositions.
Proposition 4.1. The bottom-cell inclusions i : S12 ↪→ ∧4Sp(3)(18) and i′ :

S15 ↪→ ∧5Sp(3) induce injective homomorphisms

i∗ : π18(S12) → π18(∧4Sp(3)(18)) and i′∗ : π21(S15) → π21(∧5Sp(3)),

respectively.
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Proof. We have the following two exact sequences

π18(S15)
ψ→ π18(S12) i∗→ π18(∧4Sp(3)(18)) → π18(S16∨S16∨S16∨S16),

π21(S18) ψ′
→ π21(S15)

i′∗→ π21(∧5Sp(3)) → π21(S19∨S19∨S19∨S19∨S19),

where π18(S12) ∼= π21(S15) ∼= Z/2Zν2
15 and ψ and ψ′ are induced from ω12 = 2ν12

and ω15 = 2ν15. Thus ψ and ψ′ are trivial, and hence i∗ and i′∗ are injective. QED.

Proposition 4.2. The collapsing maps q : Sp(3)(18) → Sp(3)(18)/Sp(3)(14) =
S18 and q′ : Sp(3) → Sp(3)/Sp(3)(18) = S21 induce injective homomorphisms

q∗ : π18(∧4Sp(3)(18)) → [Sp(3)(18),∧4Sp(3)(18)] and
q′∗ : π21(∧5Sp(3)) → [Sp(3),∧5Sp(3)],

respectively.
Proof. Firstly, we show that q′∗ is injective: Since we have [Sp(3),∧5Sp(3)] =
[(S14∪ω14e

18)∨S21,∧5Sp(3)] = [S14∪ω14e
18,∧5Sp(3)]⊕π21(∧5Sp(3)) by Proposition

3.4, q′∗ is clearly injective.
Secondly, we show that q∗ is injective: Similarly we have [Sp(3)(18),∧4Sp(3)(18)]

= [S14 ∪ω14 e
18,∧4Sp(3)(18)] by Proposition 3.4. Thus it is sufficient to show that

q̄∗ : π18(∧4Sp(3)(18)) → [S14 ∪ω14 e
18,∧4Sp(3)(18)] is injective, where q̄ : S14 ∪ω14

e18 → S18 is the collapsing map. In the exact sequence

π15(∧4Sp(3)(18)) ω15
∗→ π18(∧4Sp(3)(18)) q̄∗→ [S14 ∪ω14 e

18,∧4Sp(3)(18)],

we know that π15(∧4Sp(3)(18)) ∼= π15(S12 ∪ω12 e
16) = Z/2Z is generated by the

composition of ν12 and the bottom-cell inclusion. Since ν12◦ω15 = 0 ∈ π18(S12),
the homomorphism ω15

∗ is trivial, and hence q̄∗ is injective. QED.

Then the following lemma implies that ∆4 and ∆5 are non-trivial by Proposi-
tions 4.1 and 4.2.

Lemma 4.3. We obtain that ∆4 = i◦ν2
12◦q : Sp(3)(18) → ∧4Sp(3)(18) and that

∆5 = i′◦ν2
15◦q

′ : Sp(3) → ∧5Sp(3).
Proof. Firstly, we show that ∆4 = i◦ν2

12◦q implies ∆5 = i′◦ν2
15◦q

′. For dimen-
sional reasons, the image of ∆ : Sp(3) → Sp(3)∧Sp(3) is in Sp(3)(18)∧Sp(3)(14) ∪
S3∧Sp(3)(18). Since Sp(3)(14) is of cone-length 3 by Corollary 3.5.1, the restriction
of the map 1∧∆4 to Sp(3)(18)∧Sp(3)(14) is trivial. Thus ∆5 is given as

∆5 : Sp(3) → S3∧(Sp(3)(18)/Sp(3)(14))
1∧(i◦ν2

12)→ ∧5Sp(3)(18) ⊂ ∧5Sp(3),

since ∆4 = i◦ν2
12◦q. Thus we observe that ∆5 = i′◦(ι3∧ν2

12)◦q′ = i′◦ν2
15◦q′.

