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§0 Introduction

A topological space E is called a generalized Whitehead space (a GW-space, for

short) if every generalized Whitehead product on E is trivial. As is clearly seen,

this notion is a stronger notion of a Whitehead space. Thus a GW-space is a simple

space.

The following three are well known:

(0.1) E is a GW-space if and only if the loop addition of ΩE is homotopy

commutative, i.e., µ ◦T ≅ µ where µ is the loop addition and T : X ×Y → Y ×X

is a switching map.

(0.2) E is a GW-space if and only if, for a space W , the homotopy set [ΣW,E] ∼=

[W, ΩE] is naturally an abelian group with respect to W .

(0.3) E is a GW-space if and only if for given maps f : ΣX → E and g : ΣY

→ E there is an ’axial’ map H : ΣX × ΣY → E with axes (f ,g).

Here we must designate a loop structure (a classifying space) of a loop space,

when we say something about the homotopy commutativity, because there exists

a space with two different loop structures: One is homotopy commutative but the

other is not.

As is well known, the loop addition of the loop space of an H-space is always

homotopy commutative. Thus an H-space is a GW-space by (0.1). In other words,

the notion of a GW-space is a weaker notion of an H-space. For a suspended space,

however, the two notions are equivalent. In particular, Sn is a GW-space (at 2) if
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and only if n = 1, 3 or 7, by [Ad1]. Kachi has studied in [K] GW-spaces with two

or three cells (other than the base point 0-cell). He showed that there are no GW-

spaces with two cells unless the space is contractible and restricted the possibile

type of a GW-space which is a total space of a spherical bundle over a sphere.

In this paper, we consider a three cell CW complex E whose cells are in dimen-

sions 0, q, n and m with 0 < q ≤ n ≤ m, for example, the total space of a spherical

bundle (or fibration) over a sphere which is studied in [K]. We call such a complex

a complex of type (q,n,m). The purpose of this paper is to show

Theorem. If a complex E of type (q,n,m) is a GW-space (at 2), then E has the

homotopy type of either a sphere of dimension 1, 3 or 7, or a Poincaré complex

of type (q,n,q + n) where {q, n} ⊆ {1, 3, 7} or (q,n) = (1,2), (2,4), (3,4) or (3,5).

Moreover E has the homotopy type (at 2) of one of the following spaces (See [H-R]

and [Z] for further details on Ekω).

Sq × Sn for {q, n} ⊆ {1, 3, 7},

L3(p, ℓ) for (q, n) = (1, 2),

CP (3) for (q, n) = (2, 4),

S7 for (q, n) = (3, 4),

SU(3) for (q, n) = (3, 5),

Ekω for (q, n) = (3, 7)

St for t ∈ {1, 3, 7}

where p ≥ 1, and ℓ is a unit of a group ring Zπ/(1 + τ + ... + τp−1), π = Z/pZτ

and k ̸≡ 2 mod 4.

Remarks. (1) Since π2(S1 ∪pι1 e2) ∼= Zπ/(1 + τ + ... + τp−1) (π = π1(S1 ∪pι1 e2)

= Z/pZτ), ℓ determines a 3-dimensional (general) lens space L3(p, ℓ) = S1 ∪pι1

e2 ∪ℓ e3. L3(p, ℓ) is an H-space if and only if p = 1 or 2. In each case, L3(p, ℓ) is

homotopy equivalent to S3 or RP 3, respectively. A standard lens space L3(p, τ) is

a GW-space (see Appendix). Moreover it is a Gottlieb space (see [I-Y]).

(2) CP (3) is a well-known example which is a Whitehead space but not an H-

space. Moreover it is a GW-space (see Appendix) but not a Gottlieb space.

(3) The manifold Ekω is determined by k ∈ Z/12Z. In particular, E0 = S3×S7

and E±ω
∼= Sp(2). It is known that Ekω is an H-space if and only if k ̸= 2 mod 4.
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(4) A T-space in the sense of Aguade [Ag] is a GW-space and also a Gottlieb

space. But we do not know the converse.

Let us propose the following

Conjecture 1. Every connected finite complex GW-space is a Poincaré complex.

Conjecture 2. The rational cohomology of a connected finite complex GW-space

is a tensor product of monogenic polynomial algebrae truncated at height greater

than 2 and exterior algebrae on odd dimensional generators.

Conjecture 3. If E is a connected finite GW-space such that H∗(E;Z) has no

even dimensional generators, then E is an H-space.

