ON THE CELLULAR DECOMPOSITION AND THE LUSTERNIK-SCHNIRELMANN CATEGORY OF Spin(7)

NORIO IWASE, MAMORU MIMURA AND TETSU NISHIMOTO

Abstract. We give a cellular decomposition of the compact connected Lie group $\operatorname{Spin}(7)$. We also determine the L-S categories of $\operatorname{Spin}(7)$ and $\operatorname{Spin}(8)$.

1. Introduction

In this paper, we assume that a space has the homotopy type of a CW-complex. The Lusternik-Schnirelmann category cat X of a space X is the least integer n such that X is the union of $(n+1)$ open subsets, each of which is contractible in X. G. Whitehead [15] showed that cat $X \leq n$ if and only if the diagonal map $\Delta_{n+1}: X \rightarrow \prod^{n+1} X$ is homotopic to some composition map

$$
X \longrightarrow T^{n+1}(X) \longrightarrow \prod^{n+1} X
$$

where $T^{n+1}(X)$ is the fat wedge and $T^{n+1}(X) \rightarrow \prod^{n+1} X$ is the inclusion map.
The weak Lusternik-Schnirelmann category wcat X is the least integer n such that the reduced diagonal map $\bar{\Delta}_{n+1}: X \rightarrow \wedge^{n+1} X$ is trivial. Then it is easy to see that w cat $X \leq$ cat X, since $\wedge^{n+1} X=\prod^{n+1} X / T^{n+1}(X)$.

The strong Lusternik-Schnirelmann category Cat X is the least integer n such that there exist a space X^{\prime} which is homotopy equivalent to X and is covered by $(n+1)$ open subsets contractible in themselves. Cat X is closely related with cat X, and Ganea and Takens [14] showed that

$$
\operatorname{cat} X \leq \operatorname{Cat} X \leq \operatorname{cat} X+1
$$

Ganea [3] showed that Cat X is equal to the invariant which is the least integer n such that there is a cofibre sequence

$$
A_{i} \longrightarrow X_{i-1} \longrightarrow X_{i}
$$

where X_{0} is a point and X_{n} is homotopy equivalent to X.
The Lusternik-Schnirelmann category for some Lie groups are determined, such as $\operatorname{cat}(U(n))=n$ and $\operatorname{cat}(S U(n))=n-1$ by Singhof [11], $\operatorname{cat}(S p(2))=3$ by Schweitzer [10], cat $(S p(3))=5$ by Fernández-Suárez, Gómez-Tato, Strom and Tanré [2], and Iwase and Mimura [6], $\operatorname{cat}(S O(2))=1, \operatorname{cat}(S O(3))=3, \operatorname{cat}(S O(4))=$

[^0]4, cat $(S O(5))=8$ by James and Singhof [7]. Some general argument about the Lusternik-Schnirel-mann category implies that cat $\left(G_{2}\right)=4$ (see for example [6]).

As is well-known, we have the following isomorphisms:

$$
\operatorname{Spin}(3) \cong S^{3}, \quad \operatorname{Spin}(4) \cong S^{3} \times S^{3}, \quad \operatorname{Spin}(5) \cong S p(2), \quad \operatorname{Spin}(6) \cong S U(4)
$$

Thus $\operatorname{Spin}(7)$ is the first non-trivial case in determining the cellular decomposition and the Lusternik-Schnirelmann category as well; it is our purpose in this paper.

Theorem 1.1. We have $w \operatorname{cat}(\operatorname{Spin}(7))=\operatorname{cat}(\operatorname{Spin}(7))=\operatorname{Cat}(\operatorname{Spin}(7))=5$.
Since $\operatorname{Spin}(8)$ is homeomorphic to $\operatorname{Spin}(7) \times S^{7}$, we obtain the following corollary.
Corollary 1.2. We have $w \operatorname{cat}(\operatorname{Spin}(8))=\operatorname{cat}(\operatorname{Spin}(8))=\operatorname{Cat}(\operatorname{Spin}(8))=6$.
The paper is organized as follows. In Section 2 we give a cellular decomposition of $\operatorname{Spin}(7)$ such that $\operatorname{Spin}(7)$ contains a subgroup $S U(4)$, which turns out to be useful for determining the Lusternik-Schnirelmann category of $\operatorname{Spin}(7)$. In Section 3 we give a cone-decomposition of $S U(4)$, which gives rise to the Lusternik-Schnirelmann category of $\operatorname{Spin}(7)$ in Section 4.

2. The cellular decomposition of $\operatorname{Spin}(7)$

In this section, we use the notation in [9]. Let \mathfrak{C} be the Cayley algebra. $S O(8)$ acts on \mathfrak{C} naturally since $\mathfrak{C} \cong \mathbb{R}^{8}$ as \mathbb{R}-module. We regard $S O(7)$ as the subgroup of $S O(8)$ fixing e_{0}, the unit of \mathfrak{C}. As is well known, the exceptional Lie group G_{2} is defined by

$$
G_{2}=\{g \in S O(7) \mid g(x) g(y)=g(x y), x, y \in \mathfrak{C}\}=\operatorname{Aut}(\mathfrak{C})
$$

According to [19], the group $\operatorname{Spin}(7)$ is the set of the elements $\tilde{g} \in S O(8)$ such that $g(x) \tilde{g}(y)=\tilde{g}(x y)$ for any $x, y \in \mathfrak{C}$, where $g \in S O(7)$ is uniquely determined by \tilde{g} :

$$
\operatorname{Spin}(7)=\{\tilde{g} \in S O(8) \mid g(x) \tilde{g}(y)=\tilde{g}(x y), g \in S O(7), x, y \in \mathfrak{C}\}
$$

It is easy to see that G_{2} is the subgroup of $\operatorname{Spin}(7)$. Observe that the algebra generated by e_{1} in \mathfrak{C} is isomorphic to \mathbb{C}. $S U(4)$ acts on \mathfrak{C} naturally, since as \mathbb{C} module $\mathfrak{C} \cong \mathbb{C}^{4}$ whose basis is $\left\{e_{0}, e_{2}, e_{4}, e_{6}\right\}$. We regard $S U(3)$ as the subgroup of $S U(4)$ fixing e_{0} and also as the subgroup of G_{2} fixing e_{1}.

