ON THE CELLULAR DECOMPOSITION AND THE LUSTERNIK-SCHNIRELMANN CATEGORY OF Spin(7)

NORIO IWASE, MAMORU MIMURA AND TETSU NISHIMOTO

ABSTRACT. We give a cellular decomposition of the compact connected Lie group Spin(7). We also determine the L-S categories of Spin(7) and Spin(8).

1. INTRODUCTION

In this paper, we assume that a space has the homotopy type of a CW-complex. The Lusternik-Schnirelmann category cat X of a space X is the least integer n such that X is the union of (n + 1) open subsets, each of which is contractible in X. G. Whitehead [15] showed that cat $X \leq n$ if and only if the diagonal map $\Delta_{n+1}: X \to \prod^{n+1} X$ is homotopic to some composition map

$$X \longrightarrow T^{n+1}(X) \longrightarrow \prod^{n+1} X,$$

where $T^{n+1}(X)$ is the fat wedge and $T^{n+1}(X) \to \prod^{n+1} X$ is the inclusion map.

The weak Lusternik-Schnirelmann category $w \cot X$ is the least integer n such that the reduced diagonal map $\overline{\Delta}_{n+1} : X \to \wedge^{n+1}X$ is trivial. Then it is easy to see that $w \cot X \leq \cot X$, since $\wedge^{n+1}X = \prod^{n+1} X/T^{n+1}(X)$.

The strong Lusternik-Schnirelmann category $\operatorname{Cat} X$ is the least integer n such that there exist a space X' which is homotopy equivalent to X and is covered by (n+1) open subsets contractible in themselves. $\operatorname{Cat} X$ is closely related with $\operatorname{cat} X$, and Ganea and Takens [14] showed that

$$\operatorname{cat} X \le \operatorname{Cat} X \le \operatorname{cat} X + 1.$$

Ganea [3] showed that $\operatorname{Cat} X$ is equal to the invariant which is the least integer n such that there is a cofibre sequence

$$A_i \longrightarrow X_{i-1} \longrightarrow X_i$$

where X_0 is a point and X_n is homotopy equivalent to X.

The Lusternik-Schnirelmann category for some Lie groups are determined, such as $\operatorname{cat}(U(n)) = n$ and $\operatorname{cat}(SU(n)) = n - 1$ by Singhof [11], $\operatorname{cat}(Sp(2)) = 3$ by Schweitzer [10], $\operatorname{cat}(Sp(3)) = 5$ by Fernández-Suárez, Gómez-Tato, Strom and Tanré [2], and Iwase and Mimura [6], $\operatorname{cat}(SO(2)) = 1$, $\operatorname{cat}(SO(3)) = 3$, $\operatorname{cat}(SO(4)) = 3$

²⁰⁰⁰ Mathematics Subject Classification. Primary 55M30, Secondary 22E20, 57N60.

Key words and phrases. Lusternik-Schnirelmann category, Lie group, cellular decomposition.

4, $\operatorname{cat}(SO(5)) = 8$ by James and Singhof [7]. Some general argument about the Lusternik-Schnirel-mann category implies that $cat(G_2) = 4$ (see for example [6]). As is well-known, we have the following isomorphisms:

$$Spin(3) \cong S^3$$
, $Spin(4) \cong S^3 \times S^3$, $Spin(5) \cong Sp(2)$, $Spin(6) \cong SU(4)$.

Thus Spin(7) is the first non-trivial case in determining the cellular decomposition and the Lusternik-Schnirelmann category as well; it is our purpose in this paper.

Theorem 1.1. We have wcat(Spin(7)) = cat(Spin(7)) = Cat(Spin(7)) = 5.

Since Spin(8) is homeomorphic to $Spin(7) \times S^7$, we obtain the following corollary.

Corollary 1.2. We have wcat(Spin(8)) = cat(Spin(8)) = Cat(Spin(8)) = 6.

The paper is organized as follows. In Section 2 we give a cellular decomposition of Spin(7) such that Spin(7) contains a subgroup SU(4), which turns out to be useful for determining the Lusternik-Schnirelmann category of Spin(7). In Section 3 we give a cone-decomposition of SU(4), which gives rise to the Lusternik-Schnirelmann category of Spin(7) in Section 4.

2. The cellular decomposition of Spin(7)

In this section, we use the notation in [9]. Let \mathfrak{C} be the Cayley algebra. SO(8)acts on \mathfrak{C} naturally since $\mathfrak{C} \cong \mathbb{R}^8$ as \mathbb{R} -module. We regard SO(7) as the subgroup of SO(8) fixing e_0 , the unit of \mathfrak{C} . As is well known, the exceptional Lie group G_2 is defined by

$$G_2 = \{g \in SO(7) \mid g(x)g(y) = g(xy), x, y \in \mathfrak{C}\} = \operatorname{Aut}(\mathfrak{C}).$$

According to [19], the group Spin(7) is the set of the elements $\tilde{g} \in SO(8)$ such that $g(x)\tilde{g}(y) = \tilde{g}(xy)$ for any $x, y \in \mathfrak{C}$, where $g \in SO(7)$ is uniquely determined by \tilde{g} :

$$Spin(7) = \{ \tilde{g} \in SO(8) \mid g(x)\tilde{g}(y) = \tilde{g}(xy), g \in SO(7), x, y \in \mathfrak{C} \}.$$

It is easy to see that G_2 is the subgroup of Spin(7). Observe that the algebra generated by e_1 in \mathfrak{C} is isomorphic to \mathbb{C} . SU(4) acts on \mathfrak{C} naturally, since as \mathbb{C} module $\mathfrak{C} \cong \mathbb{C}^4$ whose basis is $\{e_0, e_2, e_4, e_6\}$. We regard SU(3) as the subgroup of SU(4) fixing e_0 and also as the subgroup of G_2 fixing e_1 .

