
ON THE CELLULAR DECOMPOSITION AND THE
LUSTERNIK-SCHNIRELMANN CATEGORY OF Spin(7)
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Abstract. We give a cellular decomposition of the compact connected Lie

group Spin(7). We also determine the L-S categories of Spin(7) and Spin(8).

1. Introduction

In this paper, we assume that a space has the homotopy type of a CW-complex.
The Lusternik-Schnirelmann category cat X of a space X is the least integer n

such that X is the union of (n + 1) open subsets, each of which is contractible
in X. G. Whitehead [15] showed that cat X ≤ n if and only if the diagonal map
∆n+1 : X → ∏n+1

X is homotopic to some composition map

X −→ Tn+1(X) −→
n+1∏

X,

where Tn+1(X) is the fat wedge and Tn+1(X) → ∏n+1
X is the inclusion map.

The weak Lusternik-Schnirelmann category wcat X is the least integer n such
that the reduced diagonal map ∆̄n+1 : X → ∧n+1X is trivial. Then it is easy to
see that wcat X ≤ cat X, since ∧n+1X =

∏n+1
X/Tn+1(X).

The strong Lusternik-Schnirelmann category Cat X is the least integer n such
that there exist a space X ′ which is homotopy equivalent to X and is covered by
(n+1) open subsets contractible in themselves. Cat X is closely related with cat X,
and Ganea and Takens [14] showed that

cat X ≤ CatX ≤ cat X + 1.

Ganea [3] showed that Cat X is equal to the invariant which is the least integer n

such that there is a cofibre sequence

Ai −→ Xi−1 −→ Xi

where X0 is a point and Xn is homotopy equivalent to X.
The Lusternik-Schnirelmann category for some Lie groups are determined, such

as cat(U(n)) = n and cat(SU(n)) = n − 1 by Singhof [11], cat(Sp(2)) = 3 by
Schweitzer [10], cat(Sp(3)) = 5 by Fernández-Suárez, Gómez-Tato, Strom and
Tanré [2], and Iwase and Mimura [6], cat(SO(2)) = 1, cat(SO(3)) = 3, cat(SO(4)) =
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4, cat(SO(5)) = 8 by James and Singhof [7]. Some general argument about the
Lusternik-Schnirel-mann category implies that cat(G2) = 4 (see for example [6]).

As is well-known, we have the following isomorphisms:

Spin(3) ∼= S3, Spin(4) ∼= S3 × S3, Spin(5) ∼= Sp(2), Spin(6) ∼= SU(4).

Thus Spin(7) is the first non-trivial case in determining the cellular decomposition
and the Lusternik-Schnirelmann category as well; it is our purpose in this paper.

Theorem 1.1. We have wcat(Spin(7)) = cat(Spin(7)) = Cat(Spin(7)) = 5.

Since Spin(8) is homeomorphic to Spin(7)×S7, we obtain the following corollary.

Corollary 1.2. We have wcat(Spin(8)) = cat(Spin(8)) = Cat(Spin(8)) = 6.

The paper is organized as follows. In Section 2 we give a cellular decomposition of
Spin(7) such that Spin(7) contains a subgroup SU(4), which turns out to be useful
for determining the Lusternik-Schnirelmann category of Spin(7). In Section 3 we
give a cone-decomposition of SU(4), which gives rise to the Lusternik-Schnirelmann
category of Spin(7) in Section 4.

2. The cellular decomposition of Spin(7)

In this section, we use the notation in [9]. Let C be the Cayley algebra. SO(8)
acts on C naturally since C ∼= R8 as R-module. We regard SO(7) as the subgroup
of SO(8) fixing e0, the unit of C. As is well known, the exceptional Lie group G2

is defined by

G2 = {g ∈ SO(7) | g(x)g(y) = g(xy), x, y ∈ C} = Aut(C).

According to [19], the group Spin(7) is the set of the elements g̃ ∈ SO(8) such that
g(x)g̃(y) = g̃(xy) for any x, y ∈ C, where g ∈ SO(7) is uniquely determined by g̃:

Spin(7) = {g̃ ∈ SO(8) | g(x)g̃(y) = g̃(xy), g ∈ SO(7), x, y ∈ C}.
It is easy to see that G2 is the subgroup of Spin(7). Observe that the algebra
generated by e1 in C is isomorphic to C. SU(4) acts on C naturally, since as C-
module C ∼= C4 whose basis is {e0, e2, e4, e6}. We regard SU(3) as the subgroup of
SU(4) fixing e0 and also as the subgroup of G2 fixing e1.