This paper is organized as follows. In §1, we study a space whose mod 2

cohomology is a truncated polynomial algebra of height 3 on two generators. In

§2, we study a GW-space whose rational cohomology is a polynomial algebra on

one generator truncated at height 4. In §§3-5, we study a GW-space whose integral

cohomology is an exterior algebra on two generators. In the last section, §6, we

prove the main theorem.

Throughout the paper, G stands for ΩE whose loop addition is denoted by µ.

The abbreviations H∗(X) and K∗(X) will be used for H∗(X;Z(2)) and K∗(X;Z(2)),

respectively. H̃∗ and K̃∗ denote the augmentation ideal. PH∗(X;R) is the sub-

module of primitive elements and QH∗(X;R) is the quotient module of indecom-

posables for any coefficient ring R. R{a, b, c, ...} means that it is an R-module with

generators a, b, c, ....

The first and second authors thank the Department of Mathematics of the Uni-

versity of Aberdeen for its hospitality and the third author does MSRI. The authors

thank Hideyuki Kachi and Yutaka Hemmi for suggestions on removing a technical

condition in the first draft of this paper and for discussions which helped them to

get their ideas in order. The first author thanks the third author and Hisami Iwase

for translating and typing the first draft of the manuscript.

§1 A stable GW-space

Suppose that there is a space X satisfying

(1.1) H∗(X;Z/2Z) ∼= Z/2[3][vq+1, vn+1]with q ≤ n
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where the right hand side is the polynomial algebra truncated at height 3 with 2

generators vq+1 and vn+1 of dimension q + 1 and n + 1, respectively.

Hence A = H∗(X;Z/2Z) is a truncated polynomial algebra over the mod 2

Steenrod algebra A(2). Then from Theorem 2.1 of [Th1] it follows that q = 2r − 1

and n = 2r + 2s − 1 (r− 1 ≥ s ≥ 0) or n = 2t − 1 (t ≥ r). Again from Theorem 1.4

of [Th1] it follows that

(1.2) QAi+j ⊆ Im Sqj ∩ Ker Sqj if
(i − 1

j

)
≡ 1 mod 2

where QA∗ indicates the quotient module of indecomposables.

Furthermore if one replaces P2E with our X in the argument given in §4 of [Th2]

and the result [Th2, 4.5] due to Browder with (1.2) in the above which does not

suppose the existence of an H-structure, one can obtain

Theorem 1.3. q = 1, 3, 7 or 15 and if q = 15 then X has 2-torsion.

If X has 2-torsion in its homology, then n is even and n = q + 1 and hence vn+1

= Sq1vq+1. In particular, if q = 15, then n = 16 and Sq1v16 = v17.

If X has no 2-torsion in its homology, then one can define John Hubbuck’s

operations as follows: We have

H∗(X) ∼= Z
[3]
(2)[v̄(q+1)/2, v̄(n+1)/2],

K∗(X) ∼= Z
[3]
(2)[w(q+1)/2, w(n+1)/2].

Hence there is a ring isomorphism J : H∗(X) → K∗(X) given by

J(v̄i) = wi, for i = (q + 1)/2 and (n + 1)/2.

Now the Adams operation ψk decomposes through Hubbuck operations Rh
J(k)

(see [Hu] for details) for an element xn ∈ Hn(X), as follows:

J−1ψkJ(xn) =
∑∞

i=0

kn

2i
Rh

J(k)(xn)

where Rh
J(k)(xn) increases dimension by h. The multiplicativity of Adams opera-

tions is expressed by using Hubbuck operations in the following ”Cartan formula”:

Rh
J(k)(v · v′) =

∑
i+j=h

Ri
J(k)(v) · Rj

J(k)(v′).

Set Rh = 1
2i R

h
J(3) and Ph = Rh

J(2) so that the reduction mod 2 of Ph is Sq2h.
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The relation ψ3ψ2 = ψ2ψ3 of Adams operations is expressed by using the Hub-

buck operations as follows:

(1.4) (3n − 1)Pn +
∑n

i=1
3n−i2iRiPn−i =

∑n

i=1
22iPn−iRi.

Furthermore, the relation ψ2(xn) ≡ x2
n mod 2 is interpreted as

(1.5)
Pn+j(xn) ≡ 0 mod 2j+1 and

Pn(xn) ≡ x2
n mod 2 in H∗(X).