Let D^i be the *i*-dimensional disc. We define four maps:

$$\begin{aligned} A: D^3 &= \{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 \le 1 \} \longrightarrow SO(8), \\ B: D^2 &= \{ (y_1, y_2) \in \mathbb{R}^2 \mid y_1^2 + y_2^2 \le 1 \} \longrightarrow SO(8), \\ C: D^1 &= \{ z_1 \in \mathbb{R} \mid z_1^2 \le 1 \} \longrightarrow SO(8), \\ D: D^2 &= \{ (w_1, w_2) \in \mathbb{R}^2 \mid w_1^2 + w_2^2 \le 1 \} \longrightarrow SO(8), \end{aligned}$$

as follows:

where we put for simplicity

$$\begin{split} X &= \sqrt{1-x_1^2-x_2^2-x_3^2}, \quad Y = \sqrt{1-y_1^2-y_2^2}, \\ Z &= \sqrt{1-z_1^2}, \qquad \qquad W = \sqrt{1-w_1^2-w_2^2}. \end{split}$$

Lemma 2.1. The elements $A(x_1, x_2, x_3)$, $B(y_1, y_2)$, $C(z_1)$ and $D(w_1, w_2)$ belong to Spin(7).

Proof. Apparently the elements $A(x_1, x_2, x_3)$, $B(y_1, y_2)$ and $C(z_1)$ belong to G_2 . In the proof, we denote $D(w_1, w_2)$ simply by D. Let D' be the matrix

$$\begin{pmatrix} 1 & & & & \\ & 1 & & & & \\ & & 1 & & & \\ & & & 1 & & \\ & & & w_1 & -w_2 & W \\ & & & w_2 & w_1 & & -W \\ & & & & -W & w_1 & -w_2 \\ & & & & W & w_2 & w_1 \end{pmatrix}$$

Then we can show by a tedious calculation that D'xDy = D(xy) for any $x, y \in \mathfrak{C}$, which gives us the result. \Box

Let $\varphi_3, \varphi_5, \varphi_6$ and φ_7 be maps

$$\begin{split} \varphi_3 &: D^3 \longrightarrow Spin(7), \\ \varphi_5 &: D^3 \times D^2 \longrightarrow Spin(7), \\ \varphi_6 &: D^3 \times D^2 \times D^1 \longrightarrow Spin(7) \\ \varphi_7 &: D^3 \times D^2 \times D^2 \longrightarrow Spin(7) \end{split}$$

respectively defined by the equalities

$$\begin{split} \varphi_3(\mathbf{x}) &= A(\mathbf{x}), \\ \varphi_5(\mathbf{x}, \mathbf{y}) &= B(\mathbf{y})A(\mathbf{x})B(\mathbf{y})^{-1}, \\ \varphi_6(\mathbf{x}, \mathbf{y}, \mathbf{z}) &= C(\mathbf{z})B(\mathbf{y})A(\mathbf{x})B(\mathbf{y})^{-1}C(\mathbf{z})^{-1}, \\ \varphi_7(\mathbf{x}, \mathbf{y}, \mathbf{w}) &= D(\mathbf{w})B(\mathbf{y})A(\mathbf{x})B(\mathbf{y})^{-1}D(\mathbf{w})^{-1}, \end{split}$$

where $\mathbf{x} = (x_1, x_2, x_3)$, $\mathbf{y} = (y_1, y_2)$, $\mathbf{z} = (z_1)$ and $\mathbf{w} = (w_1, w_2)$. We define sixteen cells e^j for j = 0, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21 respectively as follows:

$$\begin{array}{ll} e^{0}=\{1\}, & e^{3}=\operatorname{Im}\varphi_{3}, & e^{5}=\operatorname{Im}\varphi_{5}, & e^{6}=\operatorname{Im}\varphi_{6}, & e^{7}=\operatorname{Im}\varphi_{7}, \\ e^{8}=e^{5}e^{3}, & e^{9}=e^{6}e^{3}, & e^{10}=e^{7}e^{3}, & e^{11}=e^{6}e^{5}, & e^{12}=e^{7}e^{5}, \\ e^{13}=e^{6}e^{7}, & e^{14}=e^{6}e^{5}e^{3}, & e^{15}=e^{7}e^{5}e^{3}, & e^{16}=e^{6}e^{7}e^{3}, & e^{18}=e^{6}e^{7}e^{5}, \\ e^{21}=e^{6}e^{7}e^{5}e^{3}. \end{array}$$

Let S^7 be the unit sphere of \mathfrak{C} . Then we have a principal bundle over it:

$$SU(3) \longrightarrow SU(4) \xrightarrow{p_0} S^7,$$

where $p_0(g) = ge_0$.

Lemma 2.2. Let $V^7 = D^3 \times D^2 \times D^2$. Then the composite map $p_0\varphi_7 : (V^7, \partial V^7) \to (S^7, e_0)$ is a relative homeomorphism.

Proof. We express the map $(p_0\varphi_7)|_{V^7\setminus\partial V^7}$ as follows:

$$\begin{pmatrix} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \\ a_{6} \\ a_{7} \end{pmatrix} = D(\mathbf{w})B(\mathbf{y})A(\mathbf{x})B(\mathbf{y})^{-1}D(\mathbf{w})^{-1}e_{0} = \begin{pmatrix} 1 - 2X^{2}Y^{2}W^{2} \\ 2x_{1}XY^{2}W^{2} \\ 2(w_{1}X - x_{1}w_{2})XY^{2}W \\ 2(w_{1}X - x_{1}w_{2})XY^{2}W \\ -2(w_{2}X + x_{1}w_{1})XY^{2}W \\ 2(y_{2}X + x_{1}y_{2})XYW \\ 2(y_{2}X + x_{1}y_{1})XYW \\ 2x_{2}XYW \\ 2x_{3}XYW \end{pmatrix}$$

and hence we have

$$\begin{pmatrix} 1-a_0\\ a_1\\ a_2\\ a_3\\ a_4\\ a_5\\ a_6\\ a_7 \end{pmatrix} = 2XYW \begin{pmatrix} XYW\\ x_1YW\\ (w_1X-x_1w_2)Y\\ (w_1X-x_1w_2)Y\\ -(w_2X+x_1w_1)Y\\ -y_1X+x_1y_2\\ y_2X+x_1y_1\\ x_2\\ x_3 \end{pmatrix}$$

.