Let D^{i} be the i-dimensional disc. We define four maps:

$$
\begin{aligned}
& A: D^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq 1\right\} \longrightarrow S O(8), \\
& B: D^{2}=\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2} \mid y_{1}^{2}+y_{2}^{2} \leq 1\right\} \longrightarrow S O(8), \\
& C: D^{1}=\left\{z_{1} \in \mathbb{R} \mid z_{1}^{2} \leq 1\right\} \longrightarrow S O(8), \\
& D: D^{2}=\left\{\left(w_{1}, w_{2}\right) \in \mathbb{R}^{2} \mid w_{1}^{2}+w_{2}^{2} \leq 1\right\} \longrightarrow S O(8),
\end{aligned}
$$

as follows:

$$
\begin{aligned}
& A\left(x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{cccccccc}
1 & & & & & & & \\
& 1 & & & & & & \\
& & 1 & & & & & \\
& & & 1 & & & & \\
& & & & 1-2 X^{2} & -2 x_{1} X & -2 x_{2} X & -2 x_{3} X \\
& & & & 2 x_{1} X & 1-2 X^{2} & 2 x_{3} X & -2 x_{2} X \\
& & & 2 x_{2} X & -2 x_{3} X & 1-2 X^{2} & 2 x_{1} X \\
& & & & 2 x_{3} X & 2 x_{2} X & -2 x_{1} X & 1-2 X^{2}
\end{array}\right), \\
& B\left(y_{1}, y_{2}\right)=\left(\begin{array}{cccccccc}
1 & & & & & & & \\
& 1 & & & & & & \\
& & y_{1} & -y_{2} & -Y & 0 & & \\
& & y_{2} & y_{1} & 0 & -Y & & \\
& & Y & 0 & y_{1} & y_{2} & & \\
& & 0 & Y & -y_{2} & y_{1} & & \\
& & & & & & 1 & \\
& & & & & & & 1
\end{array}\right), \\
& C\left(z_{1}\right)=\left(\begin{array}{cccccccc}
1 & & & & & & & \\
& z_{1} & 0 & -Z & & & & \\
& 0 & 1 & 0 & & & & \\
& Z & 0 & z_{1} & & & & \\
& & & & 1 & & & \\
& & & & & z_{1} & 0 & -Z \\
& & & & 0 & 1 & 0 \\
& & & & & Z & 0 & z_{1}
\end{array}\right), \\
& D\left(w_{1}, w_{2}\right)=\left(\begin{array}{cccccccc}
w_{1} & -w_{2} & -W & & & & & \\
w_{2} & w_{1} & & -W & & & & \\
W & & w_{1} & w_{2} & & & & \\
& W & -w_{2} & w_{1} & & & & \\
& & & & 1 & & & \\
& & & & & 1 & & \\
& & & & & & 1 & \\
& & & & & & & 1
\end{array}\right) \text {, }
\end{aligned}
$$

where we put for simplicity

$$
\begin{array}{ll}
X=\sqrt{1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}}, & Y=\sqrt{1-y_{1}^{2}-y_{2}^{2}} \\
Z=\sqrt{1-z_{1}^{2}}, & W=\sqrt{1-w_{1}^{2}-w_{2}^{2}}
\end{array}
$$

Lemma 2.1. The elements $A\left(x_{1}, x_{2}, x_{3}\right), B\left(y_{1}, y_{2}\right), C\left(z_{1}\right)$ and $D\left(w_{1}, w_{2}\right)$ belong to $\operatorname{Spin}(7)$.

Proof. Apparently the elements $A\left(x_{1}, x_{2}, x_{3}\right), B\left(y_{1}, y_{2}\right)$ and $C\left(z_{1}\right)$ belong to G_{2}. In the proof, we denote $D\left(w_{1}, w_{2}\right)$ simply by D. Let D^{\prime} be the matrix

$$
\left(\begin{array}{ccccccc}
1 & & & & & & \\
& 1 & & & & & \\
& & 1 & & & & \\
& & & 1 & & & \\
& & & & w_{1} & -w_{2} & W \\
& & & & w_{2} & w_{1} & \\
& & & & -W & & w_{1} \\
& & & & -w_{2} \\
& & & & W & w_{2} & w_{1}
\end{array}\right)
$$

Then we can show by a tedious calculation that $D^{\prime} x D y=D(x y)$ for any $x, y \in \mathfrak{C}$, which gives us the result.

Let $\varphi_{3}, \varphi_{5}, \varphi_{6}$ and φ_{7} be maps

$$
\begin{aligned}
& \varphi_{3}: D^{3} \longrightarrow \operatorname{Spin}(7), \\
& \varphi_{5}: D^{3} \times D^{2} \longrightarrow \operatorname{Spin}(7), \\
& \varphi_{6}: D^{3} \times D^{2} \times D^{1} \longrightarrow \operatorname{Spin}(7), \\
& \varphi_{7}: D^{3} \times D^{2} \times D^{2} \longrightarrow \operatorname{Spin}(7)
\end{aligned}
$$

respectively defined by the equalities

$$
\begin{aligned}
& \varphi_{3}(\mathbf{x})=A(\mathbf{x}) \\
& \varphi_{5}(\mathbf{x}, \mathbf{y})=B(\mathbf{y}) A(\mathbf{x}) B(\mathbf{y})^{-1} \\
& \varphi_{6}(\mathbf{x}, \mathbf{y}, \mathbf{z})=C(\mathbf{z}) B(\mathbf{y}) A(\mathbf{x}) B(\mathbf{y})^{-1} C(\mathbf{z})^{-1} \\
& \varphi_{7}(\mathbf{x}, \mathbf{y}, \mathbf{w})=D(\mathbf{w}) B(\mathbf{y}) A(\mathbf{x}) B(\mathbf{y})^{-1} D(\mathbf{w})^{-1}
\end{aligned}
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right), \mathbf{y}=\left(y_{1}, y_{2}\right), \mathbf{z}=\left(z_{1}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}\right)$. We define sixteen cells e^{j} for $j=0,3,5,6,7,8,9,10,11,12,13,14,15,16,18,21$ respectively as follows:

$$
\begin{array}{lllll}
e^{0}=\{1\}, & e^{3}=\operatorname{Im} \varphi_{3}, & e^{5}=\operatorname{Im} \varphi_{5}, & e^{6}=\operatorname{Im} \varphi_{6}, & e^{7}=\operatorname{Im} \varphi_{7}, \\
e^{8}=e^{5} e^{3}, & e^{9}=e^{6} e^{3}, & e^{10}=e^{7} e^{3}, & e^{11}=e^{6} e^{5}, & e^{12}=e^{7} e^{5}, \\
e^{13}=e^{6} e^{7}, & e^{14}=e^{6} e^{5} e^{3}, & e^{15}=e^{7} e^{5} e^{3}, & e^{16}=e^{6} e^{7} e^{3}, & e^{18}=e^{6} e^{7} e^{5}, \\
e^{21}=e^{6} e^{7} e^{5} e^{3} . & & &
\end{array}
$$

Let S^{7} be the unit sphere of \mathfrak{C}. Then we have a principal bundle over it:

$$
S U(3) \longrightarrow S U(4) \xrightarrow{p_{0}} S^{7},
$$

where $p_{0}(g)=g e_{0}$.
Lemma 2.2. Let $V^{7}=D^{3} \times D^{2} \times D^{2}$. Then the composite map $p_{0} \varphi_{7}:\left(V^{7}, \partial V^{7}\right) \rightarrow$ $\left(S^{7}, e_{0}\right)$ is a relative homeomorphism.