Let Di be the i-dimensional disc. We define four maps:

A : D3 = {(x1, x2, x3) ∈ R3 | x2
1 + x2

2 + x2
3 ≤ 1} −→ SO(8),

B : D2 = {(y1, y2) ∈ R2 | y2
1 + y2

2 ≤ 1} −→ SO(8),

C : D1 = {z1 ∈ R | z2
1 ≤ 1} −→ SO(8),

D : D2 = {(w1, w2) ∈ R2 | w2
1 + w2

2 ≤ 1} −→ SO(8),
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as follows:

A(x1, x2, x3) =




1
1

1
1

1− 2X2 −2x1X −2x2X −2x3X

2x1X 1− 2X2 2x3X −2x2X

2x2X −2x3X 1− 2X2 2x1X

2x3X 2x2X −2x1X 1− 2X2




,

B(y1, y2) =




1
1

y1 −y2 −Y 0
y2 y1 0 −Y

Y 0 y1 y2

0 Y −y2 y1

1
1




,

C(z1) =




1
z1 0 −Z

0 1 0
Z 0 z1

1
z1 0 −Z

0 1 0
Z 0 z1




,

D(w1, w2) =




w1 −w2 −W

w2 w1 −W

W w1 w2

W −w2 w1

1
1

1
1




,

where we put for simplicity

X =
√

1− x2
1 − x2

2 − x2
3, Y =

√
1− y2

1 − y2
2 ,

Z =
√

1− z2
1 , W =

√
1− w2

1 − w2
2.

Lemma 2.1. The elements A(x1, x2, x3), B(y1, y2), C(z1) and D(w1, w2) belong
to Spin(7).
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Proof. Apparently the elements A(x1, x2, x3), B(y1, y2) and C(z1) belong to G2.
In the proof, we denote D(w1, w2) simply by D. Let D′ be the matrix




1
1

1
1

w1 −w2 W

w2 w1 −W

−W w1 −w2

W w2 w1




.

Then we can show by a tedious calculation that D′xDy = D(xy) for any x, y ∈ C,
which gives us the result. ¤

Let ϕ3, ϕ5, ϕ6 and ϕ7 be maps

ϕ3 : D3 −→ Spin(7),

ϕ5 : D3 ×D2 −→ Spin(7),

ϕ6 : D3 ×D2 ×D1 −→ Spin(7),

ϕ7 : D3 ×D2 ×D2 −→ Spin(7)

respectively defined by the equalities

ϕ3(x) = A(x),

ϕ5(x,y) = B(y)A(x)B(y)−1,

ϕ6(x,y, z) = C(z)B(y)A(x)B(y)−1C(z)−1,

ϕ7(x,y,w) = D(w)B(y)A(x)B(y)−1D(w)−1,

where x = (x1, x2, x3), y = (y1, y2), z = (z1) and w = (w1, w2). We define sixteen
cells ej for j = 0, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21 respectively as follows:

e0 = {1}, e3 = Im ϕ3, e5 = Im ϕ5, e6 = Im ϕ6, e7 = Im ϕ7,

e8 = e5e3, e9 = e6e3, e10 = e7e3, e11 = e6e5, e12 = e7e5,

e13 = e6e7, e14 = e6e5e3, e15 = e7e5e3, e16 = e6e7e3, e18 = e6e7e5,

e21 = e6e7e5e3.

Let S7 be the unit sphere of C. Then we have a principal bundle over it:

SU(3) −→ SU(4)
p0−→ S7,

where p0(g) = ge0.

Lemma 2.2. Let V 7 = D3×D2×D2. Then the composite map p0ϕ7 : (V 7, ∂V 7) →
(S7, e0) is a relative homeomorphism.
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Proof. We express the map (p0ϕ7)|V 7\∂V 7 as follows:



a0

a1

a2

a3

a4

a5

a6

a7




= D(w)B(y)A(x)B(y)−1D(w)−1e0 =




1− 2X2Y 2W 2

2x1XY 2W 2

2(w1X − x1w2)XY 2W

−2(w2X + x1w1)XY 2W

2(−y1X + x1y2)XY W

2(y2X + x1y1)XY W

2x2XY W

2x3XY W




and hence we have 


1− a0

a1

a2

a3

a4

a5

a6

a7




= 2XY W




XY W

x1Y W

(w1X − x1w2)Y
−(w2X + x1w1)Y
−y1X + x1y2

y2X + x1y1

x2

x3




.