Since X > 0, Y > 0, W > 0 and $1 - a_0 > 0$, an easy calculation as for the first component in the above equation gives the following equation:

(2.1)
$$XYW = \frac{\sqrt{1-a_2}}{\sqrt{2}},$$

from which we easily obtain

(2.2)
$$x_2 = \frac{a_6}{\sqrt{2(1-a_2)}}, \quad x_3 = \frac{a_7}{\sqrt{2(1-a_2)}}.$$

Further we obtain three more equalities from the above equalities:

$$\begin{aligned} &(1-a_0)^2 + a_1^2 = 4X^2Y^4W^4(x_1^2 + X^2), \\ &a_2^2 + a_3^2 = 4X^2Y^4W^2(w_1^2 + w_2^2)(x_1^2 + X^2) = 4X^2Y^4W^2(1-W^2)(x_1^2 + X^2), \\ &a_4^2 + a_5^2 = 4X^2Y^2W^2(y_1^2 + y_2^2)(x_1^2 + X^2) = 4X^2Y^2W^2(1-Y^2)(x_1^2 + X^2). \end{aligned}$$

Using these three equalities, we obtain

(2.3)
$$Y^2 = \frac{(1-a_0)^2 + a_1^2 + a_2^2 + a_3^2}{(1-a_0)^2 + a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2},$$

(2.4)
$$W^2 = \frac{(1-a_0)^2 + a_1^2}{(1-a_0)^2 + a_1^2 + a_2^2 + a_3^2}.$$

It follows from (2.1), (2.3) and (2.4) that

(2.5)
$$X^{2} = \frac{(1-a_{0})((1-a_{0})^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2})}{2((1-a_{0})^{2}+a_{1}^{2})}.$$

It follows also from (2.2) and (2.5) that

(2.6)
$$x_1^2 = \frac{a_1^2((1-a_0)^2 + a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2)}{2(1-a_0)((1-a_0)^2 + a_1^2)}$$

Since Y, W, X are positive, (2.3), (2.4), (2.5) imply respectively

(2.7)
$$Y = \frac{\sqrt{(1-a_0)^2 + a_1^2 + a_2^2 + a_3^2}}{\sqrt{(1-a_0)^2 + a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2}},$$

(2.8)
$$W = \frac{\sqrt{(1-a_0)^2 + a_1^2}}{\sqrt{(1-a_0)^2 + a_1^2 + a_2^2 + a_3^2}},$$

(2.9)
$$X = \frac{\sqrt{(1-a_0)((1-a_0)^2 + a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2)}}{\sqrt{2((1-a_0)^2 + a_1^2)}}.$$

Since the signs of x_1 and a_1 are the same, (2.6) implies that

(2.10)
$$x_1 = \frac{a_1\sqrt{(1-a_0)^2 + a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2}}{\sqrt{2(1-a_0)((1-a_0)^2 + a_1^2)}}$$

Now we determine y_1 ; we have

$$-a_4X + a_5x_1 = 2XYW(x_1^2 + X^2)y_2.$$

Substituting the equations (2.1), (2.9) and (2.10) in the above equation, we obtain

(2.11)
$$y_1 = \frac{a_1 a_5 - (1 - a_0) a_4}{\sqrt{((1 - a_0)^2 + a_1^2)((1 - a_0)^2 + a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2)}}$$

We determine y_2 ; we have

$$a_4x_1 + a_5X = 2XYW(x_1^2 + X^2)y_2.$$

Substituting the equations (2.1), (2.9) and (2.10) in the above equation, we obtain

(2.12)
$$y_2 = \frac{a_1 a_4 + (1 - a_0) a_5}{\sqrt{((1 - a_0)^2 + a_1^2)((1 - a_0)^2 + a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2)}}$$

We determine w_1 ; we have

$$a_2X - a_3x_1 = 2XY^2W(x_1^2 + X^2)w_1.$$

Substituting the equations (2.1), (2.7), (2.9) and (2.10) in the above equation, we obtain

(2.13)
$$w_1 = \frac{(1-a_0)a_2 - a_1a_3}{\sqrt{((1-a_0)^2 + a_1^2)((1-a_0)^2 + a_1^2 + a_2^2 + a_3^2)}}.$$

Finally we determine w_2 ; we have

$$-a_2x_1 - a_3X = 2XY^2W(x_1^2 + X^2)w_2.$$

Substituting the equations (2.1), (2.7), (2.9) and (2.10) in the above equation, we obtain

(2.14)
$$w_2 = \frac{-a_1a_2 - (1 - a_0)a_3}{\sqrt{((1 - a_0)^2 + a_1^2)((1 - a_0)^2 + a_1^2 + a_2^2 + a_3^2)}}$$

Thus we have expressed $x_1, x_2, x_3, y_1, y_2, w_1, w_2$ in terms of a_0, \dots, a_7 , that is, the inverse map has been constructed, which completes the proof.

In a similar way to that of Section 3 of [9], we can obtain the following theorem, which is essentially the same as Yokota's decomposition [17].

Proposition 2.3. $e^0 \cup e^3 \cup e^5 \cup e^7 \cup e^8 \cup e^{10} \cup e^{12} \cup e^{15}$ thus obtained is a cellular decomposition of SU(4).

Proof. First we show that $\mathring{e}^i \cap \mathring{e}^j = \emptyset$ if $i \neq j$. We consider the following three cases:

(1) For the case where $i, j \in \{0, 3, 5, 8\}$; both cells e^i and e^j are in SU(3) and $e^0 \cup e^3 \cup e^5 \cup e^8$ is a cellular decomposition of SU(3). Then we have $\mathring{e}^i \cap \mathring{e}^j = \emptyset$ if $i \neq j$.

(2) For the case where $i \in \{0, 3, 5, 8\}$ and $j \in \{7, 10, 12, 15\}$; we have $p_0(\hat{e}^i) = \{e_0\}$ and $p_0(\hat{e}^j) = S^7 \setminus \{e_0\}$. Then we have $\hat{e}^i \cap \hat{e}^j = \emptyset$.