Proof. We express the map $\left.\left(p_{0} \varphi_{7}\right)\right|_{V^{7} \backslash \partial V^{7}}$ as follows:

$$
\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6} \\
a_{7}
\end{array}\right)=D(\mathbf{w}) B(\mathbf{y}) A(\mathbf{x}) B(\mathbf{y})^{-1} D(\mathbf{w})^{-1} e_{0}=\left(\begin{array}{c}
1-2 X^{2} Y^{2} W^{2} \\
2 x_{1} X Y^{2} W^{2} \\
2\left(w_{1} X-x_{1} w_{2}\right) X Y^{2} W \\
-2\left(w_{2} X+x_{1} w_{1}\right) X Y^{2} W \\
2\left(-y_{1} X+x_{1} y_{2}\right) X Y W \\
2\left(y_{2} X+x_{1} y_{1}\right) X Y W \\
2 x_{2} X Y W \\
2 x_{3} X Y W
\end{array}\right)
$$

and hence we have

$$
\left(\begin{array}{c}
1-a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6} \\
a_{7}
\end{array}\right)=2 X Y W\left(\begin{array}{c}
X Y W \\
x_{1} Y W \\
\left(w_{1} X-x_{1} w_{2}\right) Y \\
-\left(w_{2} X+x_{1} w_{1}\right) Y \\
-y_{1} X+x_{1} y_{2} \\
y_{2} X+x_{1} y_{1} \\
x_{2} \\
x_{3}
\end{array}\right) .
$$

Since $X>0, Y>0, W>0$ and $1-a_{0}>0$, an easy calculation as for the first component in the above equation gives the following equation:

$$
\begin{equation*}
X Y W=\frac{\sqrt{1-a_{2}}}{\sqrt{2}} \tag{2.1}
\end{equation*}
$$

from which we easily obtain

$$
\begin{equation*}
x_{2}=\frac{a_{6}}{\sqrt{2\left(1-a_{2}\right)}}, \quad x_{3}=\frac{a_{7}}{\sqrt{2\left(1-a_{2}\right)}} \tag{2.2}
\end{equation*}
$$

Further we obtain three more equalities from the above equalities:

$$
\begin{aligned}
& \left(1-a_{0}\right)^{2}+a_{1}^{2}=4 X^{2} Y^{4} W^{4}\left(x_{1}^{2}+X^{2}\right) \\
& a_{2}^{2}+a_{3}^{2}=4 X^{2} Y^{4} W^{2}\left(w_{1}^{2}+w_{2}^{2}\right)\left(x_{1}^{2}+X^{2}\right)=4 X^{2} Y^{4} W^{2}\left(1-W^{2}\right)\left(x_{1}^{2}+X^{2}\right), \\
& a_{4}^{2}+a_{5}^{2}=4 X^{2} Y^{2} W^{2}\left(y_{1}^{2}+y_{2}^{2}\right)\left(x_{1}^{2}+X^{2}\right)=4 X^{2} Y^{2} W^{2}\left(1-Y^{2}\right)\left(x_{1}^{2}+X^{2}\right)
\end{aligned}
$$

Using these three equalities, we obtain

$$
\begin{align*}
Y^{2} & =\frac{\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}{\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}} \tag{2.3}\\
W^{2} & =\frac{\left(1-a_{0}\right)^{2}+a_{1}^{2}}{\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} \tag{2.4}
\end{align*}
$$

It follows from (2.1), (2.3) and (2.4) that

$$
\begin{equation*}
X^{2}=\frac{\left(1-a_{0}\right)\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}\right)}{2\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}\right)} \tag{2.5}
\end{equation*}
$$

It follows also from (2.2) and (2.5) that

$$
\begin{equation*}
x_{1}^{2}=\frac{a_{1}^{2}\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}\right)}{2\left(1-a_{0}\right)\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}\right)} \tag{2.6}
\end{equation*}
$$

Since Y, W, X are positive, (2.3), (2.4), (2.5) imply respectively

$$
\begin{align*}
Y & =\frac{\sqrt{\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}}{\sqrt{\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}}}, \tag{2.7}\\
W & =\frac{\sqrt{\left(1-a_{0}\right)^{2}+a_{1}^{2}}}{\sqrt{\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}}, \tag{2.8}\\
X & =\frac{\sqrt{\left(1-a_{0}\right)\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}\right)}}{\sqrt{2\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}\right)}} . \tag{2.9}
\end{align*}
$$

Since the signs of x_{1} and a_{1} are the same, (2.6) implies that

$$
\begin{equation*}
x_{1}=\frac{a_{1} \sqrt{\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}}}{\sqrt{2\left(1-a_{0}\right)\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}\right)}} \tag{2.10}
\end{equation*}
$$

Now we determine y_{1}; we have

$$
-a_{4} X+a_{5} x_{1}=2 X Y W\left(x_{1}^{2}+X^{2}\right) y_{2}
$$

Substituting the equations (2.1), (2.9) and (2.10) in the above equation, we obtain

$$
\begin{equation*}
y_{1}=\frac{a_{1} a_{5}-\left(1-a_{0}\right) a_{4}}{\sqrt{\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}\right)\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}\right)}} . \tag{2.11}
\end{equation*}
$$

We determine y_{2}; we have

$$
a_{4} x_{1}+a_{5} X=2 X Y W\left(x_{1}^{2}+X^{2}\right) y_{2} .
$$

Substituting the equations (2.1), (2.9) and (2.10) in the above equation, we obtain

$$
\begin{equation*}
y_{2}=\frac{a_{1} a_{4}+\left(1-a_{0}\right) a_{5}}{\sqrt{\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}\right)\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}\right)}} \tag{2.12}
\end{equation*}
$$

We determine w_{1}; we have

$$
a_{2} X-a_{3} x_{1}=2 X Y^{2} W\left(x_{1}^{2}+X^{2}\right) w_{1}
$$

Substituting the equations $(2.1),(2.7),(2.9)$ and (2.10) in the above equation, we obtain

$$
\begin{equation*}
w_{1}=\frac{\left(1-a_{0}\right) a_{2}-a_{1} a_{3}}{\sqrt{\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}\right)\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)}} \tag{2.13}
\end{equation*}
$$

Finally we determine w_{2}; we have

$$
-a_{2} x_{1}-a_{3} X=2 X Y^{2} W\left(x_{1}^{2}+X^{2}\right) w_{2}
$$

Substituting the equations (2.1), (2.7), (2.9) and (2.10) in the above equation, we obtain

$$
\begin{equation*}
w_{2}=\frac{-a_{1} a_{2}-\left(1-a_{0}\right) a_{3}}{\sqrt{\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}\right)\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)}} \tag{2.14}
\end{equation*}
$$

Thus we have expressed $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, w_{1}, w_{2}$ in terms of a_{0}, \cdots, a_{7}, that is, the inverse map has been constructed, which completes the proof.

In a similar way to that of Section 3 of [9], we can obtain the following theorem, which is essentially the same as Yokota's decomposition [17].