Note that the above formula is independent of the choice of the splitting J .

Following (1.3), we check the cases q = 15, 7, 3 and 1, one by one.

Consider the case q = 15. By (1.3) one has n = 16 and Sq1v16 = v17. By (1.2)

one has v17 ∈ Im Sq8, since
(
9−1
8

)
≡ 1 mod 2, but it contradicts H9(X;Z/2Z) =

0. Thus q ̸= 15.

Consider the case q = 7 and n = 7+2s with s ≤ 2. If s = 0, then Sq1v8 = v9. By

(1.2) v9 ∈ Im Sq4, since
(
5−1
4

)
≡ 1 mod 2, but it contradicts H5(X;Z/2Z) = 0.

If s = 1, then n = 9 and v10 ∈ Im Sq4, since
(
6−1
4

)
≡ 1 mod 2; but it contradicts

H6(X;Z/2Z) = 0. Thus s = 2 and then n = 11 and v12 ∈ Im Sq4, since
(
8−1
4

)
≡

1 mod 2. We have

H∗(X) ∼= Z
[3]
(2)[v̄4, v̄6],

K∗(X) ∼= Z
[3]
(2)[w4, w6],

since the homology of X is free of 2 torsion.

Thus P odd = Rodd = 0 and P 2v̄4 ≡ v̄6 mod 2. Then it follows from (1.4) that

R2 ≡ 2P 2 mod 4 and P 6R2 ≡ R4P 4 mod 4. Hence by (1.5) we obtain

2v̄2
6 ≡ 2P 6(v̄6) ≡ 2P 6P 2(v̄4) ≡ P 6R2(v̄4) ≡ R4P 4(v̄4) mod 4.

Also from (1.5) it follows that P 4(v̄4) ≡ λv̄2
4 mod 4 for some odd integer λ.

Hence by the equation R2 ≡ 2P 2 mod 4 with the Cartan formula, one obtains

0 ̸≡ 2v̄2
6 ≡ λR4(v̄2

4) ≡ 2λv̄4R
4(v̄4) mod 4.

It is a contradiction, since the right hand side does not contribute 2v̄2
6 .

Thus n ̸= 7 + 2s with s ≤ 2.
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Consider the case q = 7 and n = 2t − 1 with t ≥ 3. If t = 3, then (q,n) = (7,7).

If t = 4, then n = 15. We have

H∗(X) ∼= Z
[3]
(2)[v̄4, v̄8],

K∗(X) ∼= Z
[3]
(2)[w4, w8].

Thus P odd = P 2·odd = 0. Then by (1.4) one obtains that

(1.6) 2P 8 ≡ P 4P 4 mod 4 in H∗(X).

By (1.5), one has that

P 4(v̄8) = αv̄4v̄8,

P 8(v̄8) ≡ v̄2
8 mod 2,

P 4(v̄4) ≡ v̄2
4 mod 2,

and hence

P 4(v̄4) = λv̄2
4 + 2βv̄8,

for some α, β and λ ∈ Z(2), where λ ≡ 1 mod 2.

Then from (1.6), it follows that

2v̄2
8 ≡ 2P 8(v̄8) ≡ P 4P 4(v̄8) ≡ αP 4(v̄4v̄8) mod 4

≡ αP 4(v̄4)v̄8 ≡ 2αβv̄2
8 mod 4.

Thus αβ ≡ 1 mod 2. By using (1.5), however, it follows from (1.6) that

0 ≡ 2P 8(v̄4) ≡ P 4P 4(v̄4) ≡ P 4(λv̄2
4 + 2βv̄8) mod 4

≡ 2λv̄4P
4(v̄4) + 2βP 4(v̄8) ≡ 2βP 4(v̄8) ≡ 2αβv̄4v̄8 mod 4,

which contradicts αβ ≡ 1 mod 2. Hence t ̸= 4. If t ≥ 5, we have

H∗(X;Z/2Z) ∼= Z/2[3][v̄4, v̄2t−1 ].

Then from the main result of [Ad1], it follows that

Sq2t

≡
∑t−1

i=0
Sq2i

Ψi
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modulo the total indeterminacy which is in the image of Sqi with 2t > i > 0. Now

the formula gives a contradiction. In fact, the left hand side gives Sq2t

v2t ̸≡ 0

mod 2 while the right hand side and the total indeterminacy are trivial, since

H2t+1−2i

(X) = 0for i ≤ t − 1.