(3) For the case where $i, j \in \{7, 10, 12, 15\}$; suppose that $A \in \mathring{e}^i \cap \mathring{e}^j$. Since $\mathring{e}^i = \mathring{e}^7 \mathring{e}^{i-7}$ and $\mathring{e}^j = \mathring{e}^7 \mathring{e}^{j-7}$, we can put $A = A_1 A_2 = A'_1 A'_2$ where $A_1, A'_1 \in \mathring{e}^r$, $A_2 \in \mathring{e}^{i-7}$ and $A'_2 \in \mathring{e}^{j-7}$. We have $A_1 = A'_1$, since $p_0(A_1) = p_0(A_1A_2) = p_0(A'_1A'_2) = p_0(A'_1)$ and $p_0|_{\mathring{e}^7}$ is monic. Then we have $A_2 = A'_2$ and the first case shows that i - 7 = j - 7, that is, i = j. Thus $\mathring{e}^i \cap \mathring{e}^j = \emptyset$ if $i \neq j$.

Next, we will check that the boundaries of the cells are included in the lower dimensional cells. In the proof of Proposition 3.2 [9], it is proved that the boundaries \dot{e}^3 , \dot{e}^5 and \dot{e}^8 are included in the lower dimensional cells. Observe that the boundary \dot{e}^7 is the union of the following three sets:

$$\begin{split} &\{DBAB^{-1}D^{-1} \mid A \in A(\dot{D}^3), B \in B(D^2), D \in D(D^2)\}, \\ &\{DBAB^{-1}D^{-1} \mid A \in A(D^3), B \in B(\dot{D}^2), D \in D(D^2)\}, \\ &\{DBAB^{-1}D^{-1} \mid A \in A(D^3), B \in B(D^2), D \in D(\dot{D}^2)\}. \end{split}$$

The first set contains only the identity element, since A is the identity element. It is easy to see that the second set is contained in e^3 and that the third set is contained in e^5 . We have $\dot{e}^{10} = e^7 \dot{e}^3 \cup \dot{e}^7 e^3 \subset e^7 e^0 \cup e^5 e^3 = e^7 \cup e^8$. We also have $\dot{e}^{12} = \dot{e}^7 e^5 \cup e^7 \dot{e}^5 \subset e^5 e^5 \cup e^7 e^3 = e^8 \cup e^{10}$, and $\dot{e}^{15} = \dot{e}^7 e^5 e^3 \cup e^7 \dot{e}^5 e^3 \cup e^7 e^5 \dot{e}^3 \subset e^5 e^5 \cup e^7 e^5 = e^8 \cup e^{10} \cup e^{12}$.

Finally, we will show that the inclusion map $e^0 \cup e^3 \cup e^5 \cup e^7 \cup e^8 \cup e^{10} \cup e^{12} \cup e^{15} \rightarrow SU(4)$ is epic. Let $g \in SU(4)$. If $p_0(g) = e_0$, then g is contained in $SU(3) = e^0 \cup e^3 \cup e^5 \cup e^8$. Suppose that $p_0(g) \neq e_0$. There is an element $h \in e^7$ such that $p_0(h) = p_0(g)$. Thus we have $h^{-1}g \in SU(3) = e^0 \cup e^3 \cup e^5 \cup e^8$, since $p_0(h^{-1}g) = e_0$. Therefore we have $g \in h(e^0 \cup e^3 \cup e^5 \cup e^8) \subset e^0 \cup e^3 \cup e^5 \cup e^7 \cup e^8 \cup e^{10} \cup e^{12} \cup e^{15}$. \Box

Remark 2.4. (1) We regard SO(6) as the subgroup of SO(7) fixing e_1 . Let π : $Spin(6) \rightarrow SO(6)$ be the double covering. Then, according to the Proof of Lemma 2.1, $\pi(SU(4)) \subset SO(6)$ so that $\pi|_{SU(4)} : SU(4) \rightarrow SO(6)$ is the double covering.

(2) For $1 \leq n \leq 3$, the subcomplex $e^0 \cup e^3 \cup \cdots \cup e^{2n+1}$ is homeomorphic to $\Sigma \mathbb{C}P^n$, which consists of the elements

$$A\begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \\ & & & e^{2i\theta} \end{pmatrix} A^{-1} \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \\ & & & e^{-2i\theta} \end{pmatrix}$$

for any elements A in SU(n+1). Moreover, according to Proposition 2.6 of Chapter IV of [13], we have $e^{2i+1}e^{2j+1} \subset e^{2j+1}e^{2i+1}$ for i < j; in fact we have $e^{2i+1}e^{2j+1} = e^{2j+1}e^{2i+1}$ (see [19]).

Let S^6 be the unit sphere of \mathbb{R}^7 whose basis $\{e_i \mid 1 \leq i \leq 7\}$. We consider the following diagram

where the horizontal lines are principal fibre bundles and $p(g) = \pi(g)e_1$. Lemma 4.1 of [9] implies the following lemma immediately.

Lemma 2.5. Put $V^6 = D^3 \times D^2 \times D^1$. Then the composite map $p\varphi_6 : (V^6, \partial V^6) \rightarrow (S^6, \{e_1\})$ is a relative homeomorphism.

Now we can state one of our main results.

Theorem 2.6. The cell complex $e^0 \cup e^3 \cup e^5 \cup e^6 \cup e^7 \cup e^8 \cup e^9 \cup e^{10} \cup e^{11} \cup e^{12} \cup e^{13} \cup e^{14} \cup e^{15} \cup e^{16} \cup e^{18} \cup e^{21}$ gives a cellular decomposition of Spin(7).

Proof. First we show that $\mathring{e}^i \cap \mathring{e}^j = \emptyset$ if $i \neq j$. We consider the following three cases:

(1) For the case where $i, j \in \{0, 3, 5, 7, 8, 10, 12, 15\}$; both cells e^i and e^j are in SU(4) and $e^0 \cup e^3 \cup e^5 \cup e^7 \cup e^8 \cup e^{10} \cup e^{12} \cup e^{15}$ is a cellular decomposition of SU(4), whence we have $\mathring{e}^i \cap \mathring{e}^j = \emptyset$ if $i \neq j$.

