A p-complete version of the Ganea Conjecture for co-H-spaces

J. R. Hubbuck and Norio Iwase

Abstract. A finite connected CW complex which is a co-H-space is shown to have the homotopy type of a wedge of a bunch of circles and a simply-connected finite complex after almost p-completion at a prime p.

1. Fundamentals and Results

When Y is a homotopy associative H-space or when X is a (homotopy) associative co-H-space, the set of based homotopy classes $[Z, Y]$ or $[X, Z]$ respectively, is a group natural in the Z argument. If the H-multiplication on Y is not known to be homotopy associative, the induced structure on $[Z, Y]$ is that of an algebraic loop; in particular, left and right inverses exist but they may be distinct. One cannot make as general a statement for $[X, Z]$ when X is a co-H-space. The immediate problem is that whereas the shearing map for an H-space induces isomorphisms of homotopy groups, the co-shearing map for a co-H-space induces isomorphisms of homology groups. This general situation has been well understood for some decades.

We assume that spaces have the homotopy types of CW-complexes, are based and that maps and homotopies preserve base points. A space X is a co-H-space if there is a comultiplication map $\nu : X \to X \vee X$ satisfying $j \circ \nu \simeq \Delta : X \to X \times X$ where $j : X \vee X \hookrightarrow X \times X$ is the inclusion and Δ the diagonal map. Equivalently, X is a co-H-space if the Lusternik-Schnirelmann category $\text{cat} X$ is one.

Statements (1.1) and (1.2) below were shown to be equivalent in [13], see also Theorem 0.1 of [16].

(1.1) X is a co-H-space and the comultiplication can be chosen so that $[X, Z]$ is an algebraic loop for all Z.

(1.2) The space X has the homotopy type of a wedge of a bunch of circles and a simply-connected co-H-space.

Problem 10 in [11] asks “Is any (non-simply-connected) co-H-space of the homotopy type of $S^1 \vee \cdots \vee S^1 \vee Y$ where there may be infinitely many circles and $\pi_1(Y) = 0$?” The positive statement has become known as ‘the Ganea conjecture’.

©0000 (copyright holder)

1991 Mathematics Subject Classification. Primary 55P45.

Key words and phrases. co-H-space, Ganea’s conjecture, almost completion, atomic space.

This research was partially supported by Grant-in-Aid for Scientific Research (C)08640125 from The Ministry of Science, Sports and Culture.
for co-H-spaces (see section 6 of [1]). The conjecture was resolved thirty years after being raised when the second author constructed in [16] infinitely many finite complexes which are co-H-spaces but which do not have the homotopy type described in Problem 10. This leaves open a p-complete version of Ganea’s conjecture, and probably more difficult, a p-local version (see Conjecture 1.6 of [16]). The rational version was established in [12] as a prime decomposition theorem for an ‘almost rational’ co-H-space. In this note, we address the p-complete problem at a prime p.

Some comments are required on p-completion. The p-completion of a simply connected co-H-space is rarely a co-H-space (unless it is a ‘finite torsion space’ in the sense of [8]) as a wedge of p-complete spaces need not be p-complete; it becomes a co-H-object in a categorical sense, which is adequate for some purposes. More seriously, we are interested in non-simply-connected co-H-spaces and it is shown in [9] that when X is a co-H-space,

$$\pi_1(X)$$ is a free group.

We therefore use fibrewise p-completion which we describe after introducing more notation.

Let X be a co-H-space and $$B = B\pi_1(X)$$, so that B can be chosen as a bunch of circles by (1.3). Let $$i: B \to X$$ represent the generators of $$\pi_1(X)$$ associated with the circles and $$j: X \to B$$ be the classifying map of the universal cover $$\tilde{X} \to X$$. We may assume that $$j \circ i \simeq 1_B$$, and so B is a homotopy retract of X. Also let $$c: X \to C$$ be the cofibre of $$i: B \to X$$, so C is simply connected. One seems tantalizingly close to Ganea’s original conjecture as there are homology equivalences $$X \to B \lor C$$ and $$B \lor C \to X$$ inducing isomorphisms of fundamental groups.

