Errata for :
 Topological Complexity is a Fibrewise L-S Category

Norio Iwase ${ }^{\mathrm{a}, 1}$ Michihiro Sakai ${ }^{\text {b }}$
${ }^{\text {a }}$ Faculty of Mathematics, Kyushu University, Fukuoka 810-8560, Japan
${ }^{\mathrm{b}}$ Kurume National College of Technology, Fukuoka 830-8555, Japan.

Abstract

There is a problem with the proof of Theorem 1.13 of [2] which states that for a fibrewise well-pointed space X over B, we have $\operatorname{cat}_{\mathrm{B}}^{\mathrm{B}}(X)=\operatorname{cat}_{\mathrm{B}}^{*}(X)$ and that for a locally finite simplicial complex B, we have $\mathcal{T C}(B)=\mathcal{T C}^{\mathrm{M}}(B)$. While we still conjecture that Theorem 1.13 is true, this problem means that, at present, no proof is given to exist. Alternatively, we show the difference between two invariants $\operatorname{cat}_{\mathrm{B}}^{*}(X)$ and $\operatorname{cat}_{\mathrm{B}}^{\mathrm{B}}(X)$ is at most 1 and the conjecture is true for some cases. We give further corrections mainly in the proof of Theorem 1.12.

Key words: Toplogical complexity; Lusternik-Schnirelmann category. 1991 MSC: [2000]Primary 55M30, Secondary 55Q25

It was pointed out to the authors by Jose Calcines that there is a problem with the proof of Theorem 1.13 of [2] which states that for a fibrewise well-pointed space X over B, we have $\operatorname{cat}_{\mathrm{B}}^{\mathrm{B}}(X)=\operatorname{cat}_{\mathrm{B}}^{*}(X)$ and that for a locally finite simplicial complex B, we have $\mathcal{T C}(B)=\mathcal{T C}^{\mathrm{M}}(B)$, where cat $_{\mathrm{B}}^{*}(X)$ and $\mathcal{T C}^{\mathrm{M}}(B)$ are new versions of a fibrewise L-S category and a topological complexity, respectively, which are introduced in [2].

While we still conjecture that Theorem 1.13 of [2] is true, this problem means that, at present, no proof is given to exist. It then results that " $\mathcal{T} \mathcal{C}(B)$ " in Corollary 8.7 of [2] must be replaced with " $\mathcal{T} \mathcal{C}^{\mathrm{M}}(B)$ " and the resulting

Email addresses: iwase@math.kyushu-u.ac.jp (Norio Iwase), sakai@kurume-nct.ac.jp (Michihiro Sakai).
${ }^{1}$ supported by the Grant-in-Aid for Scientific Research \#22340014 from Japan Society for the Promotion of Science.
inequality should be presented in the following form:

$$
\mathcal{Z}_{\pi}(B) \leq \operatorname{wgt}_{\pi}(B) \leq \operatorname{Mwgt}_{\mathrm{B}}^{\mathrm{B}}(d(B)) \leq \mathcal{T}^{\mathrm{M}}(B)-1 \leq \operatorname{catlen}_{\mathrm{B}}^{\mathrm{B}}(d(B)) \leq \operatorname{Cat}_{\mathrm{B}}^{\mathrm{B}}(d(B)) .
$$

The problem in the argument occurs on page 14 where a homotopy

$$
\hat{\Phi}_{i}: \hat{U}_{i} \times[0,1] \rightarrow \hat{X}
$$

is given, while the definition of $\hat{\Phi}_{i}$ apparently is not well-defined. Alternatively, we show here the difference between two invariants $\operatorname{cat}_{\mathrm{B}}^{*}(X)$ and $\operatorname{cat}_{\mathrm{B}}^{\mathrm{B}}(X)$ is at most 1 and the conjecture is true for some cases.