Proposition 2.3. $e^{0} \cup e^{3} \cup e^{5} \cup e^{7} \cup e^{8} \cup e^{10} \cup e^{12} \cup e^{15}$ thus obtained is a cellular decomposition of $S U(4)$.

Proof. First we show that $\stackrel{\circ}{e}^{i} \cap \dot{e}^{j}=\emptyset$ if $i \neq j$. We consider the following three cases:
(1) For the case where $i, j \in\{0,3,5,8\}$; both cells e^{i} and e^{j} are in $S U(3)$ and $e^{0} \cup e^{3} \cup e^{5} \cup e^{8}$ is a cellular decomposition of $S U(3)$. Then we have $\dot{e}^{i} \cap \dot{e}^{j}=\emptyset$ if $i \neq j$.
(2) For the case where $i \in\{0,3,5,8\}$ and $j \in\{7,10,12,15\}$; we have $p_{0}\left(e^{i}\right)=$ $\left\{e_{0}\right\}$ and $p_{0}\left(\dot{e}^{j}\right)=S^{7} \backslash\left\{e_{0}\right\}$. Then we have $\dot{e}^{i} \cap \dot{e}^{j}=\emptyset$.
(3) For the case where $i, j \in\{7,10,12,15\}$; suppose that $A \in \dot{e}^{i} \cap \dot{e}^{j}$. Since $\dot{e}^{i}=\dot{e}^{7} \dot{e}^{i-7}$ and $\dot{e}^{j}=\dot{e}^{7} e^{j-7}$, we can put $A=A_{1} A_{2}=A_{1}^{\prime} A_{2}^{\prime}$ where $A_{1}, A_{1}^{\prime} \in$ $\dot{e}^{7}, A_{2} \in \dot{e}^{i-7}$ and $A_{2}^{\prime} \in \dot{e}^{j-7}$. We have $A_{1}=A_{1}^{\prime}$, since $p_{0}\left(A_{1}\right)=p_{0}\left(A_{1} A_{2}\right)=$ $p_{0}\left(A_{1}^{\prime} A_{2}^{\prime}\right)=p_{0}\left(A_{1}^{\prime}\right)$ and $\left.p_{0}\right|_{e^{7}}$ is monic. Then we have $A_{2}=A_{2}^{\prime}$ and the first case shows that $i-7=j-7$, that is, $i=j$. Thus $\dot{e}^{i} \cap \dot{e}^{j}=\emptyset$ if $i \neq j$.

Next, we will check that the boundaries of the cells are included in the lower dimensional cells. In the proof of Proposition 3.2 [9], it is proved that the boundaries \dot{e}^{3}, \dot{e}^{5} and \dot{e}^{8} are included in the lower dimensional cells. Observe that the boundary \dot{e}^{7} is the union of the following three sets:

$$
\begin{aligned}
& \left\{D B A B^{-1} D^{-1} \mid A \in A\left(\dot{D}^{3}\right), B \in B\left(D^{2}\right), D \in D\left(D^{2}\right)\right\} \\
& \left\{D B A B^{-1} D^{-1} \mid A \in A\left(D^{3}\right), B \in B\left(\dot{D}^{2}\right), D \in D\left(D^{2}\right)\right\} \\
& \left\{D B A B^{-1} D^{-1} \mid A \in A\left(D^{3}\right), B \in B\left(D^{2}\right), D \in D\left(\dot{D}^{2}\right)\right\}
\end{aligned}
$$

The first set contains only the identity element, since A is the identity element. It is easy to see that the second set is contained in e^{3} and that the third set is contained in e^{5}. We have $\dot{e}^{10}=e^{7} \dot{e}^{3} \cup \dot{e}^{7} e^{3} \subset e^{7} e^{0} \cup e^{5} e^{3}=e^{7} \cup e^{8}$. We also have $\dot{e}^{12}=\dot{e}^{7} e^{5} \cup e^{7} \dot{e}^{5} \subset e^{5} e^{5} \cup e^{7} e^{3}=e^{8} \cup e^{10}$, and $\dot{e}^{15}=\dot{e}^{7} e^{5} e^{3} \cup e^{7} \dot{e}^{5} e^{3} \cup e^{7} e^{5} \dot{e}^{3} \subset$ $e^{5} e^{5} e^{3} \cup e^{7} e^{3} e^{3} \cup e^{7} e^{5}=e^{8} \cup e^{10} \cup e^{12}$.

Finally, we will show that the inclusion map $e^{0} \cup e^{3} \cup e^{5} \cup e^{7} \cup e^{8} \cup e^{10} \cup e^{12} \cup e^{15} \rightarrow$ $S U(4)$ is epic. Let $g \in S U(4)$. If $p_{0}(g)=e_{0}$, then g is contained in $S U(3)=$ $e^{0} \cup e^{3} \cup e^{5} \cup e^{8}$. Suppose that $p_{0}(g) \neq e_{0}$. There is an element $h \in e^{7}$ such that $p_{0}(h)=p_{0}(g)$. Thus we have $h^{-1} g \in S U(3)=e^{0} \cup e^{3} \cup e^{5} \cup e^{8}$, since $p_{0}\left(h^{-1} g\right)=e_{0}$. Therefore we have $g \in h\left(e^{0} \cup e^{3} \cup e^{5} \cup e^{8}\right) \subset e^{0} \cup e^{3} \cup e^{5} \cup e^{7} \cup e^{8} \cup e^{10} \cup e^{12} \cup e^{15}$.

Remark 2.4. (1) We regard $S O(6)$ as the subgroup of $S O(7)$ fixing e_{1}. Let π : $\operatorname{Spin}(6) \rightarrow S O(6)$ be the double covering. Then, according to the Proof of Lemma 2.1, $\pi(S U(4)) \subset S O(6)$ so that $\left.\pi\right|_{S U(4)}: S U(4) \rightarrow S O(6)$ is the double covering.
(2) For $1 \leq n \leq 3$, the subcomplex $e^{0} \cup e^{3} \cup \cdots \cup e^{2 n+1}$ is homeomorphic to $\Sigma \mathbb{C} P^{n}$, which consists of the elements

$$
A\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & e^{2 i \theta}
\end{array}\right) A^{-1}\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & e^{-2 i \theta}
\end{array}\right)
$$

for any elements A in $S U(n+1)$. Moreover, according to Proposition 2.6 of Chapter IV of [13], we have $e^{2 i+1} e^{2 j+1} \subset e^{2 j+1} e^{2 i+1}$ for $i<j$; in fact we have $e^{2 i+1} e^{2 j+1}=$ $e^{2 j+1} e^{2 i+1}$ (see [19]).

Let S^{6} be the unit sphere of \mathbb{R}^{7} whose basis $\left\{e_{i} \mid 1 \leq i \leq 7\right\}$. We consider the following diagram

where the horizontal lines are principal fibre bundles and $p(g)=\pi(g) e_{1}$.
Lemma 4.1 of [9] implies the following lemma immediately.
Lemma 2.5. Put $V^{6}=D^{3} \times D^{2} \times D^{1}$. Then the composite map $p \varphi_{6}:\left(V^{6}, \partial V^{6}\right) \rightarrow$ $\left(S^{6},\left\{e_{1}\right\}\right)$ is a relative homeomorphism.