It is a contradiction.

Thus (q,n) = (7,7), provided that q = 7.

Consider the case q = 3 and n = 3 + 2s with s ≤ 1. If s = 0, then n = 4

and Sq1v4 = v5. We have v5 ∈ Im Sq2 by (1.2), since
(
3−1
2

)
≡ 1 mod 2. This

contradicts H2(X;Z/2Z) = 0. Hence s = 1 and then n = 5 and (q,n) = (3,5).

Moreover we have v6 ∈ Im Sq2 by (1.2), since
(
4−1
2

)
≡ 1 mod 2.

Consider the case q = 3 and n = 2t − 1 with t ≥ 2. If t = 2, then (q,n) = (3,3).

If t = 3, then (q,n) = (3,7). If t ≥ 4, then we will be led to a contradiction as in

the case when q = 7 and n = 2t − 1 with t ≥ 5.

Thus (q,n) = (3,3), (3,5) or (3,7), provided that q = 3.

Consider the case q = 1 and n = 1 + 2s with s ≤ 0. We have s = 0 and hence

(q,n) = (1,2). Moreover by (1.3), Sq1v2 = v3.

Consider the case q = 1 and n = 2t − 1 with t ≥ 1. If t = 1, then (q,n) = (1,1).

If t = 2, then (q,n) = (1,3). If t = 3, then (q,n) = (1,7). If t ≥ 4, then we will be

led to a contradiction as in the case (q = 7 and n = 2t − 1 with t ≥ 5).

Thus (q,n) = (1,1), (1,2), (1,3) or (1,7), provided that q = 1.

Therefore we have shown

Proposition 1.7. If there is a space X such that

H∗(X;Z/2Z) ∼= Z/2[3][vq+1, vn+1]

with q ≤ n, then {q, n} ⊆ {1, 3, 7} or (q,n) = (1,2) or (3,5). Moreover if (q,n) =

(1,2), then Sq1v2 = v3; if (q,n) = (3,5), then Sq2v4 = v6.

To apply this, we introduce the following notion.

Definition 1.8. Let E be a complex of type (q,n,m). E is said to be stable if n <

2q.

We have
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Corollary 1.9. Let E be a Poincaré complex of type (q,n,q + n). If E is a stable

GW-space (at 2), then {q, n} ⊆ {1, 3, 7} or (q,n) = (1,2), (3,4) or (3,5). In case

(q,n) = (3,4), E has the homotopy type of S7 (at 2).

Proof. By the hypothesis, q > 1 or α = 0. Let Q be the subspace Sq ∪ en of

E. Then, from the hypothesis, it follows that Q is desuspendable and the mod

2 cohomology of E is an exterior algebra except the case when n = q + 1 and α =

kιq, k odd.

(Case 1: n = q +1 and α = kιq, k odd). E has the homotopy type of a (2q +1)-

sphere at 2. Hence by Adams’ theorem [Ad1], q = 1 or 3. Thus (q,n) = (1,2) or

(3,4).

(Case 2: The mod 2 cohomology of E is an exterior algebra). There exists an

axial map µ : Q×Q → E with axes (j,j) where j is the inclusion Q ↪→ E. Let Q(2)

be the mapping cone of the Hopf construction of µ. From a direct computation

using [Th3], we obtain that the mod 2 cohomology of Q(2) is the polynomial

algebra truncated at height 3 on the generators in dimensions q + 1 and n + 1.

Hence {q, n} ⊂ {1, 3, 7} or (q,n) = (3,5).

In case (q,n) = (3,4), one may assume that there is an odd prime p such that

k = 0 mod p. Then the mod p cohomology of E is again an exterior algebra.

Hence a similar construction of Q(2) can be performed and one obtains that there

exists an element of dimension 5 in its mod p cohomology whose square is non-

zero. It is a contradiction, since a square of any odd dimensional element of mod p

cohomology must be 0 when p odd. This implies the corollary.

§2 A GW-space whose cohomology is a truncated polynomial algebra

Let E be a Poincaré complex of type (q,2q,3q) such that H∗(E;Q) ∼= Q[xq]/(x4
q).

So we have

E = Sq ∪α e2q ∪ e3q, α ∈ π2q−1(Sq).

In this section, we will show

Proposition 2.1. If, moreover, E is a GW-space (at 2), then q = 2 and H∗(E;Z(2))

∼= Z(2)[x2]/(x4
2).