Theorem 1 For a fibrewise well-pointed space X over B, we have $\operatorname{cat}_{\mathrm{B}}^{*}(X) \leq$ $\operatorname{cat}_{\mathrm{B}}^{\mathrm{B}}(X) \leq \operatorname{cat}_{\mathrm{B}}^{*}(X)+1$ which implies that, for a locally finite simplicial complex B, we have $\mathcal{T C}(B) \leq \mathcal{T C}^{\mathrm{M}}(B) \leq \mathcal{T C}(B)+1$.

Proof: The inequality of $\mathcal{T C}(B)$ and $\mathcal{T C}^{\mathrm{M}}(B)$ in Theorem 1 for a locally finite simplicial complex B is, by Theorem 1.7 in [2], a special case of the inequality of $\operatorname{cat}_{\mathrm{B}}^{*}(X)$ and $\operatorname{cat}_{\mathrm{B}}^{\mathrm{B}}(X)$ in Theorem 1 for a fibrewise well-pointed space X. So it is sufficient to show the inequality for X : because the inequality cat ${ }_{\mathrm{B}}^{*}(X) \leq$ $\operatorname{cat}_{\mathrm{B}}^{\mathrm{B}}(X)$ is clear by definition, all we need to show is the inequality $\operatorname{cat}_{\mathrm{B}}^{\mathrm{B}}(X) \leq$ $\operatorname{cat}_{\mathrm{B}}^{*}(X)+1$. Let X be a fibrewise well-pointed space over B with a projection $\mathrm{p}_{X}: X \rightarrow B$ and a section $\mathrm{s}_{X}: B \rightarrow X$. Let (u, h) be a fibrewise (strong) Strøm structure (see Crabb and James [1]) on $\left(X, \mathrm{~s}_{X}(B)\right.$), i.e., $u: X \rightarrow[0,1]$ is a map and $h: X \times[0,1] \rightarrow X$ is a fibrewise pointed homotopy such that $u^{-1}(0)=\mathrm{s}_{X}(B), h(x, 0)=x$ for any $x \in X$ and $h(x, 1)=\mathrm{s}_{X} \circ \mathrm{p}_{X}(x)$ for any $x \in X$ with $u(x)<1$. Assume $\operatorname{cat}_{\mathrm{B}}^{*}(X)=m$ and the family $\left\{U_{i} ; 0 \leq i \leq m\right\}$ of open sets of X satisfies $X=\bigcup_{i=0}^{m} U_{i}$ and each open set U_{i} is fibrewise contractible (into $\mathrm{s}_{X}(B)$) by a fibrewise homotopy $H_{i}: U_{i} \times[0,1] \rightarrow X$. Let $V_{i}=U_{i}^{\prime} \cup V$ for $0 \leq i \leq m$ and $V_{m+1}=u^{-1}\left(\left[0, \frac{2}{3}\right)\right)$ where $U_{i}^{\prime}=U_{i} \backslash u^{-1}\left(\left[0, \frac{1}{2}\right]\right)$ and $V=u^{-1}\left(\left[0, \frac{1}{3}\right)\right)$. Then the restriction $\left.H_{i}\right|_{U_{i}^{\prime}}: U_{i}^{\prime} \times[0,1] \rightarrow X$ gives a fibrewise contraction of U_{i}^{\prime} and the restriction of the fibrewise (strong) Strøm structure $\left.h\right|_{V}: V \times[0,1] \rightarrow X$ gives a fibrewise pointed contraction of V. Since U_{i}^{\prime} and V are obviously disjoint, we obtain that $V_{i}=U_{i}^{\prime} \cup V \supset \Delta(B)$ is a fibrewise contractible open set by a fibrewise pointed homotopy. Similarly the restriction of the fibrewise (strong) Strøm structure $\left.h\right|_{V_{m+1}}: V_{m+1} \times[0,1] \rightarrow X$ gives a fibrewise pointed contraction of $V_{m+1} \supset \Delta(B)$. Since $V_{i} \cup V_{m+1}=U_{i}^{\prime} \cup V_{m+1}=$ $U_{i} \cup V_{m+1} \supset U_{i}$, we obtain $\bigcup_{i=0}^{m+1} V_{i}=\bigcup_{i=0}^{m}\left(V_{i} \cup V_{m+1}\right) \supset \bigcup_{i=0}^{m} U_{i}=X$. This implies $\operatorname{cat}_{\mathrm{B}}^{\mathrm{B}}(X) \leq m+1=\operatorname{cat}_{\mathrm{B}}^{*}(X)+1$ and it completes the proof of Theorem 1 .