So, we are left to show ∆4 = i◦ν2
12◦q. For dimensional reasons, the image

of ∆ : Sp(3)(18) → Sp(3)(18)∧Sp(3)(18) is in Sp(3)(14)∧S3 ∪ Sp(3)(11)∧Sp(3)(7) ∪
Sp(3)(7)∧Sp(3)(11) ∪S3∧Sp(3)(14). Since S3 ∪φC(S6 ∪ν6 e10) is of cone-length 2 by
Corollary 3.5.1, the restriction of ∆3 : Sp(3)(18) → ∧3Sp(3)(18) to S3∪φC(S6∪ν6e10)
is trivial. Hence 1∧∆3 : Sp(3)(14)∧S3 ∪ Sp(3)(11)∧Sp(3)(7) ∪ Sp(3)(7)∧Sp(3)(11) ∪
S3∧Sp(3)(14) → ∧4Sp(3)(18) is given as

1∧∆3 : (Sp(3)∧Sp(3))(18) α→ (S3 ∪ω e7)∧S10 ∪ S3∧(S10 ∪ν10 e14) 1∧β→ ∧4(S3 ∪ω e7).
The map α◦∆ : Sp(3)(18) → (S3 ∪ω e7)∧S10 ∪ S3∧(S10 ∪ν10 e14) is given as

α◦∆ : Sp(3)(18) → S14 ∪ω14 e
18 → (S3 ∪ω e7)∧S10 ∪ S3∧(S10 ∪ν10 e14).
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Collapsing the subspace S3∧(S10 ∪ν10 e14) of (S3 ∪ω e7)∧S10 ∪ S3∧(S10 ∪ν10 e14),
we obtain a map

q′◦α◦∆ : Sp(3)(18) → S7∧S10,

where q′ : (S3 ∪ω e7)∧S10 ∪S3∧(S10 ∪ν10 e14) → S3∧S10 is the collapsing map. For
dimensional reasons, q′◦α◦∆ is as follows:

q′◦α◦∆ : Sp(3)(18) → Sp(3)(18)/Sp(3)(14) = S18 γ→ S7∧S10.

If γ were non-trivial, then γ would be η17 : S18 → S17, and hence we should have
x7y10 = ε·y18 6= 0. However, from the ring structure of h∗(Sp(3)) given in Theorem
3.8, we know x7y10 = 0, and hence we obtain γ = 0. Then the image of α◦∆ is in
the subspace S3∧(S10 ∪ν10 e14) of (S3 ∪ω e7)∧S10 ∪ S3∧(S10 ∪ν10 e14), since they
are 12-connected. Hence ∆4 = (1∧∆3)◦∆ is given as

∆4 : Sp(3)(18) α◦∆→ S3∧(S10 ∪ν10 e14)
1∧β→ S3∧(∧3(S3 ∪ω e7))(15) ⊂ ∧4Sp(3)(18),

where (∧3(S3∪ω e7))(15) is (S3∪ω e7)∧S3∧S3 ∪ S3∧(S3∪ω e7)∧S3 ∪ S3∧S3∧(S3∪ω
e7). Collapsing the subspace ∧3S3 of (∧3(S3 ∪ω e7))(15), we obtain a map

q′′◦β : S10 ∪ν10 e14 → S7∧S3∧S3 ∪ S3∧S7∧S3 ∪ S3∧S3∧S7,

where q′′ : (∧3(S3 ∪ω e7))(15) → S7∧S3∧S3 ∪ S3∧S7∧S3 ∪ S3∧S3∧S7 is the
collapsing map. For dimensional reasons, q′′◦β is given as

q′′◦β : S10 ∪ν10 e14 → S14 γ′
→ S7∧S3∧S3 ∨S3∧S7∧S3 ∨S3∧S3∧S7 .

If γ′ were non-trivial, then its projection to S13 would be η13 : S14 → S13, and
hence we should have x2

3x7 = ε·y14 6= 0. However, from the ring structure of
h∗(Sp(3)) given in Theorem 3.8, we know x2

3x7 = ε·x2
7 = 0, and hence we obtain

γ′ = 0. Hence the image of β lies in the subspace ∧3S3 of ∧3Sp(3)(18).
On the other hand, for dimensional reasons, α◦∆ is given as

α◦∆ : Sp(3)(18) → S14 ∪ω14 e
18 α′→ S3∧(S10 ∪ν10 e14),

where the restriction α′|S14 is given as

α′|S14 : S14 γ′′
→ S13 ↪→ S3∧(S10 ∪ν10 e14).

If it were non-trivial, then γ′′ would be η13 : S14 → S13, and hence we should have
x3y10 = ε·y14 6= 0. However, from the ring structure of h∗(Sp(3)) given in Theorem
3.8, we know x3y10 = x2

3x7 = ε·x2
7 = 0, and hence γ′′ = 0. Hence α◦∆ is given as

α◦∆ : Sp(3)(18) q→ S18 α′′→ S3∧(S10 ∪ν10 e14),

and hence ∆4 is given as

∆4 : Sp(3)(18) q→ S18 α′′→ S3∧(S10 ∪ν10 e14) 1∧β→ S3∧(∧3S3)
i
↪→ ∧4Sp(3)(18).