For each prime p, we consider the fibrewise p-completion of $$j: X \to B$$, $$\hat{\iota}_p: X \to \hat{X}_p$$ which commutes with projections to B. The map $$\hat{\iota}_p$$ induces an isomorphism of fundamental groups and acts as standard p-completion on the fibre $$\tilde{X}$$ and so $$\hat{X}_p \simeq \tilde{X}_p$$. Following earlier authors, we refer to this fibrewise p-completion for $$j: X \to B$$ as ‘almost p-completion’. A general reference for fibrewise p-completion is [6], [4] or [18]. Also it is shown in [16] that a co-H-space X is a co-H-space over B up to homotopy, and so $$\hat{X}_p$$ becomes a co-H-object over B in the sense of [17] and [8].

The main result of this note is the following.

Theorem 1.1. Let X be a finite, connected, based CW-complex and a co-H-space. After almost p-completion, $$\hat{X}_p$$ has the homotopy type of $$\hat{(B \lor C)}_p$$ where B is a finite bunch of circles and C is a simply-connected finite complex and a co-H-space.

Let $$Y \to B$$ be a fibration with cross-section.

Corollary 1.2. The homotopy set $$[\hat{X}_p, \hat{Y}_p]_B$$ inherits an algebraic loop structure from C.

Since C is a simply-connected co-H-space, results of [21] imply that $$\hat{C}_p$$ can be decomposed, uniquely up to homotopy, as a completed wedge sum of simply-connected p-atomic spaces.

Corollary 1.3. $$\hat{X}_p$$ has the homotopy type of the almost p-completion of a wedge sum of circles and simply-connected p-atomic spaces.
The general strategy used to prove Theorem 1.1 first occurs in [15] in establishing the Ganea conjecture for complexes of dimension less than 4. The existence of a co-H-multiplication enabled the authors to construct a new splitting \(C \to X \) to obtain a homotopy equivalence \(B \vee C \to X \). In our case, we adopt techniques for simply-connected \(p \)-complete spaces of [14] and [21] for a similar purpose.

The first author expresses his gratitude to the Kyushu University and the second to the University of Aberdeen for their hospitality.

2. Finite co-H-complexes

We give a different proof of Theorem 3.1 of [15] and include a converse statement for completeness.

Theorem 2.1. Let \(X \) have the homotopy type of a based CW complex. Then \(X \) has the homotopy type of a finite complex which is a co-H-space if and only if there are a finite bunch of circles, a connected finite complex \(D \) and maps

\[
\rho : B \vee \Sigma D \to X \quad \text{and} \quad \sigma : X \to B \vee \Sigma D
\]

satisfying \(\rho \circ \sigma \simeq 1_X \).

Proof. Let \(X \) be a finite complex and a co-H-space. Then by [10], \(X \) is dominated by \(\Sigma \Omega X \), where \(\Sigma \Omega X \simeq \Sigma \pi_1 \vee \Sigma (\vee_{\tau \in \pi} \Omega \tau X) \) and \(\pi = \pi_1(X) \) is a free group. As \(X \) is a finite complex, the rank of \(\pi \) is finite and \(B = B \pi \) is a finite bunch of circles and \(X \) is dominated by \(B \vee \Sigma (\vee_{\tau \in \pi} \Omega \tau X) \). The image of \(X \) can be taken as a finite subcomplex of \(B \vee \Sigma (\vee_{\tau \in \pi} \Omega \tau X) \) and so there is a finite subcomplex \(D \) in \(\vee_{\tau \in \pi} \Omega \tau X \) such that \(B \vee \Sigma D \) dominates \(X \).

Conversely, let \(X \) be dominated by \(B \vee \Sigma W \) where \(B \) is a finite bunch of circles indexed by a finite set \(\Lambda \) and \(W \) is a connected finite complex. Then \(B \vee \Sigma W = \Sigma (\Lambda \vee W) \), and cat \(X \leq \text{cat} (\Sigma (\Lambda \vee W)) = 1 \). Thus \(X \) is a co-H-space. Also \(X \) is dominated by the finite complex \(B \vee \Sigma W \) whose fundamental group is free of finite rank. The finiteness obstruction for \(X \) lies in the Whitehead group \(Wh(\pi) = K_0(\mathbb{Z}[\pi_1(X)])/\pm 1 \) ([20] and [19]) which is zero (see [7] and [2]). Thus \(X \) has a homotopy type of a finite complex. This completes the proof. \(\square \)