Since X > 0, Y > 0, W > 0 and 1 − a0 > 0, an easy calculation as for the first
component in the above equation gives the following equation:

XY W =
√

1− a2√
2

,(2.1)

from which we easily obtain

x2 =
a6√

2(1− a2)
, x3 =

a7√
2(1− a2)

.(2.2)

Further we obtain three more equalities from the above equalities:

(1− a0)2 + a2
1 = 4X2Y 4W 4(x2

1 + X2),

a2
2 + a2

3 = 4X2Y 4W 2(w2
1 + w2

2)(x
2
1 + X2) = 4X2Y 4W 2(1−W 2)(x2

1 + X2),

a2
4 + a2

5 = 4X2Y 2W 2(y2
1 + y2

2)(x2
1 + X2) = 4X2Y 2W 2(1− Y 2)(x2

1 + X2).

Using these three equalities, we obtain

Y 2 =
(1− a0)2 + a2

1 + a2
2 + a2

3

(1− a0)2 + a2
1 + a2

2 + a2
3 + a2

4 + a2
5

,(2.3)

W 2 =
(1− a0)2 + a2

1

(1− a0)2 + a2
1 + a2

2 + a2
3

.(2.4)

It follows from (2.1), (2.3) and (2.4) that

X2 =
(1− a0)((1− a0)2 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5)
2((1− a0)2 + a2

1)
.(2.5)
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It follows also from (2.2) and (2.5) that

x2
1 =

a2
1((1− a0)2 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5)
2(1− a0)((1− a0)2 + a2

1)
.(2.6)

Since Y , W , X are positive, (2.3), (2.4), (2.5) imply respectively

Y =

√
(1− a0)2 + a2

1 + a2
2 + a2

3√
(1− a0)2 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5

,(2.7)

W =

√
(1− a0)2 + a2

1√
(1− a0)2 + a2

1 + a2
2 + a2

3

,(2.8)

X =

√
(1− a0)((1− a0)2 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5)√
2((1− a0)2 + a2

1)
.(2.9)

Since the signs of x1 and a1 are the same, (2.6) implies that

x1 =
a1

√
(1− a0)2 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5√
2(1− a0)((1− a0)2 + a2

1)
.(2.10)

Now we determine y1; we have

−a4X + a5x1 = 2XY W (x2
1 + X2)y2.

Substituting the equations (2.1), (2.9) and (2.10) in the above equation, we obtain

y1 =
a1a5 − (1− a0)a4√

((1− a0)2 + a2
1)((1− a0)2 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5)
.(2.11)

We determine y2; we have

a4x1 + a5X = 2XY W (x2
1 + X2)y2.

Substituting the equations (2.1), (2.9) and (2.10) in the above equation, we obtain

y2 =
a1a4 + (1− a0)a5√

((1− a0)2 + a2
1)((1− a0)2 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5)
.(2.12)

We determine w1; we have

a2X − a3x1 = 2XY 2W (x2
1 + X2)w1.

Substituting the equations (2.1), (2.7), (2.9) and (2.10) in the above equation, we
obtain

w1 =
(1− a0)a2 − a1a3√

((1− a0)2 + a2
1)((1− a0)2 + a2

1 + a2
2 + a2

3)
.(2.13)

Finally we determine w2; we have

−a2x1 − a3X = 2XY 2W (x2
1 + X2)w2.

Substituting the equations (2.1), (2.7), (2.9) and (2.10) in the above equation, we
obtain

w2 =
−a1a2 − (1− a0)a3√

((1− a0)2 + a2
1)((1− a0)2 + a2

1 + a2
2 + a2

3)
.(2.14)
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Thus we have expressed x1, x2, x3, y1, y2, w1, w2 in terms of a0, · · · , a7, that is, the
inverse map has been constructed, which completes the proof. ¤

In a similar way to that of Section 3 of [9], we can obtain the following theorem,
which is essentially the same as Yokota’s decomposition [17].