(2) For the case where $i \in \{0, 3, 5, 7, 8, 10, 12, 15\}$ and $j \in \{6, 9, 11, 13, 14, 16, 18, 21\}$; we have $p(\mathring{e}^i) = \{e_1\}$ and $p(\mathring{e}^j) = S^6 \setminus \{e_1\}$, whence we have $\mathring{e}^i \cap \mathring{e}^j = \emptyset$.

(3) For the case where $i, j \in \{6, 9, 11, 13, 14, 16, 18, 21\}$, suppose that $A \in \mathring{e}^i \cap \mathring{e}^j$. Since $\mathring{e}^i = \mathring{e}^6 \mathring{e}^{i-6}$ and $\mathring{e}^j = \mathring{e}^6 \mathring{e}^{j-6}$, we can put $A = A_1 A_2 = A'_1 A'_2$, where $A_1, A'_1 \in \mathring{e}^6$, $A_2 \in \mathring{e}^{i-6}$ and $A'_2 \in \mathring{e}^{j-6}$. We have $A_1 = A'_1$, since $p(A_1) = p(A_1A_2) = p(A'_1A'_2) = p(A'_1A'_2) = p(A'_1)$ and $p|_{\mathring{e}^6}$ is monic. Then we have $A_2 = A'_2$ and the first case shows that i - 6 = j - 6, that is, i = j. Thus $\mathring{e}^i \cap \mathring{e}^j = \emptyset$ if $i \neq j$. Next, we will check that the boundaries of the cells are included in the lower dimensional cells. In Proposition 2.3, it is proved that the boundaries of the cells of SU(4) are included in the lower dimensional cells. In Proof of Theorem 4.2 in [9], we showed that $\dot{e}^6 \subset e^3 \cup e^5$, $\dot{e}^9 \subset e^6 \cup e^8$, $\dot{e}^{11} \subset e^5 \cup e^9$ and $\dot{e}^{14} \subset e^8 \cup e^9 \cup e^{11}$. By using (2) of Remark 2.4, we also obtain

$$\begin{split} \dot{e}^{13} &= e^6 \dot{e}^7 \cup \dot{e}^6 e^7 \subset e^{11} \cup e^{12}, \\ \dot{e}^{16} &= e^6 e^7 \dot{e}^3 \cup e^6 \dot{e}^7 e^3 \cup \dot{e}^6 e^7 e^3 \subset e^{13} \cup e^{14} \cup e^{15}, \\ \dot{e}^{18} &= e^6 e^7 \dot{e}^5 \cup e^6 \dot{e}^7 e^5 \cup \dot{e}^6 e^7 e^5 \subset e^{16} \cup e^{14} \cup e^{15}, \\ \dot{e}^{21} &= e^6 e^7 e^5 \dot{e}^3 \cup e^6 e^7 \dot{e}^5 e^3 \cup e^6 \dot{e}^7 e^5 e^3 \cup \dot{e}^6 e^7 e^5 e^3 \subset e^{18} \cup e^{16} \cup e^{14} \cup e^{15}. \end{split}$$

Finally, we will show that the inclusion map $e^0 \cup e^3 \cup e^5 \cup e^6 \cup e^7 \cup e^8 \cup e^9 \cup e^{10} \cup e^{11} \cup e^{12} \cup e^{13} \cup e^{14} \cup e^{15} \cup e^{16} \cup e^{18} \cup e^{21} \rightarrow Spin(7)$ is epic. Let $g \in Spin(7)$. If $p(g) = e_1$, then g is contained in $SU(4) = e^0 \cup e^3 \cup e^5 \cup e^7 \cup e^8 \cup e^{10} \cup e^{12} \cup e^{15}$. Suppose that $p(g) \neq e_1$. There is an element $h \in e^6$ such that p(h) = p(g). Thus we have $h^{-1}g \in SU(4)$ since $p(h^{-1}g) = e_1$. Therefore we have $g \in h(e^0 \cup e^3 \cup e^5 \cup e^7 \cup e^8 \cup e^{10} \cup e^{12} \cup e^{15}) \cup e^{12} \cup e^{15} \cup e^6 \cup e^7 \cup e^8 \cup e^9 \cup e^{10} \cup e^{11} \cup e^{12} \cup e^{13} \cup e^{14} \cup e^{15} \cup e^{16} \cup e^{18} \cup e^{21}$.

Remark 2.7. Araki [1] also gave a cellular decomposition of Spin(n), but the one we have given here is a cellular decomposition with the minimum number of cells, satisfying the Yokota principle ([17], [18], [19]). As will be seen later, it is effectively used to determine the Lusternik-Schnirelmann category.

It is easy to give a cellular decomposition of Spin(8) using a homeomorphism $Spin(8) \rightarrow Spin(7) \times S^7$.

3. The cone-decomposition of SU(4)

Obviously there is a filtration $F'_0 = * \subset F'_1 = SU(4)^{(7)} \subset F'_2 = SU(4)^{(12)} \subset F'_3 = SU(4)$. It is well-known that $F'_1 = \Sigma \mathbb{C}P^3 = S^3 \cup e^5 \cup e^7$ and $F'_2 = F'_1 \cup e^8 \cup e^{10} \cup e^{12}$. Thus the integral cohomology $H^n(F'_2; \mathbb{Z})$ is given by

$$H^{n}(F'_{2};\mathbb{Z}) \cong \begin{cases} \mathbb{Z}\langle 1 \rangle & (n=0) \\ \mathbb{Z}\langle y_{n} \rangle & (n=3,5,7,8,10,12) \\ 0 & (\text{otherwise}). \end{cases}$$

The action of the squaring operation Sq^2 is given as follows:

$$Sq^2y_n = \begin{cases} y_{n+2} & \text{for } n = 3, 10, \\ 0 & \text{for } n = 5, 7, 8, 12 \end{cases}$$

where y_n is regarded as an element of the mod 2 cohomology. To give the cone decomposition of SU(4), we use the following homotopy fibration:

(3.1)
$$F \xrightarrow{\Psi} F_1' \xrightarrow{\iota} F_2'.$$

Without loss of generality, we may regard this as a Hurewicz fibration over F'_2 .