Let \(P = \sigma \rho : B \vee \Sigma D \to B \vee \Sigma D \) be the homotopy idempotent given by Theorem 2.1. So \(P \) restricted to \(B \) can be chosen as the inclusion \(\text{in}_B : B \subset B \vee \Sigma D \) and \(P \) restricted to \(\Sigma D \) lifts to \(P_0 : \Sigma D \to B \vee \Sigma D \) where \(B \vee \Sigma D \simeq \vee_{\tau \in \pi} \tau \cdot \Sigma D \) as \(\Sigma D \) is simply connected. As \(\Sigma D \) is a finite complex, \(P_0(\Sigma D) \) is included in a finite subcomplex \(\bigvee_{i=1}^t \tau_i \cdot \Sigma D \). So the restriction of \(P \) to \(\Sigma D \) equals the composition

\[
\Sigma D \xrightarrow{P_0} \bigvee_{i=1}^t \tau_i \cdot \Sigma D \hookrightarrow B \vee \Sigma D \twoheadrightarrow B \vee \Sigma D.
\]

Therefore we have the commutative diagram

\[
\begin{array}{ccc}
B \vee \Sigma D & \xrightarrow{P} & B \vee \Sigma D \\
\downarrow{1_B \vee P_0} & & \downarrow{(\text{in}_B \cdot P)} \\
B \vee \bigvee_{i=1}^t \tau_i \cdot \Sigma D & \xrightarrow{B \vee \bigvee_{i=1}^t \tau_i} & B \vee \bigvee_{\tau \in \pi} \tau \cdot \Sigma D
\end{array}
\]

which plays a crucial role in the next section.
whose homotopy groups are finite p-groups.

\[\tau \] is a continuous homomorphism of topological groups, where the group structure is chosen so that \(\rho' \circ \sigma' \simeq 1_C \), as \(\rho \circ \sigma \simeq 1_X \). Thus the self map \(P' = \sigma' \circ \rho' \) of \(\Sigma D \) is also a homotopy idempotent. We will investigate the compositions

\[\hat{\Xi}_p^a \rightarrow \hat{B} \lor \Sigma \hat{D}_p^a \cong \hat{B} \lor \Sigma \hat{D}_p^a \rightarrow \hat{B} \lor \hat{C}_p^a \]

and

\[\hat{B} \lor \hat{C}_p^a \rightarrow \hat{B} \lor \Sigma \hat{D}_p^a \cong \hat{B} \lor \Sigma \hat{D}_p^a \rightarrow \hat{X}_p^a \]

with an appropriate homotopy equivalence \(\phi \).

3. Almost p-complete co-H-objects

Using the universality of almost p-completion, we have the natural equivalences between homotopy sets.

\[[(\hat{B} \lor \Sigma \hat{D})_p^a] = [(\hat{B} \lor \Sigma \hat{D})_p^a] = [\Sigma \hat{D}, (\hat{B} \lor \Sigma \hat{D})_p^a] \]

where \(\hat{V} \) denotes the completed wedge sum. Projecting to its factors \(\tau \cdot \hat{\Sigma} \hat{D}_p^a \), we have a map

\[\beta : [\hat{B} \lor \Sigma \hat{D}]_p^a \rightarrow \hat{\Sigma} \hat{D}_p^a, \hat{\Sigma} \hat{D}_p^a = \prod_{\tau \in \pi} \tau \cdot [\hat{\Sigma} \hat{D}_p^a, \hat{\Sigma} \hat{D}_p^a] \]

to the product and the image of \(\beta \) contains the sum \(\sum_{\tau \in \pi} \tau \cdot [\hat{\Sigma} \hat{D}_p^a, \hat{\Sigma} \hat{D}_p^a] \). Indeed \(\beta \) is a continuous homomorphism of topological groups, where the group structure is inherited from the co-H-space \(\Sigma D \).

We give an alternative description of the closed subgroup which is the image of \(\beta \). Let \(\{ g_\tau \}_{\tau \in \pi} \) denote an element of the product \(\prod_{\tau \in \pi} \tau \cdot [\hat{\Sigma} \hat{D}_p^a, \hat{\Sigma} \hat{D}_p^a] \).