Now we can state one of our main results.
Theorem 2.6. The cell complex $e^{0} \cup e^{3} \cup e^{5} \cup e^{6} \cup e^{7} \cup e^{8} \cup e^{9} \cup e^{10} \cup e^{11} \cup e^{12} \cup$ $e^{13} \cup e^{14} \cup e^{15} \cup e^{16} \cup e^{18} \cup e^{21}$ gives a cellular decomposition of Spin(7).

Proof. First we show that $\dot{e}^{i} \cap e^{j}=\emptyset$ if $i \neq j$. We consider the following three cases:
(1) For the case where $i, j \in\{0,3,5,7,8,10,12,15\}$; both cells e^{i} and e^{j} are in $S U(4)$ and $e^{0} \cup e^{3} \cup e^{5} \cup e^{7} \cup e^{8} \cup e^{10} \cup e^{12} \cup e^{15}$ is a cellular decomposition of $S U(4)$, whence we have $\dot{\circ}^{i} \cap \dot{e}^{j}=\emptyset$ if $i \neq j$.
(2) For the case where $i \in\{0,3,5,7,8,10,12,15\}$ and $j \in\{6,9,11,13,14,16,18$, 21\}; we have $p\left(e^{\circ}\right)=\left\{e_{1}\right\}$ and $p\left(\dot{e}^{j}\right)=S^{6} \backslash\left\{e_{1}\right\}$, whence we have $\dot{e}^{i} \cap \dot{e}^{j}=\emptyset$.
(3) For the case where $i, j \in\{6,9,11,13,14,16,18,21\}$, suppose that $A \in \dot{e}^{i} \cap \dot{e}^{j}$. Since $\stackrel{\circ}{e}^{i}=\check{e}^{6} \dot{e}^{i-6}$ and $\dot{e}^{j}=\stackrel{\circ}{e}^{6}{ }^{\circ}{ }^{j-6}$, we can put $A=A_{1} A_{2}=A_{1}^{\prime} A_{2}^{\prime}$, where $A_{1}, A_{1}^{\prime} \in$ $\grave{e}^{6}, A_{2} \in \dot{e}^{i-6}$ and $A_{2}^{\prime} \in \dot{e}^{j-6}$. We have $A_{1}=A_{1}^{\prime}$, since $p\left(A_{1}\right)=p\left(A_{1} A_{2}\right)=$ $p\left(A_{1}^{\prime} A_{2}^{\prime}\right)=p\left(A_{1}^{\prime}\right)$ and $\left.p\right|_{e^{6}}$ is monic. Then we have $A_{2}=A_{2}^{\prime}$ and the first case shows that $i-6=j-6$, that is, $i=j$. Thus $e^{i} \cap e^{j}=\emptyset$ if $i \neq j$.

Next, we will check that the boundaries of the cells are included in the lower dimensional cells. In Proposition 2.3, it is proved that the boundaries of the cells of $S U(4)$ are included in the lower dimensional cells. In Proof of Theorem 4.2 in [9], we showed that $\dot{e}^{6} \subset e^{3} \cup e^{5}, \dot{e}^{9} \subset e^{6} \cup e^{8}, \dot{e}^{11} \subset e^{5} \cup e^{9}$ and $\dot{e}^{14} \subset e^{8} \cup e^{9} \cup e^{11}$. By using (2) of Remark 2.4, we also obtain

$$
\begin{aligned}
& \dot{e}^{13}=e^{6} \dot{e}^{7} \cup \dot{e}^{6} e^{7} \subset e^{11} \cup e^{12}, \\
& \dot{e}^{16}=e^{6} e^{7} \dot{e}^{3} \cup e^{6} \dot{e}^{7} e^{3} \cup \dot{e}^{6} e^{7} e^{3} \subset e^{13} \cup e^{14} \cup e^{15}, \\
& \dot{e}^{18}=e^{6} e^{7} \dot{e}^{5} \cup e^{6} \dot{e}^{7} e^{5} \cup \dot{e}^{6} e^{7} e^{5} \subset e^{16} \cup e^{14} \cup e^{15}, \\
& \dot{e}^{21}=e^{6} e^{7} e^{5} \dot{e}^{3} \cup e^{6} e^{7} \dot{e}^{5} e^{3} \cup e^{6} \dot{e}^{7} e^{5} e^{3} \cup \dot{e}^{6} e^{7} e^{5} e^{3} \subset e^{18} \cup e^{16} \cup e^{14} \cup e^{15} .
\end{aligned}
$$

Finally, we will show that the inclusion map $e^{0} \cup e^{3} \cup e^{5} \cup e^{6} \cup e^{7} \cup e^{8} \cup e^{9} \cup e^{10} \cup e^{11} \cup$ $e^{12} \cup e^{13} \cup e^{14} \cup e^{15} \cup e^{16} \cup e^{18} \cup e^{21} \rightarrow \operatorname{Spin}(7)$ is epic. Let $g \in \operatorname{Spin}(7)$. If $p(g)=e_{1}$, then g is contained in $S U(4)=e^{0} \cup e^{3} \cup e^{5} \cup e^{7} \cup e^{8} \cup e^{10} \cup e^{12} \cup e^{15}$. Suppose that $p(g) \neq e_{1}$. There is an element $h \in e^{6}$ such that $p(h)=p(g)$. Thus we have $h^{-1} g \in S U(4)$ since $p\left(h^{-1} g\right)=e_{1}$. Therefore we have $g \in h\left(e^{0} \cup e^{3} \cup e^{5} \cup e^{7} \cup e^{8} \cup e^{10} \cup\right.$ $\left.e^{12} \cup e^{15}\right) \subset e^{0} \cup e^{3} \cup e^{5} \cup e^{6} \cup e^{7} \cup e^{8} \cup e^{9} \cup e^{10} \cup e^{11} \cup e^{12} \cup e^{13} \cup e^{14} \cup e^{15} \cup e^{16} \cup e^{18} \cup e^{21}$.

Remark 2.7. Araki [1] also gave a cellular decomposition of $\operatorname{Spin}(n)$, but the one we have given here is a cellular decomposition with the minimum number of cells, satisfying the Yokota principle ([17], [18], [19]). As will be seen later, it is effectively used to determine the Lusternik-Schnirelmann category.

It is easy to give a cellular decomposition of $\operatorname{Spin}(8)$ using a homeomorphism $\operatorname{Spin}(8) \rightarrow \operatorname{Spin}(7) \times S^{7}$.