Theorem 2 Let X be a fibrewise well-pointed space over B with cat $_{\mathrm{B}}^{*}(X)=m$ and $\left\{U_{i} ; 0 \leq i \leq m\right\}$ be an open cover of X, in which U_{i} is fibrewise contractible (into $\mathrm{s}_{X}(B)$) by a fibrewise homotopy $H_{i}: U_{i} \times[0,1] \rightarrow X$. Then we have $\operatorname{cat}_{\mathrm{B}}^{\mathrm{B}}(X)=m=\operatorname{cat}_{\mathrm{B}}^{*}(X)$ if one of the following conditions is satisfied.
(1) There exists $i(0 \leq i \leq m)$ such that U_{i} does not intersect with $\mathrm{s}_{X}(B)$.
(2) There exists $i(0 \leq i \leq m)$ and an open and closed subset O of U_{i} such that $U_{i} \cap \mathrm{~s}_{X}(B)=O \cap \mathrm{~s}_{X}(B)$ and O includes $\mathrm{s}_{X} \circ \mathrm{p}_{X}(O) \subset \mathrm{s}_{X}(B)$.
(3) There exists $i(0 \leq i \leq m)$, an open and closed subset O of U_{i} and a fibrewise compression c : $\mathrm{s}_{X} \circ \mathrm{p}_{X}(O) \times[0,1] \rightarrow X$ of $\mathrm{s}_{X} \circ \mathrm{p}_{X}(O)$ into O such that $U_{i} \cap \mathrm{~s}_{X}(B)=O \cap \mathrm{~s}_{X}(B)$ and $c\left(\left(O \cap \mathrm{~s}_{X}(B)\right) \times[0,1]\right) \subset O$.

Theorem 2 immediately implies the following corollary.
Corollary 3 Let B be a locally finite simplicial complex with $\mathcal{T C}(B)=m$ and $\left\{U_{i} ; 1 \leq i \leq m\right\}$ be an open cover of X, in which U_{i} is compressible into the image $\Delta(B)$ of diagonal map $\Delta: B \rightarrow B \times B$. Then we have $\mathcal{T C}^{\mathrm{M}}(B)=m=$ $\mathcal{T C}(B)$ if one of the following conditions is satisfied.
(1) There exists $i(1 \leq i \leq m)$ such that U_{i} does not intersect with $\Delta(B)$.
(2) There exists $i(1 \leq i \leq m)$ and an open and closed subset O of U_{i} such that $U_{i} \cap \Delta(B)=O \cap \Delta(B)$ and O includes $\Delta \circ \operatorname{pr}_{2}\left(U_{i}\right) \subset \Delta(B)$.
(3) There exists $i(1 \leq i \leq m)$, an open and closed subset O of U_{i} and a fibrewise compression c : $\Delta \circ \operatorname{pr}_{2}(O) \times[0,1] \rightarrow B \times B$ of $\Delta \circ \operatorname{pr}_{2}(O)$ into O such that $U_{i} \cap \Delta(B)=O \cap \Delta(B)$ and $c((O \cap \Delta(B)) \times[0,1]) \subset O$.