Now, we are ready to determine ∆4: By Theorem 3.8, we know x2
3x11 = ε·z18 and

x2
3 = ε·x7, hence α′′ : S18 → S13 ∪ν13 e17 is a co-extension of η16 : S17 → S16 on
S13 ∪ν13 e17 and 1∧β : S13 ∪ν13 e17 → S12 is an extension of η12 : S13 → S12. Thus
the composition (1∧β)◦α′′ is an element of the Toda bracket {η12, ν13, η16} which
contains a single element ν2

12 by Lemma 5.12 of [23], and hence ∆4 = i◦ν2
12◦q. QED.

Corollary 4.3.1. wcat(Sp(3)(18)) ≥ 4 and wcat(Sp(3)) ≥ 5.
This yields the following result.
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Theorem 4.4.
Skeleta Sp(3)(3) Sp(3)(7) Sp(3)(10) Sp(3)(11) Sp(3)(14) Sp(3)(18) Sp(3)

wcat 1 2 3 3 3 4 5
cat 1 2 3 3 3 4 5
Cat 1 2 3 3 3 4 5

This completes the proof of Theorem 1.2.

5. Proof of Theorem 1.4

We know that for n ≥ 4,

Sp(n)(16) = Sp(4)(15) = Sp(3)(14) ∪ e15,

Sp(n)(19) =
{
Sp(4)(15) ∪ (e18 ∨ e18) n = 4,
Sp(4)(15) ∪ (e18 ∨ e18) ∪ e19 n ≥ 5,

Sp(n)(21) = Sp(n)(19) ∪ e21

and that wcat(Sp(3)(14)) = cat(Sp(3)(14)) = Cat(Sp(3)(14)) = 3. Firstly, we show
the following.

Proposition 5.1. wcat(Sp(4)(15)) = 3.
Proof. Since the pair (Sp(4)(15), Sp(3)(11)) is 13-connected, wcat(Sp(3)(11)) = 3 im-
plies that ∆3 : Sp(4)(15) → ∧3Sp(4)(15) is non-trivial, and hence wcat(Sp(4)(15)) ≥
3. Thus we are left to show wcat(Sp(4)(15)) ≤ 3: For dimensional reasons, ∆4 =
(∆∧∆)◦∆ : Sp(4)(15) → ∧4Sp(4)(15) is given as

∆4 : Sp(4)(15) α0→ Sp(4)(11)∧Sp(4)(11) ∆∧∆→ ∧4Sp(4)(11) ↪→ ∧4Sp(4)(15),

for some α0. By Fact 3.2, ∆ : Sp(4)(11) → ∧2Sp(4)(11) is given as

∆ : Sp(4)(11) β0→ (S7 ∨ S10) ∪ e11 γ0→ ∧2(S3 ∪ω e7) ↪→ ∧2Sp(4)(11),

for some β0 and γ0. Then for dimensional reasons, (β0∧β0)◦α0 : Sp(4)(15) →
((S7 ∨ S10) ∪ e11)∧((S7 ∨ S10) ∪ e11) and (γ0∧γ0)|S7∧S7 : S7∧S7 → ∧4(S3 ∪ω e7)
are respectively equal to the compositions

(β0∧β0)◦α0 : Sp(4)(15) α
′
0→ S7∧S7 ↪→ ((S7 ∨ S10) ∪ e11)∧((S7 ∨ S10) ∪ e11),

(γ0∧γ0)|S7∧S7 : S7∧S7 γ′
0→ ∧4S3 ↪→ ∧4(S3 ∪ω e7),

for some α′
0 and γ′0. Hence ∆4 : Sp(4)(15) → ∧4Sp(4)(15) is given as

∆4 : Sp(4)(15) α
′
0→ S7∧S7 γ′

0→ ∧4S3 ↪→ ∧4Sp(4)(15),

where Sp(4)(15) = Sp(3)(14) ∪ e15. By Theorem 3.8, x2
7 = 0 in h∗(Sp(3)), and hence

α′
0 annihilates Sp(3)(14). Thus ∆4 : Sp(4)(15) → ∧4Sp(4)(15) is given as

∆4 : Sp(4)(15) q
′′
→ S15 β′

0→ S14 γ′
0→ S12 i′′

↪→ ∧4Sp(4)(15)

for some β′
0, where q′′ : Sp(4)(15) → Sp(4)(15)/Sp(4)(14) = S15 is the projection and

i′′ : S12 = S3∧S3∧S3∧S3 ↪→ ∧4Sp(4)(15) is the inclusion. Hence the non-triviality
of ∆4 implies the non-triviality of β′