Proposition 2.3. e0 ∪ e3 ∪ e5 ∪ e7 ∪ e8 ∪ e10 ∪ e12 ∪ e15 thus obtained is a cellular
decomposition of SU(4).

Proof. First we show that e̊i ∩ e̊j = ∅ if i 6= j. We consider the following three
cases:

(1) For the case where i, j ∈ {0, 3, 5, 8}; both cells ei and ej are in SU(3) and
e0 ∪ e3 ∪ e5 ∪ e8 is a cellular decomposition of SU(3). Then we have e̊i ∩ e̊j = ∅ if
i 6= j.

(2) For the case where i ∈ {0, 3, 5, 8} and j ∈ {7, 10, 12, 15}; we have p0(̊ei) =
{e0} and p0(̊ej) = S7\{e0}. Then we have e̊i ∩ e̊j = ∅.

(3) For the case where i, j ∈ {7, 10, 12, 15}; suppose that A ∈ e̊i ∩ e̊j . Since
e̊i = e̊7e̊i−7 and e̊j = e̊7e̊j−7, we can put A = A1A2 = A′1A

′
2 where A1, A

′
1 ∈

e̊7, A2 ∈ e̊i−7 and A′2 ∈ e̊j−7. We have A1 = A′1, since p0(A1) = p0(A1A2) =
p0(A′1A

′
2) = p0(A′1) and p0 |̊e7 is monic. Then we have A2 = A′2 and the first case

shows that i− 7 = j − 7, that is, i = j. Thus e̊i ∩ e̊j = ∅ if i 6= j.
Next, we will check that the boundaries of the cells are included in the lower

dimensional cells. In the proof of Proposition 3.2 [9], it is proved that the boundaries
ė3, ė5 and ė8 are included in the lower dimensional cells. Observe that the boundary
ė7 is the union of the following three sets:

{DBAB−1D−1 | A ∈ A(Ḋ3), B ∈ B(D2), D ∈ D(D2)},
{DBAB−1D−1 | A ∈ A(D3), B ∈ B(Ḋ2), D ∈ D(D2)},
{DBAB−1D−1 | A ∈ A(D3), B ∈ B(D2), D ∈ D(Ḋ2)}.

The first set contains only the identity element, since A is the identity element.
It is easy to see that the second set is contained in e3 and that the third set is
contained in e5. We have ė10 = e7ė3 ∪ ė7e3 ⊂ e7e0 ∪ e5e3 = e7 ∪ e8. We also have
ė12 = ė7e5 ∪ e7ė5 ⊂ e5e5 ∪ e7e3 = e8 ∪ e10, and ė15 = ė7e5e3 ∪ e7ė5e3 ∪ e7e5ė3 ⊂
e5e5e3 ∪ e7e3e3 ∪ e7e5 = e8 ∪ e10 ∪ e12.

Finally, we will show that the inclusion map e0∪e3∪e5∪e7∪e8∪e10∪e12∪e15 →
SU(4) is epic. Let g ∈ SU(4). If p0(g) = e0, then g is contained in SU(3) =
e0 ∪ e3 ∪ e5 ∪ e8. Suppose that p0(g) 6= e0. There is an element h ∈ e7 such that
p0(h) = p0(g). Thus we have h−1g ∈ SU(3) = e0∪e3∪e5∪e8, since p0(h−1g) = e0.
Therefore we have g ∈ h(e0∪e3∪e5∪e8) ⊂ e0∪e3∪e5∪e7∪e8∪e10∪e12∪e15. ¤

Remark 2.4. (1) We regard SO(6) as the subgroup of SO(7) fixing e1. Let π :
Spin(6) → SO(6) be the double covering. Then, according to the Proof of Lemma
2.1, π(SU(4)) ⊂ SO(6) so that π|SU(4) : SU(4) → SO(6) is the double covering.
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(2) For 1 ≤ n ≤ 3, the subcomplex e0 ∪ e3 ∪ · · · ∪ e2n+1 is homeomorphic to
ΣCPn, which consists of the elements

A




1
1

1
e2iθ


 A−1




1
1

1
e−2iθ




for any elements A in SU(n+1). Moreover, according to Proposition 2.6 of Chapter
IV of [13], we have e2i+1e2j+1 ⊂ e2j+1e2i+1 for i < j; in fact we have e2i+1e2j+1 =
e2j+1e2i+1 (see [19]).