Firstly we consider the Serre spectral sequence $(E_r^{*,*}, d_r)$ associated with the above fibration, where the generators of $E_2^{*,0}$ for $* \leq 7$ are permanent cycles and survive to E_{∞} -terms. Hence F is 6-connected and the transgression τ : $H^7(F;\mathbb{Z}) \to H^8(F_2';\mathbb{Z})$ is an isomorphism to $H^8(F_2';\mathbb{Z}) \cong \mathbb{Z}\langle y_8 \rangle$. Thus $H^7(F;\mathbb{Z}) \cong$ $\mathbb{Z}\langle x_7 \rangle$ for some $x_7 \in H^7(F;\mathbb{Z})$. Similarly, the generators in $E_2^{3,7} \cong \mathbb{Z}\langle y_3 \otimes x_7 \rangle$ and $E_2^{10,0} \cong H^{10}(F_2';\mathbb{Z}) \cong \mathbb{Z}\langle y_{10} \rangle$ must lie in the image of differentials d_3 and $d_{10} = \tau : H^9(F;\mathbb{Z}) \to H^{10}(F_2';\mathbb{Z})$ respectively, and we have that $H^8(F;\mathbb{Z}) = 0$ and $H^9(F;\mathbb{Z}) \cong \mathbb{Z}\langle x_9 \rangle \oplus \mathbb{Z}\langle x_9' \rangle$, where the elements x_9 and x_9' in $H^9(F;\mathbb{Z})$ are corresponding to x_{10} and $y_3 \otimes x_7$ by the transgression τ and d_3 respectively. We remark that the choice of the generator x_9' is not unique. Continuing this process, we have that $H^{10}(F;\mathbb{Z}) = 0$ and $H^{11}(F;\mathbb{Z}) \cong \mathbb{Z}\langle x_{11} \rangle \oplus \mathbb{Z}\langle x_{11}' \rangle \oplus \mathbb{Z}\langle x_{11}'' \rangle$ whose generators are corresponding to $x_{12}, y_3 \otimes x_9, y_3 \otimes x_9'$ and $y_5 \otimes x_7$ respectively by the transgression τ and differentials d_3, d_3 and d_5 .

Thus the integral cohomology $H^n(F;\mathbb{Z})$ for $0 \leq n \leq 11$ is given by

$$H^{n}(F;\mathbb{Z}) \cong \begin{cases} \mathbb{Z}\langle 1 \rangle & (n=0) \\ \mathbb{Z}\langle x_{7} \rangle & (n=7) \\ \mathbb{Z}\langle x_{9} \rangle \oplus \mathbb{Z}\langle x'_{9} \rangle & (n=9) \\ \mathbb{Z}\langle x_{11} \rangle \oplus \mathbb{Z}\langle x'_{11} \rangle \oplus \mathbb{Z}\langle x''_{11} \rangle \oplus \mathbb{Z}\langle x'''_{11} \rangle & (n=11) \\ 0 & (\text{otherwise}) \end{cases}$$

where x_7 , x_9 and x_{11} are transgressive generators in $H^*(F; \mathbb{Z})$. Hence F has, up to homotopy, a cellular decomposition $e^0 \cup e^7 \cup_{\varphi_1} e^9 \cup_{\varphi'_1} e^9_1 \cup_{\varphi_2} e^{11} \cup$ (cells in dimensions ≥ 11), where the cells e^7 , e^9 and e^{11} correspond to x_7 , x_9 and x_{11} respectively. Then we obtain a subcomplex $A' = e^0 \cup e^7 \cup_{\varphi_1} e^9 \cup_{\varphi'_1} e^9_1 \cup_{\varphi_2} e^{11}$ of F.

Secondly, we determine the attaching maps φ_1 and φ'_1 : Let us recall that $\pi_8(S^7) \cong \mathbb{Z}/2\langle \eta_7 \rangle$ whose generator η_7 can be detected by Sq^2 , the mod 2 Steenrod operation. Since the action of mod 2 Steenrod operation commutes with the cohomology transgression (see [8, Proposition 6.5]), we see that Sq^2x_7 is transgressive, and hence is cx_9 for some $c \in \mathbb{Z}/2$. We know that $\tau x_9 = y_{10} \neq 0$ and $\tau Sq^2x_7 = Sq^2\tau x_7 = Sq^2y_8 = 0$, and hence Sq^2x_7 must be trivial. Thus the attaching maps φ_1 and φ'_1 are both null homotopic and A' is homotopy equivalent to $(S^7 \vee S^9 \vee S_1^9) \cup_{\varphi_2} e^{11}$.

Thirdly we check the composition of projections with the attaching map φ_2 : $S^{10} \to S^7 \vee S^9 \vee S_1^9$ to S^9 and S_1^9 , which can also be detected by Sq^2 . Again by the commutativity of the action of mod 2 Steenrod operation with the transgression, we see that the composition map $\operatorname{pr}_{S^9} \circ \varphi_2 : S^{10} \xrightarrow{\varphi_2} S^7 \vee S^9 \vee S_1^9 \longrightarrow S^9$ represents a generator of $\pi_{10}(S^9) \cong \mathbb{Z}/2\langle \eta_9 \rangle$, since $Sq^2 : H^8(F'_2; \mathbb{Z}/2) \to H^{10}(F'_2; \mathbb{Z}/2)$ is non-trivial. If the composition map $\phi_1 = \operatorname{pr}_{S_1^9} \circ \varphi_2 : S^{10} \xrightarrow{\varphi_2} S^7 \vee S^9 \vee S_1^9 \longrightarrow S_1^9$ is non-trivial, we replace φ_2 by the composition of φ_2 and the homotopy equivalence $\begin{aligned} \xi &: S^7 \vee S^9 \vee S_1^9 \to S^7 \vee S^9 \vee S_1^9 \text{ where } \xi|_{S^7} \text{ and } \xi|_{S_1^9} \text{ are the identity maps and} \\ \xi|_{S^9} \text{ is the unique co-H-structure map } \phi : S^9 \to S^9 \vee S_1^9; \text{ then we obtain that } \phi_1 \text{ is trivial, since } 2\eta_9 &= 0. \text{ Then } A' \text{ is homotopy equivalent to } ((S^7 \vee S^9) \cup_{\varphi_2} e^{11}) \vee S_1^9. \end{aligned}$ Let A denote the subcomplex $(S^7 \vee S^9) \cup_{\varphi_2} e^{11}$ of A' and $\psi = \Psi|_A : A \to F'_1. \end{aligned}$

Lemma 3.1. F'_2 is homotopy equivalent to $F'_1 \cup_{\psi} CA$.