3. The cone-decomposition of $S U(4)$

Obviously there is a filtration $F_{0}^{\prime}=* \subset F_{1}^{\prime}=S U(4)^{(7)} \subset F_{2}^{\prime}=S U(4)^{(12)} \subset F_{3}^{\prime}=$ $S U(4)$. It is well-known that $F_{1}^{\prime}=\Sigma \mathbb{C} P^{3}=S^{3} \cup e^{5} \cup e^{7}$ and $F_{2}^{\prime}=F_{1}^{\prime} \cup e^{8} \cup e^{10} \cup e^{12}$. Thus the integral cohomology $H^{n}\left(F_{2}^{\prime} ; \mathbb{Z}\right)$ is given by

$$
H^{n}\left(F_{2}^{\prime} ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z}\langle 1\rangle & (n=0) \\ \mathbb{Z}\left\langle y_{n}\right\rangle & (n=3,5,7,8,10,12) \\ 0 & \text { (otherwise) } .\end{cases}
$$

The action of the squaring operation $S q^{2}$ is given as follows:

$$
S q^{2} y_{n}= \begin{cases}y_{n+2} & \text { for } n=3,10 \\ 0 & \text { for } n=5,7,8,12\end{cases}
$$

where y_{n} is regarded as an element of the mod 2 cohomology. To give the cone decomposition of $S U(4)$, we use the following homotopy fibration:

$$
\begin{equation*}
F \xrightarrow{\Psi} F_{1}^{\prime} \xrightarrow{\iota} F_{2}^{\prime} . \tag{3.1}
\end{equation*}
$$

Without loss of generality, we may regard this as a Hurewicz fibration over F_{2}^{\prime}.
Firstly we consider the Serre spectral sequence $\left(E_{r}^{*, *}, d_{r}\right)$ associated with the above fibration, where the generators of $E_{2}^{*, 0}$ for $* \leq 7$ are permanent cycles and survive to E_{∞}-terms. Hence F is 6 -connected and the transgression τ : $H^{7}(F ; \mathbb{Z}) \rightarrow H^{8}\left(F_{2}^{\prime} ; \mathbb{Z}\right)$ is an isomorphism to $H^{8}\left(F_{2}^{\prime} ; \mathbb{Z}\right) \cong \mathbb{Z}\left\langle y_{8}\right\rangle$. Thus $H^{7}(F ; \mathbb{Z}) \cong$ $\mathbb{Z}\left\langle x_{7}\right\rangle$ for some $x_{7} \in H^{7}(F ; \mathbb{Z})$. Similarly, the generators in $E_{2}^{3,7} \cong \mathbb{Z}\left\langle y_{3} \otimes x_{7}\right\rangle$ and $E_{2}^{10,0} \cong H^{10}\left(F_{2}^{\prime} ; \mathbb{Z}\right) \cong \mathbb{Z}\left\langle y_{10}\right\rangle$ must lie in the image of differentials d_{3} and $d_{10}=\tau: H^{9}(F ; \mathbb{Z}) \rightarrow H^{10}\left(F_{2}^{\prime} ; \mathbb{Z}\right)$ respectively, and we have that $H^{8}(F ; \mathbb{Z})=0$ and $H^{9}(F ; \mathbb{Z}) \cong \mathbb{Z}\left\langle x_{9}\right\rangle \oplus \mathbb{Z}\left\langle x_{9}^{\prime}\right\rangle$, where the elements x_{9} and x_{9}^{\prime} in $H^{9}(F ; \mathbb{Z})$ are corresponding to x_{10} and $y_{3} \otimes x_{7}$ by the transgression τ and d_{3} respectively. We remark that the choice of the generator x_{9}^{\prime} is not unique. Continuing this process, we have that $H^{10}(F ; \mathbb{Z})=0$ and $H^{11}(F ; \mathbb{Z}) \cong \mathbb{Z}\left\langle x_{11}\right\rangle \oplus \mathbb{Z}\left\langle x_{11}^{\prime}\right\rangle \oplus \mathbb{Z}\left\langle x_{11}^{\prime \prime}\right\rangle \oplus \mathbb{Z}\left\langle x_{11}^{\prime \prime \prime}\right\rangle$ whose generators are corresponding to $x_{12}, y_{3} \otimes x_{9}, y_{3} \otimes x_{9}^{\prime}$ and $y_{5} \otimes x_{7}$ respectively by the transgression τ and differentials d_{3}, d_{3} and d_{5}.

Thus the integral cohomology $H^{n}(F ; \mathbb{Z})$ for $0 \leq n \leq 11$ is given by

$$
H^{n}(F ; \mathbb{Z}) \cong \begin{cases}\mathbb{Z}\langle 1\rangle & (n=0) \\ \mathbb{Z}\left\langle x_{7}\right\rangle & (n=7) \\ \mathbb{Z}\left\langle x_{9}\right\rangle \oplus \mathbb{Z}\left\langle x_{9}^{\prime}\right\rangle & (n=9) \\ \mathbb{Z}\left\langle x_{11}\right\rangle \oplus \mathbb{Z}\left\langle x_{11}^{\prime}\right\rangle \oplus \mathbb{Z}\left\langle x_{11}^{\prime \prime}\right\rangle \oplus \mathbb{Z}\left\langle x_{11}^{\prime \prime \prime}\right\rangle & (n=11) \\ 0 & \text { (otherwise) }\end{cases}
$$

where x_{7}, x_{9} and x_{11} are transgressive generators in $H^{*}(F ; \mathbb{Z})$. Hence F has, up to homotopy, a cellular decomposition $e^{0} \cup e^{7} \cup_{\varphi_{1}} e^{9} \cup_{\varphi_{1}^{\prime}} e_{1}^{9} \cup_{\varphi_{2}} e^{11} \cup$ (cells in dimensions ≥ 11), where the cells e^{7}, e^{9} and e^{11} correspond to x_{7}, x_{9} and x_{11} respectively. Then we obtain a subcomplex $A^{\prime}=e^{0} \cup e^{7} \cup_{\varphi_{1}} e^{9} \cup_{\varphi_{1}^{\prime}} e_{1}^{9} \cup_{\varphi_{2}} e^{11}$ of F.

Secondly, we determine the attaching maps φ_{1} and φ_{1}^{\prime} : Let us recall that $\pi_{8}\left(S^{7}\right) \cong \mathbb{Z} / 2\left\langle\eta_{7}\right\rangle$ whose generator η_{7} can be detected by $S q^{2}$, the mod 2 Steenrod operation. Since the action of mod 2 Steenrod operation commutes with the cohomology transgression (see [8, Proposition 6.5]), we see that $S q^{2} x_{7}$ is transgressive, and hence is $c x_{9}$ for some $c \in \mathbb{Z} / 2$. We know that $\tau x_{9}=y_{10} \neq 0$ and $\tau S q^{2} x_{7}=S q^{2} \tau x_{7}=S q^{2} y_{8}=0$, and hence $S q^{2} x_{7}$ must be trivial. Thus the attaching maps φ_{1} and φ_{1}^{\prime} are both null homotopic and A^{\prime} is homotopy equivalent to $\left(S^{7} \vee S^{9} \vee S_{1}^{9}\right) \cup_{\varphi_{2}} e^{11}$.