Let S6 be the unit sphere of R7 whose basis {ei | 1 ≤ i ≤ 7}. We consider the
following diagram

SU(3) −−−−→ G2 −−−−→ S6

y
y

∥∥∥
SU(4) −−−−→ Spin(7)

p−−−−→ S6

y π

y
∥∥∥

SO(6) −−−−→ SO(7) −−−−→ S6

where the horizontal lines are principal fibre bundles and p(g) = π(g)e1.
Lemma 4.1 of [9] implies the following lemma immediately.

Lemma 2.5. Put V 6 = D3×D2×D1. Then the composite map pϕ6 : (V 6, ∂V 6) →
(S6, {e1}) is a relative homeomorphism.

Now we can state one of our main results.

Theorem 2.6. The cell complex e0 ∪ e3 ∪ e5 ∪ e6 ∪ e7 ∪ e8 ∪ e9 ∪ e10 ∪ e11 ∪ e12 ∪
e13 ∪ e14 ∪ e15 ∪ e16 ∪ e18 ∪ e21 gives a cellular decomposition of Spin(7).

Proof. First we show that e̊i ∩ e̊j = ∅ if i 6= j. We consider the following three
cases:

(1) For the case where i, j ∈ {0, 3, 5, 7, 8, 10, 12, 15}; both cells ei and ej are in
SU(4) and e0∪e3∪e5∪e7∪e8∪e10∪e12∪e15 is a cellular decomposition of SU(4),
whence we have e̊i ∩ e̊j = ∅ if i 6= j.

(2) For the case where i ∈ {0, 3, 5, 7, 8, 10, 12, 15} and j ∈ {6, 9, 11, 13, 14, 16, 18,

21}; we have p(̊ei) = {e1} and p(̊ej) = S6\{e1}, whence we have e̊i ∩ e̊j = ∅.
(3) For the case where i, j ∈ {6, 9, 11, 13, 14, 16, 18, 21}, suppose that A ∈ e̊i∩ e̊j .

Since e̊i = e̊6e̊i−6 and e̊j = e̊6e̊j−6, we can put A = A1A2 = A′1A
′
2, where A1, A

′
1 ∈

e̊6, A2 ∈ e̊i−6 and A′2 ∈ e̊j−6. We have A1 = A′1, since p(A1) = p(A1A2) =
p(A′1A

′
2) = p(A′1) and p|̊e6 is monic. Then we have A2 = A′2 and the first case

shows that i− 6 = j − 6, that is, i = j. Thus e̊i ∩ e̊j = ∅ if i 6= j.
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Next, we will check that the boundaries of the cells are included in the lower
dimensional cells. In Proposition 2.3, it is proved that the boundaries of the cells
of SU(4) are included in the lower dimensional cells. In Proof of Theorem 4.2 in
[9], we showed that ė6 ⊂ e3 ∪ e5, ė9 ⊂ e6 ∪ e8, ė11 ⊂ e5 ∪ e9 and ė14 ⊂ e8 ∪ e9 ∪ e11.
By using (2) of Remark 2.4, we also obtain

ė13 = e6ė7 ∪ ė6e7 ⊂ e11 ∪ e12,

ė16 = e6e7ė3 ∪ e6ė7e3 ∪ ė6e7e3 ⊂ e13 ∪ e14 ∪ e15,

ė18 = e6e7ė5 ∪ e6ė7e5 ∪ ė6e7e5 ⊂ e16 ∪ e14 ∪ e15,

ė21 = e6e7e5ė3 ∪ e6e7ė5e3 ∪ e6ė7e5e3 ∪ ė6e7e5e3 ⊂ e18 ∪ e16 ∪ e14 ∪ e15.

Finally, we will show that the inclusion map e0∪e3∪e5∪e6∪e7∪e8∪e9∪e10∪e11∪
e12∪e13∪e14∪e15∪e16∪e18∪e21 → Spin(7) is epic. Let g ∈ Spin(7). If p(g) = e1,
then g is contained in SU(4) = e0 ∪ e3 ∪ e5 ∪ e7 ∪ e8 ∪ e10 ∪ e12 ∪ e15. Suppose
that p(g) 6= e1. There is an element h ∈ e6 such that p(h) = p(g). Thus we have
h−1g ∈ SU(4) since p(h−1g) = e1. Therefore we have g ∈ h(e0∪e3∪e5∪e7∪e8∪e10∪
e12∪e15) ⊂ e0∪e3∪e5∪e6∪e7∪e8∪e9∪e10∪e11∪e12∪e13∪e14∪e15∪e16∪e18∪e21. ¤

Remark 2.7. Araki [1] also gave a cellular decomposition of Spin(n), but the one
we have given here is a cellular decomposition with the minimum number of cells,
satisfying the Yokota principle ([17], [18], [19]). As will be seen later, it is effectively
used to determine the Lusternik-Schnirelmann category.