Proof. The image of $H^*(A;\mathbb{Z})$ in $H^*(F;\mathbb{Z})$ under the induced map of the inclusion coincides with the module of transgressive elements with respect to the fibration (3.1) (see [8, Chapter 6]). Thus we may regard that $H^{n-1}(A;\mathbb{Z}) = \delta^{-1}(\iota^*(H^n(F'_2,*;))) \subset H^{n-1}(F;\mathbb{Z})$:

$$\begin{array}{cccc} H^{n-1}(F;\mathbb{Z}) & \xrightarrow{\delta_F} & H^n(F'_1,F;\mathbb{Z}) & \xleftarrow{\iota_F^*} & H^n(F'_2,*;\mathbb{Z}) \\ & & & \downarrow & & \parallel \\ & & & \downarrow & & \parallel \\ H^{n-1}(A;\mathbb{Z}) & \xrightarrow{\delta_A} & H^n(F'_1,A;\mathbb{Z}) & \xleftarrow{\iota_A^*} & H^n(F'_2,*;\mathbb{Z}), \end{array}$$

where ι_F and ι_A are given by ι , and δ_F and δ_A denote the connecting homomorphisms of the long exact sequences for the pairs (F'_1, F) and (F'_1, A) , respectively. Thus the image of δ_A is contained in the image of ι_A^* and we also have

$$H^n(F'_1,A;\mathbb{Z})\cong H^n(F'_1\cup_{\psi}CA,CA;\mathbb{Z})\cong H^n(F'_1\cup_{\psi}CA,*;\mathbb{Z})$$

Since the composition map $A \xrightarrow{\psi} F'_1 \xrightarrow{\iota} F'_2$ is trivial, we can define a map

$$f: F_1' \cup_{\psi} CA \longrightarrow F_2',$$

by $f|_{F'_1} = \iota : F'_1 \to F'_2$ and $f|_{CA} = *$.

In order to prove the lemma, we show that $f^*: H^n(F'_2; \mathbb{Z}) \cong \mathbb{Z} \to H^n(F'_1 \cup_{\psi} CA; \mathbb{Z}) \cong \mathbb{Z}$ is an isomorphism for n = 3, 5, 7, 8, 10, 12. We have a commutative diagram

$$\begin{array}{cccc} H^n(F_2';\mathbb{Z}) & \stackrel{\iota^*}{\longrightarrow} & H^n(F_1';\mathbb{Z}) \\ & & & & & & & \\ f^* \downarrow & & & & & & \\ H^n(F_1' \cup CA, F_1';\mathbb{Z}) & \stackrel{j^*}{\longrightarrow} & H^n(F_1' \cup CA;\mathbb{Z}) & \stackrel{i^*}{\longrightarrow} & H^n(F_1';\mathbb{Z}), \end{array}$$

where the bottom row is a part of the exact sequence for the pair $(F'_1 \cup CA, F'_1)$. The induced map i^* is an isomorphism for $n \leq 7$, since $H^n(F'_1 \cup CA, F'_1; \mathbb{Z}) = 0$ for $n \leq 7$ and since ι^* is an isomorphism for $n \leq 7$. Then we obtain that f^* is an isomorphism for $n \leq 7$. Moreover we can show that $j^* : H^n(F'_1 \cup CA, F'_1; \mathbb{Z}) \to$ $H^n(F'_1 \cup CA; \mathbb{Z})$ is an isomorphism for $n \geq 8$, by considering the exact sequence for the pair $(F'_1 \cup CA, F'_1)$, since we have $H^n(F'_1) = 0$ for $n \geq 8$. To perform the other cases for n = 8, 10, 12, it is sufficient to show that f^* is surjective. In fact, we have a commutative diagram

$$\begin{array}{c|c} H^{n-1}(A;\mathbb{Z}) & \xrightarrow{\delta_A} & H^n(F'_1,A;\mathbb{Z}) < \xrightarrow{\iota_A^*} & H^n(F'_2,*;\mathbb{Z}) \\ & \Sigma & & \uparrow & & \downarrow \\ & \Sigma & & \uparrow & & \downarrow \\ H^n(\Sigma A,*;\mathbb{Z}) & \xrightarrow{\cong} & H^n(F'_1 \cup CA,F'_1;\mathbb{Z}) & \xrightarrow{j^*} & H^n(F'_1 \cup CA,*;\mathbb{Z}) \end{array}$$

where Σ is the suspension isomorphism. Since j^* is an isomorphism for $n \ge 8$, we obtain that δ_A is an isomorphism for $n \ge 8$. Since the image of δ_A is contained in the image ι_A^* , we see that f^* is surjective for $n \ge 8$, and hence f is a homotopy equivalence.

Proposition 3.2. We have $wcat(F'_i) = cat(F'_i) = Cat(F'_i) = i$.

Proof. The cohomology of F'_i implies that $w \operatorname{cat}(F'_i) \geq i$. The cone-decomposition

$$F'_1 = \Sigma \mathbb{C}P^3, \quad F'_2 \simeq F'_1 \cup CA, \quad F'_3 = F'_2 \cup CS^{14}$$

implies that $\operatorname{Cat}(F'_i) \leq i$, which completes the proof.