Proof of Theorem 2: For simplicity, we assume that $i=0$ in each cases. Let X be a fibrewise well-pointed space over B with a projection $\mathrm{p}_{X}: X \rightarrow B$ and a section $\mathrm{s}_{X}: B \rightarrow X$. Let (u, h) be a fibrewise (strong) Strøm structure on $\left(X, \mathrm{~s}_{X}(B)\right)$, i.e., $u: X \rightarrow[0,1]$ is a map and $h: X \times[0,1] \rightarrow X$ is a fibrewise pointed homotopy such that $u^{-1}(0)=\mathrm{s}_{X}(B), h(x, 0)=x$ for any $x \in X$ and $h(x, 1)=\mathrm{s}_{X} \circ \mathrm{p}_{X}(x)$ for any $x \in X$ with $u(x)<1$. Then the fibrewise map $r: X \rightarrow X$ given by $r(x)=h(x, 1)$ satisfies the following.
i) $X=\bigcup_{i=0}^{m} r^{-1}\left(U_{i}\right)$, since $X=\bigcup_{i=0}^{m} U_{i}$.
ii) r is fibrewise homotopic to the identity by a fibrewise homotopy h.
iii) $r^{-1}\left(\mathrm{~s}_{X}(B)\right) \supset U=u^{-1}([0,1))$, where U is fibrewise contractible by $\left.h\right|_{U}$.
iv) Each $r^{-1}\left(U_{i}\right)$ is fibrewise contractible, since r is fibrewise homotopic to the identity by ii) and U_{i} is fibrewise contractible.

Case (1): let $V_{0}=r^{-1}\left(U_{0}\right) \cup u^{-1}\left(\left[0, \frac{2}{3}\right)\right)$ and $V_{i}=\left(r^{-1}\left(U_{i}\right) \backslash u^{-1}\left(\left[0, \frac{1}{2}\right]\right)\right) \cup$ $u^{-1}\left(\left[0, \frac{1}{3}\right)\right), 1 \leq i \leq m$. Thus $\bigcup_{i=0}^{m} V_{i}=r^{-1}\left(U_{0}\right) \cup \bigcup_{i=1}^{m}\left(V_{i} \cup u^{-1}\left(\left[0, \frac{2}{3}\right)\right)\right) \supset r^{-1}\left(U_{0}\right) \cup$ $\bigcup_{i=1}^{m} r^{-1}\left(U_{i}\right)=\bigcup_{i=0}^{m} r^{-1}\left(U_{i}\right)=X$ by i). Since $r^{-1}\left(U_{i}\right)$ is fibrewise contractible by iv), so is the open set $r^{-1}\left(U_{i}\right) \backslash u^{-1}\left(\left[0, \frac{1}{2}\right]\right)$ for every $i \geq 0$, where $r^{-1}\left(U_{0}\right) \backslash$ $u^{-1}\left(\left[0, \frac{1}{2}\right]\right)=r^{-1}\left(U_{0}\right)$ since U_{0} does not intersect with $s_{X}(B)$. On the other hand, $u^{-1}\left(\left[0, \frac{t}{3}\right)\right), t=1,2$ are fibrewise contractible by fibrewise pointed homotopies by iii). Hence each $V_{i}, 0 \leq i \leq m$ is fibrewise contractible by a fibrewise pointed homotopy, and hence $\operatorname{cat}_{\mathrm{B}}^{\mathrm{B}}(X) \leq m$. Thus $\operatorname{cat}_{\mathrm{B}}^{*}(X)=\operatorname{cat}_{\mathrm{B}}^{\mathrm{B}}(X)$.