Thirdly we check the composition of projections with the attaching map φ_{2} : $S^{10} \rightarrow S^{7} \vee S^{9} \vee S_{1}^{9}$ to S^{9} and S_{1}^{9}, which can also be detected by $S q^{2}$. Again by the commutativity of the action of mod 2 Steenrod operation with the transgression, we see that the composition map $\operatorname{pr}_{S^{9}} \circ \varphi_{2}: S^{10} \xrightarrow{\varphi_{2}} S^{7} \vee S^{9} \vee S_{1}^{9} \longrightarrow S^{9}$ represents a generator of $\pi_{10}\left(S^{9}\right) \cong \mathbb{Z} / 2\left\langle\eta_{9}\right\rangle$, since $S q^{2}: H^{8}\left(F_{2}^{\prime} ; \mathbb{Z} / 2\right) \rightarrow H^{10}\left(F_{2}^{\prime} ; \mathbb{Z} / 2\right)$ is nontrivial. If the composition map $\phi_{1}=\operatorname{pr}_{S_{1}^{9}} \circ \varphi_{2}: S^{10} \xrightarrow{\varphi_{2}} S^{7} \vee S^{9} \vee S_{1}^{9} \longrightarrow S_{1}^{9}$ is non-trivial, we replace φ_{2} by the composition of φ_{2} and the homotopy equivalence
$\xi: S^{7} \vee S^{9} \vee S_{1}^{9} \rightarrow S^{7} \vee S^{9} \vee S_{1}^{9}$ where $\left.\xi\right|_{S^{7}}$ and $\left.\xi\right|_{S_{1}^{9}}$ are the identity maps and $\left.\xi\right|_{S^{9}}$ is the unique co-H-structure map $\phi: S^{9} \rightarrow S^{9} \vee S_{1}^{9}$; then we obtain that ϕ_{1} is trivial, since $2 \eta_{9}=0$. Then A^{\prime} is homotopy equivalent to $\left(\left(S^{7} \vee S^{9}\right) \cup_{\varphi_{2}} e^{11}\right) \vee S_{1}^{9}$. Let A denote the subcomplex $\left(S^{7} \vee S^{9}\right) \cup_{\varphi_{2}} e^{11}$ of A^{\prime} and $\psi=\left.\Psi\right|_{A}: A \rightarrow F_{1}^{\prime}$.

Lemma 3.1. F_{2}^{\prime} is homotopy equivalent to $F_{1}^{\prime} \cup_{\psi} C A$.
Proof. The image of $H^{*}(A ; \mathbb{Z})$ in $H^{*}(F ; \mathbb{Z})$ under the induced map of the inclusion coincides with the module of transgressive elements with respect to the fibration (3.1) (see [8, Chapter 6]). Thus we may regard that $H^{n-1}(A ; \mathbb{Z})=$ $\delta^{-1}\left(\iota^{*}\left(H^{n}\left(F_{2}^{\prime}, * ;\right)\right)\right) \subset H^{n-1}(F ; \mathbb{Z}):$

where ι_{F} and ι_{A} are given by ι, and δ_{F} and δ_{A} denote the connecting homomorphisms of the long exact sequences for the pairs $\left(F_{1}^{\prime}, F\right)$ and (F_{1}^{\prime}, A), respectively. Thus the image of δ_{A} is contained in the image of ι_{A}^{*} and we also have

$$
H^{n}\left(F_{1}^{\prime}, A ; \mathbb{Z}\right) \cong H^{n}\left(F_{1}^{\prime} \cup_{\psi} C A, C A ; \mathbb{Z}\right) \cong H^{n}\left(F_{1}^{\prime} \cup_{\psi} C A, * ; \mathbb{Z}\right)
$$

Since the composition map $A \xrightarrow{\psi} F_{1}^{\prime} \xrightarrow{\iota} F_{2}^{\prime}$ is trivial, we can define a map

$$
f: F_{1}^{\prime} \cup_{\psi} C A \longrightarrow F_{2}^{\prime}
$$

by $\left.f\right|_{F_{1}^{\prime}}=\iota: F_{1}^{\prime} \rightarrow F_{2}^{\prime}$ and $\left.f\right|_{C A}=*$.
In order to prove the lemma, we show that $f^{*}: H^{n}\left(F_{2}^{\prime} ; \mathbb{Z}\right) \cong \mathbb{Z} \rightarrow H^{n}\left(F_{1}^{\prime} \cup_{\psi}\right.$ $C A ; \mathbb{Z}) \cong \mathbb{Z}$ is an isomorphism for $n=3,5,7,8,10,12$. We have a commutative diagram

where the bottom row is a part of the exact sequence for the pair $\left(F_{1}^{\prime} \cup C A, F_{1}^{\prime}\right)$. The induced map i^{*} is an isomorphism for $n \leq 7$, since $H^{n}\left(F_{1}^{\prime} \cup C A, F_{1}^{\prime} ; \mathbb{Z}\right)=0$ for $n \leq 7$ and since ι^{*} is an isomorphism for $n \leq 7$. Then we obtain that f^{*} is an isomorphism for $n \leq 7$. Moreover we can show that $j^{*}: H^{n}\left(F_{1}^{\prime} \cup C A, F_{1}^{\prime} ; \mathbb{Z}\right) \rightarrow$ $H^{n}\left(F_{1}^{\prime} \cup C A ; \mathbb{Z}\right)$ is an isomorphism for $n \geq 8$, by considering the exact sequence for the pair $\left(F_{1}^{\prime} \cup C A, F_{1}^{\prime}\right)$, since we have $H^{n}\left(F_{1}^{\prime}\right)=0$ for $n \geq 8$. To perform the other cases for $n=8,10,12$, it is sufficient to show that f^{*} is surjective. In fact, we have a commutative diagram

where Σ is the suspension isomorphism. Since j^{*} is an isomorphism for $n \geq 8$, we obtain that δ_{A} is an isomorphism for $n \geq 8$. Since the image of δ_{A} is contained in the image ι_{A}^{*}, we see that f^{*} is surjective for $n \geq 8$, and hence f is a homotopy equivalence.

Proposition 3.2. We have $w \operatorname{cat}\left(F_{i}^{\prime}\right)=\operatorname{cat}\left(F_{i}^{\prime}\right)=\operatorname{Cat}\left(F_{i}^{\prime}\right)=i$.
Proof. The cohomology of F_{i}^{\prime} implies that $w \operatorname{cat}\left(F_{i}^{\prime}\right) \geq i$. The cone-decomposition

$$
F_{1}^{\prime}=\Sigma \mathbb{C} P^{3}, \quad F_{2}^{\prime} \simeq F_{1}^{\prime} \cup C A, \quad F_{3}^{\prime}=F_{2}^{\prime} \cup C S^{14}
$$

implies that $\operatorname{Cat}\left(F_{i}^{\prime}\right) \leq i$, which completes the proof.