It is easy to give a cellular decomposition of Spin(8) using a homeomorphism
Spin(8) → Spin(7)× S7.

3. The cone-decomposition of SU(4)

Obviously there is a filtration F ′0 = ∗ ⊂ F ′1 = SU(4)(7) ⊂ F ′2 = SU(4)(12) ⊂ F ′3 =
SU(4). It is well-known that F ′1 = ΣCP 3 = S3∪e5∪e7 and F ′2 = F ′1∪e8∪e10∪e12.
Thus the integral cohomology Hn(F ′2; Z) is given by

Hn(F ′2; Z) ∼=





Z〈1〉 (n = 0)

Z〈yn〉 (n = 3, 5, 7, 8, 10, 12)

0 (otherwise).

The action of the squaring operation Sq2 is given as follows:

Sq2yn =





yn+2 for n = 3, 10,

0 for n = 5, 7, 8, 12

where yn is regarded as an element of the mod 2 cohomology. To give the cone
decomposition of SU(4), we use the following homotopy fibration:

F
Ψ−→ F ′1

ι−→ F ′2.(3.1)
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Without loss of generality, we may regard this as a Hurewicz fibration over F ′2.
Firstly we consider the Serre spectral sequence (E∗,∗

r , dr) associated with the
above fibration, where the generators of E∗,0

2 for ∗ ≤ 7 are permanent cycles
and survive to E∞-terms. Hence F is 6-connected and the transgression τ :
H7(F ; Z) → H8(F ′2; Z) is an isomorphism to H8(F ′2; Z) ∼= Z〈y8〉. Thus H7(F ; Z) ∼=
Z〈x7〉 for some x7 ∈ H7(F ; Z). Similarly, the generators in E3,7

2
∼= Z〈y3⊗x7〉

and E10,0
2

∼= H10(F ′2; Z) ∼= Z〈y10〉 must lie in the image of differentials d3 and
d10 = τ : H9(F ; Z) → H10(F ′2; Z) respectively, and we have that H8(F ; Z) = 0 and
H9(F ; Z) ∼= Z〈x9〉⊕Z〈x′9〉, where the elements x9 and x′9 in H9(F ; Z) are corre-
sponding to x10 and y3⊗x7 by the transgression τ and d3 respectively. We remark
that the choice of the generator x′9 is not unique. Continuing this process, we
have that H10(F ; Z) = 0 and H11(F ; Z) ∼= Z〈x11〉⊕Z〈x′11〉⊕Z〈x′′11〉⊕Z〈x′′′11〉 whose
generators are corresponding to x12, y3⊗x9, y3⊗x′9 and y5⊗x7 respectively by the
transgression τ and differentials d3, d3 and d5.

Thus the integral cohomology Hn(F ; Z) for 0 ≤ n ≤ 11 is given by

Hn(F ; Z) ∼=





Z〈1〉 (n = 0)

Z〈x7〉 (n = 7)

Z〈x9〉 ⊕ Z〈x′9〉 (n = 9)

Z〈x11〉 ⊕ Z〈x′11〉 ⊕ Z〈x′′11〉 ⊕ Z〈x′′′11〉 (n = 11)

0 (otherwise)

where x7, x9 and x11 are transgressive generators in H∗(F ; Z). Hence F has, up to
homotopy, a cellular decomposition e0∪e7∪ϕ1 e9∪ϕ′1 e9

1∪ϕ2 e11∪ (cells in dimensions
≥ 11), where the cells e7, e9 and e11 correspond to x7, x9 and x11 respectively. Then
we obtain a subcomplex A′ = e0 ∪ e7 ∪ϕ1 e9 ∪ϕ′1 e9

1 ∪ϕ2 e11 of F .
Secondly, we determine the attaching maps ϕ1 and ϕ′1: Let us recall that