Case (3) where Case (2) is a special case of Case (3): let $W_{0}=r^{-1}(O) \cup$ $u^{-1}\left(\left[0, \frac{2}{3}\right)\right), V_{0}=r^{-1}\left(U_{0} \backslash O\right) \cup W_{0}$ and $V_{i}=\left(r^{-1}\left(U_{i}\right) \backslash u^{-1}\left(\left[0, \frac{1}{2}\right]\right)\right) \cup u^{-1}\left(\left[0, \frac{1}{3}\right)\right)$, $1 \leq i \leq m$. Thus $\bigcup_{i=0}^{m} V_{i}=r^{-1}\left(U_{0}\right) \cup \bigcup_{i=1}^{m}\left(V_{i} \cup u^{-1}\left(\left[0, \frac{2}{3}\right)\right)\right) \supset \bigcup_{i=0}^{m} r^{-1}\left(U_{i}\right)=$ X by i). Since $r^{-1}\left(U_{i}\right)$ is fibrewise contractible by iv), so is the open set $r^{-1}\left(U_{i}\right) \backslash u^{-1}\left(\left[0, \frac{1}{2}\right]\right)$ which does not intersect with $u^{-1}\left(\left[0, \frac{1}{3}\right)\right)$, for every $i>0$. On the other hand, each open set $u^{-1}\left(\left[0, \frac{t}{3}\right)\right), t=1,2$ is fibrewise contractible by a fibrewise pointed homotopy by iii). Hence each open set $V_{i}, 1 \leq i \leq m$ is fibrewise contractible by fibrewise pointed homotopy. For $i=0$, we construct a fibrewise pointed homotopy $H: W_{0} \times[0,1] \rightarrow X$ using $c: \mathrm{s}_{X} \circ \mathrm{p}_{X}\left(U_{i}\right) \times[0,1] \rightarrow$
$X, H_{0}: U_{0} \times[0,1] \rightarrow X$ and the Strøm structure (u, h) as follows:

where $b=\mathrm{p}_{X}(x)=\mathrm{p}_{X}(r(x))$, and hence for $x \in W_{0} \backslash u^{-1}\left(\left[0, \frac{2}{3}\right)\right) \subset r^{-1}(O)$, we have $\mathrm{s}_{X}(b)=\mathrm{s}_{X} \circ \mathrm{p}_{X}(r(x)) \in O$ since $r(x) \in O$. Since an open set $U_{0} \backslash O$ does not intersect with $\mathrm{s}_{X}(B), r^{-1}\left(U_{0} \backslash O\right)$ does not intersect with $u^{-1}([0,1)) \supset$ $u^{-1}\left(\left[0, \frac{2}{3}\right)\right)$. Hence $V_{0}=r^{-1}\left(U_{0} \backslash O\right) \cup W_{0}$ is fibrewise contractible by a fibrewise pointed homotopy, and hence $\operatorname{cat}_{\mathrm{B}}^{\mathrm{B}}(X) \leq m$. Thus $\operatorname{cat}_{\mathrm{B}}^{*}(X)=\operatorname{cat}_{\mathrm{B}}^{\mathrm{B}}(X)$, and it completes the proof of Theorem 2.

The following are corrections in [2].

- The part of Proof of Theorem 1.12 from page 13 line -3 to page 14 line 12 is not clearly given and must be rewritten completely:
Proof: For each vertex β of B, let V_{β} be the star neighbourhood in B and $V=\bigcup_{\beta} V_{\beta} \times V_{\beta} \subset B \times B$. Then the closure $\bar{V}=\bigcup_{\beta} \bar{V}_{\beta} \times \bar{V}_{\beta}$ is a subcomplex of $B \times B$. For the barycentric coordinates $\left\{\xi_{\beta}\right\}$ and $\left\{\eta_{\beta}\right\}$ of x and y, resp, we see that $(x, y) \in V$ if and only if $\sum_{\beta} \operatorname{Min}\left(\xi_{\beta}, \eta_{\beta}\right)>0$ and that $\sum_{\beta} \operatorname{Min}\left(\xi_{\beta}, \eta_{\beta}\right)=$ 1 if and only if the barycentric coordinates of x and y are the same, or equivalently, $(x, y) \in \Delta(B)$. Hence we can define a continuous map v : $B \times B \rightarrow[0,3]$ by the following formula.

$$
v(x, y)= \begin{cases}3-3 \sum_{\beta} \operatorname{Min}\left(\xi_{\beta}, \eta_{\beta}\right), & \text { if }(x, y) \in \bar{V} \\ 3, & \text { if }(x, y) \notin V\end{cases}
$$