4. Proof of Theorem 1.1

We define a filtration $F_{0}=* \subset F_{1} \subset F_{2} \subset F_{3} \subset F_{4} \subset F_{5}=\operatorname{Spin}(7)$ by

$$
\begin{array}{ll}
F_{1}=S U(4)^{(7)}, & F_{2}=S U(4)^{(12)} \cup e^{6} \\
F_{3}=S U(4) \cup e^{6} \cup e^{9} \cup e^{11} \cup e^{13}, & F_{4}=\operatorname{Spin}(7)^{(18)}
\end{array}
$$

We need the following lemma to prove Theorem 4.2.
Lemma 4.1. We have a homeomorphism of pairs

$$
\left(C A_{1}, A_{1}\right) \times\left(C A_{2}, A_{2}\right)=\left(C\left(A_{1} * A_{2}\right), A_{1} * A_{2}\right)
$$

(The proof can be found in p.482-483 of [16].)
Now Theorem 1.1 follows from the following theorem.
Theorem 4.2. We have $w \operatorname{cat}\left(F_{i}\right)=\operatorname{cat}\left(F_{i}\right)=\operatorname{Cat}\left(F_{i}\right)=i$.
Proof. The mod 2 cohomology of F_{i} implies that $w \operatorname{cat}\left(F_{i}\right) \geq i$. Then it is sufficient to show that $\operatorname{Cat}\left(F_{i}\right) \leq i$. Obviously we have a homeomorphism $F_{1}=\Sigma \mathbb{C} P^{3}$. Since the cell e^{6} is attached to F_{1}, we obtain that $F_{2} \simeq F_{1} \cup C\left(S^{5} \vee A\right)$ using Lemma 3.1. Since we have $e^{9} \cup e^{11} \cup e^{13}=e^{6}\left(e^{3} \cup e^{5} \cup e^{7}\right)$, the composition map
$\left(C S^{5}, S^{5}\right) \times\left(C \mathbb{C} P^{3}, \mathbb{C} P^{3}\right) \longrightarrow\left(C S^{5}, S^{5}\right) \times\left(\Sigma \mathbb{C} P^{3}, *\right) \longrightarrow\left(F_{2} \cup e^{9} \cup e^{11} \cup e^{13}, F_{2}\right)$ is a relative homeomorphism. Then we obtain $F_{2} \cup e^{9} \cup e^{11} \cup e^{13}=F_{2} \cup C\left(S^{5} * \mathbb{C} P^{3}\right)$ using Lemma 4.1. The cell e^{15} is the highest dimensional cell of $S U(4)$ and is attached to F_{2}. Then we obtain $F_{3} \simeq F_{2} \cup C\left(S^{14} \vee\left(S^{5} * \mathbb{C} P^{3}\right)\right)$. Now we consider the following composition map:
$\left(C\left(S^{5} * A\right), S^{5} * A\right)=\left(C S^{5}, S^{5}\right) \times(C A, A) \longrightarrow\left(C S^{5}, S^{5}\right) \times\left(F_{2}^{\prime}, F_{1}^{\prime}\right) \longrightarrow\left(F_{4}, F_{3}\right)$.

Since we have $e^{14} \cup e^{16} \cup e^{18}=e^{6}\left(e^{8} \cup e^{10} \cup e^{12}\right)$, the right map is a relative homeomorphism. The left map induces an isomorphism of homologies of pairs so that the map $H_{*}\left(F_{3} \cup C\left(S^{5} * A\right), F_{3} ; \mathbb{Z}\right) \rightarrow H_{*}\left(F_{4}, F_{3} ; \mathbb{Z}\right)$ is an isomorphism. Thus we obtain $F_{4} \simeq F_{3} \cup C\left(S^{5} * A\right)$. Obviously we have a homeomorphism $F_{5}=F_{4} \cup C S^{20}$.

References

[1] S. Araki, On the homology of spinor groups, Mem. Fac. Sci. Kyusyu Univ. Ser. A., 9(1955), 1-35.
[2] L. Fernández-Suárez, A. Gómez-Tato, J. Strom and D. Tanré, The Lusternik-Schnirelmann category of $S p(3)$, (preprint).
[3] T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois J. Math., 11(1967), 417-427.
[4] N. Iwase, A_{∞}-method in Lusternik-Schnirelmann category, Topology, 41(2002), 695-723.
[5] N. Iwase, Lusternik-Schnirelmann category of a sphere-bundle over a sphere, Topology, (to appear).
[6] N. Iwase and M. Mimura, L-S categories of simply-connected compact simple Lie groups of low rank, Proc. of the Skye Conference, (to appear).
[7] I. M. James and W. Singhof, On the category of fibre bundles, Lie groups, and Frobenius maps, Higher homotopy structures in topology and mathematical physics (Poughkeepsie, NY, 1996), Contemp. Math., 227(1999), 177-189.
[8] J. McCleary, A User's Guide to Spectral Sequences, 2nd Ed., 58 Cambridge University Press, Cambridge, (2001).
[9] M. Mimura and T. Nishimoto, On the cellular decomposition of the exceptional Lie group G_{2}, Proc. Amer. Math. Soc., 130(2002), 2451-2459.
[10] P. A. Schweitzer, Secondary cohomology operations induced by the diagonal mapping, Topology, 3(1965), 337-355.
[11] W. Singhof, On the Lusternik-Schnirelmann category of Lie groups, Math. Z., 145(1975), 111-116.
[12] W. Singhof, On the Lusternik-Schnirelmann category of Lie groups, II, Math. Z., 151(1976), 143-148.
[13] N. E. Steenrod, Cohomology operations, Annals of Mathematical Studies, 50 Princeton University Press, Princeton, N.J. (1962).
[14] F. Takens, The Lusternik-Schnirelman categories of a product space, Compositio Math., 22(1970), 175-180.
[15] G. W. Whitehead, The homology suspension, Colloque de topologie algébrique, Louvain, (1956), 89-95.
[16] G. W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics, 61 Springer-Verlag, New York-Berlin, (1978).
[17] I. Yokota, On the cell structures of $S U(n)$ and $S p(n)$, Proc. Japan Acad., 31(1955), 673-677.
[18] I. Yokota, On the cellular decompositions of unitary groups, J. Inst. Polytech. Osaka City Univ. Ser. A., 7(1956), 39-49.
[19] I. Yokota, Groups and Topology, Shokabo, (1971) (in Japanese).

Faculty of Mathematics, Kyushu University, Ropponmatsu Fukuoka 810-8560, Japan E-mail address: iwase@math.kyushu-u.ac.jp

Department of Mathematics, Faculty of Science, Okayama University, 3-1 Tsushimanaka, Okayama 700-8530, Japan

E-mail address: mimura@math.okayama-u.ac.jp

Department of Welfare Business, Kinki Welfare University, Fukusaki-cho, Hyogo 679-2217, Japan

E-mail address: nishimoto@kinwu.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 55M30, Secondary 22E20, 57N60.
 Key words and phrases. Lusternik-Schnirelmann category, Lie group, cellular decomposition.