π8(S7) ∼= Z/2〈η7〉 whose generator η7 can be detected by Sq2, the mod 2 Steen-
rod operation. Since the action of mod 2 Steenrod operation commutes with the
cohomology transgression (see [8, Proposition 6.5]), we see that Sq2x7 is trans-
gressive, and hence is cx9 for some c ∈ Z/2. We know that τx9 = y10 6= 0 and
τSq2x7 = Sq2τx7 = Sq2y8 = 0, and hence Sq2x7 must be trivial. Thus the at-
taching maps ϕ1 and ϕ′1 are both null homotopic and A′ is homotopy equivalent to
(S7 ∨ S9 ∨ S9

1) ∪ϕ2 e11.
Thirdly we check the composition of projections with the attaching map ϕ2 :

S10 → S7∨S9∨S9
1 to S9 and S9

1 , which can also be detected by Sq2. Again by the
commutativity of the action of mod 2 Steenrod operation with the transgression,
we see that the composition map prS9 ◦ϕ2 : S10 ϕ2−→ S7∨S9∨S9

1 −→ S9 represents
a generator of π10(S9) ∼= Z/2〈η9〉, since Sq2 : H8(F ′2; Z/2) → H10(F ′2; Z/2) is non-
trivial. If the composition map φ1 = prS9

1
◦ϕ2 : S10 ϕ2−→ S7 ∨ S9 ∨ S9

1 −→ S9
1 is

non-trivial, we replace ϕ2 by the composition of ϕ2 and the homotopy equivalence
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ξ : S7 ∨ S9 ∨ S9
1 → S7 ∨ S9 ∨ S9

1 where ξ|S7 and ξ|S9
1

are the identity maps and
ξ|S9 is the unique co-H-structure map φ : S9 → S9 ∨ S9

1 ; then we obtain that φ1 is
trivial, since 2η9 = 0. Then A′ is homotopy equivalent to ((S7 ∨ S9) ∪ϕ2 e11) ∨ S9

1 .
Let A denote the subcomplex (S7 ∨ S9) ∪ϕ2 e11 of A′ and ψ = Ψ|A : A → F ′1.

Lemma 3.1. F ′2 is homotopy equivalent to F ′1 ∪ψ CA.

Proof. The image of H∗(A; Z) in H∗(F ; Z) under the induced map of the in-
clusion coincides with the module of transgressive elements with respect to the
fibration (3.1) (see [8, Chapter 6]). Thus we may regard that Hn−1(A; Z) =
δ−1(ι∗(Hn(F ′2, ∗; ))) ⊂ Hn−1(F ; Z):

Hn−1(F ; Z) δF−−−−→ Hn(F ′1, F ; Z)
ι∗F←−−−− Hn(F ′2, ∗; Z)y

y ‖
y

Hn−1(A; Z) δA−−−−→ Hn(F ′1, A; Z)
ι∗A←−−−− Hn(F ′2, ∗; Z),

where ιF and ιA are given by ι, and δF and δA denote the connecting homomor-
phisms of the long exact sequences for the pairs (F ′1, F ) and (F ′1, A), respectively.
Thus the image of δA is contained in the image of ι∗A and we also have

Hn(F ′1, A; Z) ∼= Hn(F ′1 ∪ψ CA, CA; Z) ∼= Hn(F ′1 ∪ψ CA, ∗; Z).

Since the composition map A
ψ→ F ′1

ι→ F ′2 is trivial, we can define a map

f : F ′1 ∪ψ CA −→ F ′2,

by f |F ′1 = ι : F ′1 → F ′2 and f |CA = ∗.
In order to prove the lemma, we show that f∗ : Hn(F ′2; Z) ∼= Z → Hn(F ′1 ∪ψ

CA; Z) ∼= Z is an isomorphism for n = 3, 5, 7, 8, 10, 12. We have a commutative
diagram