0 and γ′0 . Therefore ∆4 should be i′′◦η3
12◦q

′′, if it
were non-trivial. However, we also know from (5.5) of [23] that η3

12 is 12ν12 = 6ω12

and that i′′◦ω12 is trivial by Fact 3.1. Therefore, ∆4 : Sp(4)(15) → ∧4Sp(4)(15) is
trivial, and hence wcatSp(4)(15) ≤ 3. This implies that wcatSp(4)(15) = 3. QED.
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Secondly, we show the following.
Proposition 5.2. wcat(Sp(n)(19)) ≤ 4 for n ≥ 4.

Proof. Let n ≥ 4. Since ∆5 = ((1Sp(n))∧∆4)◦∆ : Sp(n)(19) → ∧5Sp(n)(19), it is
given as

∆5 : Sp(n)(19) ∆→ Sp(n)(16)∧Sp(n)(16) = Sp(4)(15)∧Sp(4)(15)

(1
Sp(4)(15)

)∧∆4→ ∧5Sp(4)(15) ↪→ ∧5Sp(n)(19),

which is trivial, since ∆4 : Sp(4)(15) → ∧4Sp(4)(15) is trivial by Proposition 5.1.
Thus wcat(Sp(n)(19)) ≤ 4 when n ≥ 4. QED.

Let pj : Sp(n) → Xn,j = Sp(n)/Sp(n − j) be the projection for j ≥ 1. Then
we have the following.

Proposition 5.3. Let q′′′ : Sp(n) → Sp(n)/Sp(n)((2n+1)n−3) = S(2n+1)n

be the collapsing map and i′′′ : S(2n+1)n−6 ↪→ (∧5Sp(n))∧Xn,n−3∧ · · ·∧Xn,1 the
inclusion. Then

q′′′∗◦i′′′∗ : π(2n+1)n(S(2n+1)n−6) → [Sp(n), (∧5Sp(n))∧Xn,n−3∧ · · ·∧Xn,1]
is injective.
Proof. Firstly, we have the following exact sequence

π(2n+1)n(S(2n+1)n−3)
ψ′′′
→ π(2n+1)n(S(2n+1)n−6)

i′′′∗→ π(2n+1)n((∧5Sp(n))∧Xn,n−3∧ · · ·∧Xn,1) → π(2n+1)n(∨5S
(2n+1)n−2),

where π(2n+1)n(S(2n+1)n−6) ∼= Z/2Zν2
(2n+1)n−6 and ψ′′′ is induced from ω(2n+1)n−6

= 2ν(2n+1)n−6. Thus ψ′′′ is trivial, and hence i′′′∗ is injective.
Secondly, since (∧5Sp(n))∧Xn,n−3∧ · · ·∧Xn,1) is (n(2n + 1) − 11)-connected,

we have

[Sp(n), (∧5Sp(n))∧Xn,n−3∧ · · ·∧Xn,1]
= [(S(2n+1)n−7 ∪ω(2n+1)n−7 e

(2n+1)n−3) ∨ S(2n+1)n, (∧5Sp(n))∧Xn,n−3∧ · · ·∧Xn,1]
= [S(2n+1)n−7 ∪ω(2n+1)n−7 e

(2n+1)n−3, (∧5Sp(n))∧Xn,n−3∧ · · ·∧Xn,1]
⊕π(2n+1)n((∧5Sp(n))∧Xn,n−3∧ · · ·∧Xn,1)

by Proposition 3.4, and hence q′′′∗ is injective. Thus q′′′∗◦i′′′∗ is injective. QED.

Then the following lemma implies that ((1∧5Sp(n))∧pn−3∧ · · ·∧p1)◦∆n+2 is non-
trivial by Proposition 5.3, and hence we obtain Theorem 1.4.

Lemma 5.4. ((1∧5Sp(n))∧pn−3∧pn−4∧ · · · ∧p1)◦∆n+2 = i′′′◦ν2
(2n+1)n−6

◦q′′′.

Proof. We have

((1∧5Sp(n))∧pn−3∧ · · · ∧p1)◦∆n+2 = (∆5∧pn−3∧ · · ·∧p1)◦∆n−2

= (∆5∧(1∧n−3Sp(n)))◦((1Sp(n))∧pn−3∧ · · · ∧p1)◦∆n−2.