Proposition 3.1. The element \(\{ g_\tau \}_{\tau \in \pi} \) lies in the image of \(\beta \) if and only if \(\{ \chi \circ g_\tau \}_{\tau \in \pi} \in \sum_{\tau \in \pi} \tau \cdot [\Sigma D, K] \) for any map \(\chi : \hat{\Sigma} \hat{D}_p^a \rightarrow K \) and any space \(K \) of whose homotopy groups are finite p-groups.

Proof. Let \(f : \hat{\Sigma} \hat{D}_p^a \rightarrow \hat{\Sigma} \hat{D}_p^a \) and \(\beta(f) = \{ f_\tau \}_{\tau \in \pi} \in \prod_{\tau \in \pi} \tau \cdot [\hat{\Sigma} \hat{D}_p^a, \hat{\Sigma} \hat{D}_p^a] \).

Since \((\hat{\Sigma} \hat{D}_p^a) \circ f \) lies in \(\sum_{\tau \in \pi} \tau \cdot [\hat{\Sigma} \hat{D}_p^a, \hat{\Sigma} \hat{D}_p^a] = [\Sigma D, \hat{\Sigma} \hat{D}_p^a] \), the map \(\{ \chi \circ f_\tau \}_{\tau \in \pi} \) lies in \(\sum_{\tau \in \pi} \tau \cdot [\Sigma D, K] \) as required. The converse statement holds by naturality and fundamental properties of p-completion. \(\square \)
Lemma 3.2. \(\beta(\tilde{P}_p^a) \in \sum_{\tau \in \pi} \tau \cdot [\tilde{D}_p, \Sigma \tilde{D}_p]. \)

Proof. The lemma follows from (2.1).

We now recall results from [14] and [21]. We define a homomorphism of near-algebras by mapping homotopy classes of self-maps of \((B\vee \Sigma D)_p\) over \(B\) to the induced endomorphism of \(\tilde{H}_*((B\vee \Sigma D)_p; \mathbb{F}_p) \cong \tilde{H}_*(\Sigma D_p; \mathbb{F}_p)\) \(\approx\) (see [15]) the \(\mathbb{F}_p\)-homology groups of the universal cover

\[
\alpha : [(B\vee \Sigma D)_p, (B\vee \Sigma D)_p]_B \to \text{End}_{\mathbb{F}_p} \{ \tilde{H}_*(\Sigma D_p; \mathbb{F}_p) \}.
\]

When \(B\) is a point, the same definition gives a homomorphism

\[
\alpha_0 : [\tilde{D}_p, \Sigma \tilde{D}_p] \to \text{End}_{\mathbb{F}_p} \{ \tilde{H}_*(\Sigma D_p; \mathbb{F}_p) \}.
\]

The homomorphisms \(\alpha\) and \(\alpha_0\) fit into a commutative diagram

\[
\begin{array}{ccc}
[(B\vee \Sigma D)_p, (B\vee \Sigma D)_p]_B & \xrightarrow{\alpha} & \text{End}_{\mathbb{F}_p} \{ \tilde{H}_*(\Sigma D_p; \mathbb{F}_p) \} \\
\prod_{\tau \in \pi} \tau \cdot [\tilde{D}_p, \Sigma \tilde{D}_p] & \downarrow{\beta} & \\
\sum_{\tau \in \pi} \tau \cdot [\tilde{D}_p, \Sigma \tilde{D}_p] & \xrightarrow{\text{End}_{\mathbb{F}_p} \{ \tilde{H}_*(\Sigma D_p; \mathbb{F}_p) \}} & \sum_{\tau \in \pi} \tau \cdot \text{End}_{\mathbb{F}_p} \{ \tilde{H}_*(\Sigma D_p; \mathbb{F}_p) \}.
\end{array}
\]

The topological radical \(N\) in the compact, Hausdorff space \([\tilde{D}_p, \Sigma \tilde{D}_p]\) is defined by

\[
N = \{ n \in [\tilde{D}_p, \Sigma \tilde{D}_p] \mid h \cdot n \text{ is topologically nilpotent for all } h \}.
\]

The radical \(R\) in the finite ring \(\text{End}_{\mathbb{F}_p} \{ \tilde{H}_*(\Sigma D_p; \mathbb{F}_p) \}\) is defined by

\[
R = \{ r \in \text{End}_{\mathbb{F}_p} \{ \tilde{H}_*(\Sigma D_p; \mathbb{F}_p) \} \mid \text{For any } u, \there exists } v \text{ such that } v(1 + uv) = 1 \}.
\]