Hn(F ′2; Z) ι∗−−−−→ Hn(F ′1; Z)

f∗
y ‖

y

Hn(F ′1 ∪ CA, F ′1; Z)
j∗−−−−→ Hn(F ′1 ∪ CA; Z) i∗−−−−→ Hn(F ′1; Z),

where the bottom row is a part of the exact sequence for the pair (F ′1 ∪ CA, F ′1).
The induced map i∗ is an isomorphism for n ≤ 7, since Hn(F ′1 ∪ CA,F ′1; Z) = 0
for n ≤ 7 and since ι∗ is an isomorphism for n ≤ 7. Then we obtain that f∗ is an
isomorphism for n ≤ 7. Moreover we can show that j∗ : Hn(F ′1 ∪ CA, F ′1; Z) →
Hn(F ′1∪CA; Z) is an isomorphism for n ≥ 8, by considering the exact sequence for
the pair (F ′1 ∪CA, F ′1), since we have Hn(F ′1) = 0 for n ≥ 8. To perform the other
cases for n = 8, 10, 12, it is sufficient to show that f∗ is surjective. In fact, we have
a commutative diagram
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Hn−1(A; Z)
δA //

∼=Σ

��

Hn(F ′1, A; Z)
∼=

))T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Hn(F ′2, ∗; Z)
ι∗Aoo

f∗

��
Hn(ΣA, ∗; Z)

∼= // Hn(F ′1 ∪ CA,F ′1; Z)

OO

j∗ // Hn(F ′1 ∪ CA, ∗; Z),

where Σ is the suspension isomorphism. Since j∗ is an isomorphism for n ≥ 8, we
obtain that δA is an isomorphism for n ≥ 8. Since the image of δA is contained in
the image ι∗A, we see that f∗ is surjective for n ≥ 8, and hence f is a homotopy
equivalence. ¤

Proposition 3.2. We have wcat(F ′i ) = cat(F ′i ) = Cat(F ′i ) = i.

Proof. The cohomology of F ′i implies that wcat(F ′i ) ≥ i. The cone-decomposition

F ′1 = ΣCP 3, F ′2 ' F ′1 ∪ CA, F ′3 = F ′2 ∪ CS14

implies that Cat(F ′i ) ≤ i, which completes the proof. ¤

4. Proof of Theorem 1.1

We define a filtration F0 = ∗ ⊂ F1 ⊂ F2 ⊂ F3 ⊂ F4 ⊂ F5 = Spin(7) by

F1 = SU(4)(7), F2 = SU(4)(12) ∪ e6,

F3 = SU(4) ∪ e6 ∪ e9 ∪ e11 ∪ e13, F4 = Spin(7)(18).

We need the following lemma to prove Theorem 4.2.

Lemma 4.1. We have a homeomorphism of pairs

(CA1, A1)× (CA2, A2) = (C(A1 ∗A2), A1 ∗A2).

(The proof can be found in p.482-483 of [16].)
Now Theorem 1.1 follows from the following theorem.

Theorem 4.2. We have wcat(Fi) = cat(Fi) = Cat(Fi) = i.

Proof. The mod 2 cohomology of Fi implies that wcat(Fi) ≥ i. Then it is sufficient
to show that Cat(Fi) ≤ i. Obviously we have a homeomorphism F1 = ΣCP 3. Since
the cell e6 is attached to F1, we obtain that F2 ' F1∪C(S5∨A) using Lemma 3.1.
Since we have e9 ∪ e11 ∪ e13 = e6(e3 ∪ e5 ∪ e7), the composition map

(CS5, S5)× (CCP 3, CP 3) −→ (CS5, S5)× (ΣCP 3, ∗) −→ (F2 ∪ e9 ∪ e11 ∪ e13, F2)

is a relative homeomorphism. Then we obtain F2∪e9∪e11∪e13 = F2∪C(S5 ∗CP 3)
using Lemma 4.1. The cell e15 is the highest dimensional cell of SU(4) and is
attached to F2. Then we obtain F3 ' F2 ∪ C(S14 ∨ (S5 ∗ CP 3)). Now we consider
the following composition map:

(C(S5 ∗A), S5 ∗A) = (CS5, S5)× (CA,A) −→ (CS5, S5)× (F ′2, F
′
1) −→ (F4, F3).
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Since we have e14 ∪ e16 ∪ e18 = e6(e8 ∪ e10 ∪ e12), the right map is a relative
homeomorphism. The left map induces an isomorphism of homologies of pairs
so that the map H∗(F3 ∪ C(S5 ∗ A), F3; Z) → H∗(F4, F3; Z) is an isomorphism.
Thus we obtain F4 ' F3 ∪ C(S5 ∗ A). Obviously we have a homeomorphism
F5 = F4 ∪ CS20. ¤
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