For dimensional reasons, the image of ((1Sp(n))∧pn−3∧ · · ·∧p1)◦∆n−2 lies in

Sp(n)(21)∧S15∧ · · · ∧S4n−1 ∪ Sp(n)(19)∧Xn,n−3∧ · · ·∧Xn,1.
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From Proposition 5.2, it follows that ∆5 annihilates Sp(n)(19), and hence ∆5 is
given as

∆5 : Sp(n)(21) → S21 δ→ ∧5Sp(n)(21)

for some δ ∈ π21(∧5Sp(3)). Using Lemma 4.3, we obtain the following diagram
except for the dotted arrow, which is commutative up to homotopy:

Sp(n)(21)

∆5

//

))SS
SS

SS
SS

SS
SS

SS
S

∧5Sp(n)(21)

S21

δ
55kkkkkkkkkkkkkkkk

δ0

))
Sp(3)

?�

OO

∆5

//

q′ $$I
II

II
II

II

q′
55kkkkkkkkkkkkkkkkk ∧5Sp(3)

?�

j

OO

S21
ν2
15

// S15
+

� i′

99ssssssssss

Since the pair (∧5Sp(n),∧5Sp(3)) is 26-connected for n ≥ 4, we can compress δ into
∧5Sp(3) as δ ∼ j◦δ0. Thus we have a homotopy relation

j◦δ0◦q′ ∼ δ◦q′ ∼ j◦∆5 ∼ j◦i′◦ν2
15◦q

′.

Now we know that dimSp(3) = 21 < 26 − 1, and hence we can drop j from the
above homotopy relation and obtain

δ0◦q′ ∼ i′◦ν2
15◦q

′.

By Proposition 4.2, q′∗ : π21(∧5Sp(3)) → [Sp(3),∧5Sp(3)] is injective, and hence
we obtain a homotopy relation

δ0 ∼ i′◦ν2
15.

Thus ∆5 is given as

∆5 : Sp(n)(21) → S21 ν
2
15→ S15 ↪→ ∧5Sp(n)(21).

Thus ((1∧5Sp(n))∧pn−3∧ · · ·∧p1)◦∆n+2 is given as

((1∧5Sp(n))∧pn−3∧ · · · ∧p1)◦∆n+2 : Sp(n) → S21∧S(2n+7)(n−3)

ν2
(2n+1)n−6→ S15∧S(2n+7)(n−3) ↪→ (∧5Sp(n))∧Xn,n−3∧ · · · ∧Xn,1.

This completes the proof of the lemma. QED.
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Hermann, Paris, 1934.

[15] M. Mimura and T. Nishimoto, On the cellular decomposition of the exceptional Lie group
G2, Proc. Amer. Math. Soc. 130 (2002), 2451–2459.

[16] L. Montejano, A quick proof of Singhof ’s cat(M×S1) = cat(M ) + 1 theorem, Manuscripta
Math. 42 (1983), 49–52.

[17] Y. B. Rudyak, On the Ganea conjecture for manifolds, Proc. Amer. Math. Soc. 125 (1997),
2511–2512.

[18] Y. B. Rudyak, On category weight and its applications, Topology 38 (1999), 37–55.
[19] P. A. Schweizer, Secondary cohomology operations induced by the diagonal mapping, Topology

3 (1965), 337–355.
[20] W. Singhof, On the Lusternik-Schnirelmann category of Lie groups, Math. Z. 145 (1975),

111–116.
[21] W. Singhof, On the Lusternik-Schnirelmann category of Lie groups II, Math. Z. 151 (1976),

143–148.
[22] W. Singhof, Minimal coverings of manifolds with balls, Manuscripta Math. 29 (1979), 385–

415.
[23] H. Toda, Composition methods in homotopy groups of spheres, Princeton Univ. Press, Prince-

ton, 1962, Ann. of Math. Studies, 49.
[24] G. W. Whitehead, Elements of homotopy theory, Springer Verlag, Berlin, 1978, GTM series

61.
[25] A. Zabrodsky, Hopf spaces, North-Holland, Amsterdam, 1976, North-Holland Math. Studies,

22.

(N. Iwase) Faculty of Mathematics, Kyushu University, Ropponmatsu Fukuoka 810-
8560, JAPAN.

E-mail address : iwase@math.kyushu-u.ac.jp

(M. Mimura) Department of Mathematics, Okayama University, Okayama 700-8530,

JAPAN.
E-mail address : mimura@math.okayama-u.ac.jp