Then (see section 3 in [14]), \(\alpha_0\) induces a homomorphism of rings

\[
\alpha'_0 : [\tilde{D}_p, \Sigma \tilde{D}_p]/N \to \left\{ \text{End}_{\mathbb{F}_p} \{ \tilde{H}_*(\Sigma D_p; \mathbb{F}_p) \} \right\}/R
\]

which is a monomorphism onto its image, which can be identified with \(\bigoplus_{i=1}^k M(n_i, \mathbb{F}_q)\) for some \(k\), where \(\mathbb{F}_q\) is a finite field of characteristic \(p\) with \(q\) elements.

Lemma 3.3. There is an isomorphism of rings induced by \(\alpha\).

\[
\alpha' : \sum_{\tau \in \pi} \tau \cdot ([\tilde{D}_p, \Sigma \tilde{D}_p]/N) \to \bigoplus_{i=1}^k M(n_i, \mathbb{F}_q, \pi).
\]

Proof. We identify \(\mathbb{F}_p \pi \otimes \text{End}_{\mathbb{F}_p} \{ \tilde{H}_*(\Sigma D_p; \mathbb{F}_p) \}\) with \(\text{End}_{\mathbb{F}_p} \{ \tilde{H}_*(\Sigma D_p; \mathbb{F}_p) \}\) so that the image \(\mathbb{F}_p \pi \otimes \left(\bigoplus_{i=1}^k M(n_i, \mathbb{F}_q) \right)\) of \(\alpha' = \sum_{\tau \in \pi} \tau \cdot \alpha_0\) becomes \(\bigoplus_{i=1}^k M(n_i, \mathbb{F}_q, \pi)\).
4. The proof of Theorem 1.1

Lemmas 3.2 and 3.3 imply that $\hat{P}_p^a \in [(B \vee \Sigma D)_p^a, (B \vee \Sigma D)_p^a]$ is mapped in homology to a direct sum of idempotents $\bigoplus_{i=1}^k P_i \in \bigoplus_{i=1}^k M(n_i, \mathbb{F}_q, \pi)$. We appeal to work of Bass [3]; each P_i defines an \mathbb{F}_q, π-homomorphism of $(\mathbb{F}_q, \pi)^{n_i}$ and so there exists an \mathbb{F}_q, π-isomorphism of $(\mathbb{F}_q, \pi)^{n_i}$, A_i say, such that

$$A_i P_i A_i^{-1} = \begin{bmatrix}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{bmatrix} \in M(n_i, \mathbb{F}_q).
$$

This matrix also lies in $M(n_i, \mathbb{F}_q)$. Let a ring homomorphism $\epsilon : \mathbb{F}_q, \pi \to \mathbb{F}_q$ be defined by $\epsilon(\tau) = 1$ and so $\epsilon(P_i)$ represents \hat{P}_p^a. We choose $\phi : (B \vee \Sigma D)_p^a \to (B \vee \Sigma D)_p^a$ lying in $\beta^{-1}(\Sigma_{\tau \in \pi} \tau \cdot [\Sigma \hat{D}_p \Sigma \hat{D}_p])$ and a corresponding $\phi' : \Sigma \hat{D}_p \to \Sigma \hat{D}_p$ representing the invertible matrices $\bigoplus_{i=1}^k A_i$ in $M(n_i, \mathbb{F}_q, \pi)$ and $\bigoplus_{i=1}^k \epsilon(A_i)$ in $M(n_i, \mathbb{F}_q)$ respectively. So ϕ and ϕ' are homotopy equivalences as they induce isomorphisms of homology groups of universal covers by Lemma 3.3. Referring back to (2.2), we have a commutative diagram

$$
\begin{array}{ccc}
\tilde{X}_p^a & \xrightarrow{\bar{a}_p^a} & (B \vee \Sigma D)_p^a \\
\downarrow & & \downarrow \phi \\
\tilde{C}_p & \xrightarrow{\bar{\sigma}_p^a} & \Sigma \hat{D}_p
\end{array}
\quad
\begin{array}{ccc}
(\bar{B} \vee \Sigma D)_p^a & \xrightarrow{\bar{\rho}_p^a} & \tilde{X}_p^a \\
\downarrow & & \downarrow \phi' \\
\tilde{C}_p & \xrightarrow{\bar{\rho}_p^a} & \Sigma \hat{D}_p
\end{array}
$$