4. Proof of Theorem 1.1

We define a filtration $F_0 = * \subset F_1 \subset F_2 \subset F_3 \subset F_4 \subset F_5 = Spin(7)$ by

$$F_1 = SU(4)^{(7)}, \qquad F_2 = SU(4)^{(12)} \cup e^6, F_3 = SU(4) \cup e^6 \cup e^9 \cup e^{11} \cup e^{13}, \quad F_4 = Spin(7)^{(18)}.$$

We need the following lemma to prove Theorem 4.2.

Lemma 4.1. We have a homeomorphism of pairs

 $(CA_1, A_1) \times (CA_2, A_2) = (C(A_1 * A_2), A_1 * A_2).$

(The proof can be found in p.482-483 of [16].)

Now Theorem 1.1 follows from the following theorem.

Theorem 4.2. We have $wcat(F_i) = cat(F_i) = Cat(F_i) = i$.

Proof. The mod 2 cohomology of F_i implies that $wcat(F_i) \ge i$. Then it is sufficient to show that $Cat(F_i) \le i$. Obviously we have a homeomorphism $F_1 = \Sigma \mathbb{C}P^3$. Since the cell e^6 is attached to F_1 , we obtain that $F_2 \simeq F_1 \cup C(S^5 \lor A)$ using Lemma 3.1. Since we have $e^9 \cup e^{11} \cup e^{13} = e^6(e^3 \cup e^5 \cup e^7)$, the composition map

$$(CS^5, S^5) \times (C\mathbb{C}P^3, \mathbb{C}P^3) \longrightarrow (CS^5, S^5) \times (\Sigma\mathbb{C}P^3, *) \longrightarrow (F_2 \cup e^9 \cup e^{11} \cup e^{13}, F_2)$$

is a relative homeomorphism. Then we obtain $F_2 \cup e^9 \cup e^{11} \cup e^{13} = F_2 \cup C(S^5 * \mathbb{C}P^3)$ using Lemma 4.1. The cell e^{15} is the highest dimensional cell of SU(4) and is attached to F_2 . Then we obtain $F_3 \simeq F_2 \cup C(S^{14} \vee (S^5 * \mathbb{C}P^3))$. Now we consider the following composition map:

$$(C(S^{5} * A), S^{5} * A) = (CS^{5}, S^{5}) \times (CA, A) \longrightarrow (CS^{5}, S^{5}) \times (F'_{2}, F'_{1}) \longrightarrow (F_{4}, F_{3}).$$

Since we have $e^{14} \cup e^{16} \cup e^{18} = e^6(e^8 \cup e^{10} \cup e^{12})$, the right map is a relative homeomorphism. The left map induces an isomorphism of homologies of pairs so that the map $H_*(F_3 \cup C(S^5 * A), F_3; \mathbb{Z}) \to H_*(F_4, F_3; \mathbb{Z})$ is an isomorphism. Thus we obtain $F_4 \simeq F_3 \cup C(S^5 * A)$. Obviously we have a homeomorphism $F_5 = F_4 \cup CS^{20}$.

References

- S. Araki, On the homology of spinor groups, Mem. Fac. Sci. Kyusyu Univ. Ser. A., 9(1955), 1–35.
- [2] L. Fernández-Suárez, A. Gómez-Tato, J. Strom and D. Tanré, The Lusternik-Schnirelmann category of Sp(3), (preprint).
- [3] T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois J. Math., 11(1967), 417–427.
- [4] N. Iwase, A_{∞} -method in Lusternik-Schnirelmann category, Topology, 41(2002), 695–723.
- [5] N. Iwase, Lusternik-Schnirelmann category of a sphere-bundle over a sphere, Topology, (to appear).
- [6] N. Iwase and M. Mimura, L-S categories of simply-connected compact simple Lie groups of low rank, Proc. of the Skye Conference, (to appear).
- [7] I. M. James and W. Singhof, On the category of fibre bundles, Lie groups, and Frobenius maps, Higher homotopy structures in topology and mathematical physics (Poughkeepsie, NY, 1996), Contemp. Math., 227(1999), 177–189.
- [8] J. McCleary, A User's Guide to Spectral Sequences, 2nd Ed., 58 Cambridge University Press, Cambridge, (2001).
- [9] M. Mimura and T. Nishimoto, On the cellular decomposition of the exceptional Lie group G₂, Proc. Amer. Math. Soc., **130**(2002), 2451–2459.
- [10] P. A. Schweitzer, Secondary cohomology operations induced by the diagonal mapping, Topology, 3(1965), 337–355.
- [11] W. Singhof, On the Lusternik-Schnirelmann category of Lie groups, Math. Z., 145(1975), 111–116.
- [12] W. Singhof, On the Lusternik-Schnirelmann category of Lie groups, II, Math. Z., 151(1976), 143–148.
- [13] N. E. Steenrod, Cohomology operations, Annals of Mathematical Studies, 50 Princeton University Press, Princeton, N.J. (1962).
- [14] F. Takens, The Lusternik-Schnirelman categories of a product space, Compositio Math., 22(1970), 175–180.
- [15] G. W. Whitehead, The homology suspension, Colloque de topologie algébrique, Louvain, (1956), 89–95.
- [16] G. W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics, 61 Springer-Verlag, New York-Berlin, (1978).
- [17] I. Yokota, On the cell structures of SU(n) and Sp(n), Proc. Japan Acad., **31**(1955), 673–677.
- [18] I. Yokota, On the cellular decompositions of unitary groups, J. Inst. Polytech. Osaka City Univ. Ser. A., 7(1956), 39–49.
- [19] I. Yokota, Groups and Topology, Shokabo, (1971) (in Japanese).

FACULTY OF MATHEMATICS, KYUSHU UNIVERSITY, ROPPONMATSU FUKUOKA 810-8560, JAPAN *E-mail address*: iwase@math.kyushu-u.ac.jp

Department of Mathematics, Faculty of Science, Okayama University, 3-1 Tsushimanaka, Okayama 700-8530, Japan

 $E\text{-}mail\ address: \texttt{mimura@math.okayama-u.ac.jp}$

Department of Welfare Business, Kinki Welfare University, Fukusaki-cho, Hyogo 679-2217, Japan

E-mail address: nishimoto@kinwu.ac.jp

14