Since B is locally finite, v is well-defined on $B \times B$, and we have $v^{-1}(0)=$ $\Delta(B)$ and $v^{-1}([0,3))=V$. Let $U=v^{-1}([0,1))$ an open neighbourhood of $\Delta(B)$. In [3], Milnor defined a map $\mu: V \rightarrow B$ giving an 'average' of $(x, y) \in V$ as follows.

$$
\mu(x, y)=\left(\zeta_{\beta}\right), \quad \zeta_{\beta}=\operatorname{Min}\left(\xi_{\beta}, \eta_{\beta}\right) / \sum_{\gamma} \operatorname{Min}\left(\xi_{\gamma}, \eta_{\gamma}\right)
$$

where $\left\{\xi_{\beta}\right\}$ and $\left\{\eta_{\beta}\right\}$ are barycentric coodinates of x and y respectively, and γ runs over all vertices in B. Since B is locally finite, μ is well-defined on V and satisfies $\mu(x, x)=x$ for any $x \in B$. Using the map μ, Milnor introduced a map $\lambda: V \times[0,1] \rightarrow B$ as follows.

$$
\lambda(x, y, t)= \begin{cases}(1-2 t) x+2 t \mu(x, y), & t \leq \frac{1}{2} \\ (2-2 t) \mu(x, y)+(2 t-1) y, & t \geq \frac{1}{2}\end{cases}
$$

Hence we have $\lambda(x, x, t)=x$ for any $x \in B$ and $t \in[0,1]$. Using Milnor's map λ, we obtain a pair of maps (u, h) as follows:

$$
\begin{aligned}
& u(x, y)=\operatorname{Min}\{1, v(x, y)\} \quad \text { and } \\
& h(x, y, t)= \begin{cases}(\lambda(x, y, \operatorname{Min}\{t, w(x, y)\}), y), & \text { if } v(x, y)<3, \\
(x, y), & \text { if } v(x, y)>2\end{cases}
\end{aligned}
$$

where $w: B \times B \rightarrow[0,1]$ is given by

$$
w(x, y)= \begin{cases}1, & v(x, y) \leq 1 \\ 2-v(x, y), & 1 \leq v(x, y) \leq 2 \\ 0, & v(x, y) \geq 2\end{cases}
$$

If $2<v(x, y)<3$, then, by definition, we have $w(x, y)=0$ and

$$
(\lambda(x, y, \operatorname{Min}\{t, w(x, y)\}), y)=(\lambda(x, y, 0), y)=(x, y) .
$$

Thus h is also a well-defined continuous map. Then we have $u^{-1}(0)=\Delta(B)$, $u^{-1}([0,1))=U$ and $h(x, y, 0)=(x, y)$ for any $(x, y) \in B \times B$. If $(x, y) \in U$, we have $w(x, y)=1, h(x, y, t)=(\lambda(x, y, t), y)$ and $h(x, y, 1)=(y, y) \in$ $\Delta(B)$. Moreover, we have $h(x, x, t)=(x, x)$ for any $x \in B$ and $t \in[0,1]$ and $\operatorname{pr}_{2} \circ h(x, y, t)=y$ for any $(x, y, t) \in B \times B \times[0,1]$. This implies that h is a fibrewise pointed homotopy. Thus the data (u, h) gives the fibrewise (strong) Strøm structure on $(B \times B, \Delta(B))$.

- In page 19 , line 34, " $t=0$ " must be replaced by " $t=1$ ".
- In page 20, line 17, "that" must be replaced by "that $H\left(s_{Z}(b), t\right)=s_{W}(b)$ for any $b \in B$ and".
- In page 20, line 28 , the formula " $\check{H}\left(q\left(s_{Z}(b), t\right), s\right)=s_{W}(b)$," must be added.

References

[1] M. C. Crabb. and I. M. James, "Fibrewise Homotopy Theory", Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1998.
[2] N. Iwase and M. Sakai, Topological complexity is a fibrewise L-S category, Topology and its Applications, 157 (2010), 10-21.
[3] J. Milnor, On Spaces Having the Homotopy Type of a CW-Complex, Trans. Amer. Math. Soc. 90 (1959), 272-280.