The self map $\phi \circ \bar{P}_p^a \circ \phi^{-1}$ of $(B \vee \Sigma D)_p^a$ is a homotopy idempotent represented by the matrix $\bigoplus_{i=1}^k A_i P_i A_i^{-1} = \bigoplus_{i=1}^k \epsilon(A_i) \epsilon(P_i) \epsilon(A_i)^{-1}$ which also represents $\phi' \circ \bar{P}_p^a \circ \phi'^{-1}$. Therefore this matrix also represents $\tilde{s} \tilde{\sigma}_p^a$ where $s = 1_{B \vee (\phi' \circ \tilde{\sigma}_p^a)} : B \vee \tilde{C}_p \to B \vee \Sigma \hat{D}_p$ and $r = 1_{B \vee \Sigma \hat{D}_p} : B \vee \Sigma \hat{D}_p \to B \vee \tilde{C}_p$, and so $\tilde{s} \tilde{\sigma}_p^a \simeq 1_{B \vee \Sigma \hat{D}_p}$. We deduce

$$\beta(\phi \circ \bar{P}_p^a \circ \phi^{-1}) \simeq \beta((s \sigma) \circ p)_p^a \mod \sum_{\tau \in \pi} \tau \cdot N \text{ in } \sum_{\tau \in \pi} \tau \cdot [\Sigma \hat{D}_p \Sigma \hat{D}_p].$$

Let $f = \tilde{r}_p^a \circ \phi \circ \tilde{\sigma}_p^a : (B \vee C)_p^a \to \tilde{X}_p^a$ and $g = \tilde{r}_p^a \circ \phi \circ \tilde{\sigma}_p^a : \tilde{X}_p^a \to (B \vee C)_p^a$. Then

$$g \circ f = (\tilde{r}_p^a \circ \phi \circ \tilde{\sigma}_p^a) \circ (\tilde{r}_p^a \circ \phi \circ \tilde{\sigma}_p^a) = \tilde{r}_p^a \circ (\phi \circ \tilde{r}_p^a \circ \phi \circ \tilde{\sigma}_p^a) \circ (\tilde{r}_p^a \circ \phi \circ \tilde{\sigma}_p^a),$$

whose image by β is in $\sum_{\tau \in \pi} \tau - [\Sigma \hat{D}_p \Sigma \hat{D}_p]$ and is homotopic modulo $\sum_{\tau \in \pi} \tau \cdot N$ to that of

$$\tilde{r}_p^a \circ \sigma \circ \tilde{\sigma}_p^a = \tilde{r}_p^a \circ \sigma \circ \tilde{\sigma}_p^a \simeq (1_{B \vee \Sigma \hat{D}_p} \circ (1_{B \vee \Sigma \hat{D}_p} \circ \tilde{\sigma}_p^a).$$

Thus the self map $g \circ f$ of $(B \vee C)_p^a$ over B induces an isomorphisms of homology groups of the universal cover by Lemma 3.3. Therefore
\[(4.1) \quad g \circ f : (B \vee C)^a_p \to (B \vee C)^a_p \text{ is a homotopy equivalence.} \]

It is routine to check that

\[(4.2) \quad f \text{ and } g \text{ induce isomorphisms of the } \mathbb{F}_p\text{-homology groups of universal covers,} \]

\[(4.3) \quad f \text{ and } g \text{ induce isomorphisms of fundamental groups.} \]

We complete the proof by following [5]. Statements (4.1), (4.2) and (4.3) are similar to the conclusion of Lemma 1.6 of [5]. One then makes minor changes to the proof of Theorem 1.5 given there to deduce Theorem 1.1.

References

J. R. Hubbuck) Department of Mathematical Sciences, University of Aberdeen, Aberdeen AB24 3QY, United Kingdom

E-mail address: j.hubbuck@maths.abdn.ac.uk

(N. Iwase) Faculty of Mathematics, Kyushu University, Fukuoka 810-8560, Japan

E-mail address: iwasemath.kyushu-u.ac.jp