The remainder of this section is devoted to proving the proposition.

By the assumption on the cohomology ring, q is even ≥ 2. It is easy to see that

H∗(E;Z(2)) ∼= Z(2){xq, x2q, x3q},
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where x2
q = ax2q and xqx2q = x3q with a ∈ Z(2).

Since E is a GW-space, the Whitehead product of the inclusion i : Sq ↪→ E

vanishes, and hence i∗[ιq, ιq] = 0 where ιq ∈ πq(Sq) is the class of the identity. Let

us denote by î : F → Sq the homotopy fibre of i. Then there is a map f : S2q−1

→ F such that î ◦ f ≅ [ιq, ιq]. One obtains

F ≅2 S2q−1 ∪ (higher dimensional cells)

so that î |S2q−1 = α. One may compress f to the (2q − 1)-dimensional skeleton

S2q−1 of F , one has [ιq, ιq] = α ◦ f , where f = λι2q−1 : S2q−1 → S2q−1 with λ ∈

Z:
S2q−1 [ιq,ιq ]−−−−→ Sq

f

y ιq

y
S2q−1 α−−−−→ Sq

Then it follows that [ιq,ιq] = α ◦ f = λα. Taking the Hopf invariants of the both

hand sides, one has 2 = λH(α), whence a = ±H(α) = ±1 or ±2.

If H(α) = ±1, then q = 2, 4 or 8 by [Ad1] and we obtain that [ιq,ιq] is divisible

by 2. According to [To], this holds only when q = 2 and then we have H∗(E) ∼=

Z(2)[x2]/(x4
2). Thus the following lemma implies Proposition 2.1:

Lemma 2.2. H(α) = ±1 and hence q = 2, 4 or 8.

The remainder of this section is devoted to prove the lemma.

Suppose H(α) = ±2 so that a = ±2, α = [ιq,ιq] and Σα = 0. This assump-

tion leads us to a contradiction. Now the 2q-skeleton of G has the following cell

decomposition:

G[2q] ≅2 Sq−1 ∪[ιq−1,ιq−1] e2q−2 ∪ e2q−1.

Thus putting Q = Σ(G[2q]), we have

Q ≅2 (Sq ∨ S2q−1) ∪ᾱ e2q,

where ᾱ is in π2q−1(Sq ∨ S2q−1).

Let l denotes the composite map of the canonical inclusion Q → ΣG and the

evaluation λ1 : ΣG = ΣΩE → E. To proceed, we need to show the following
9



Proposition 2.3. ᾱ corresponds to (α,±2ι2q−1) under the isomorphism π2q−1(Sq∨

S2q−1) ∼= π2q−1(Sq) ⊕ π2q−1(S2q−1).

Proof. By calculating the cohomology Serre spectral sequence associated with

the path fibration G ↪→ PE → E, one obtains

Hq−1(G) ∼= Z(2),

Hq−1+j(G) = 0, for 1 ≤ j ≤ q − 1,

H2q−1(G) ∼= Z/2Z.

Hence the composite map p2 ◦ ᾱ is homotopic to ±2ι2q−1, where pt indicates

the projection to the t-th factor. Moreover ℓ induces the following commutative

diagram for some integer λ:

S2q−1 ᾱ−−−−→ Sq ∨ S2q−1 −−−−→ Q

λι2q−1

y y{ιq,∗}=p1

yℓ

S2q−1 α−−−−→ Sq −−−−→ E.

Here both the q−1 and the 2q−1 dimensional generators in H∗(G) are transgressive

and therefore ℓ induces a surjection of cohomology groups in dimensions ≤ 2q.

Hence λ = 1 and p1 ◦ ᾱ is homotopic to α.

This implies Proposition 2.3.

By Proposition 2.3 one obtains that l∗ : Hj(E;Z/2Z) → Hj(Q;Z/2Z) is an

isomorphism for j = q and 2q. So one may assume that l∗xj = yj for j = q and

2q, and that

H∗(Q;Z/2Z) ∼= Z/2Z{yq, y2q−1, y2q}.

Let us recall that Q is a suspended space and E is a GW-space. Hence by (0.3)

there exists an axial map

µ : Q × Q → E

with axes (l,l). So the Hopf construction of µ gives rise to a map

H(µ) : ΣQ ∧ Q ≅ Q ∗ Q → ΣE

so that

H(µ)∗(Σ∗yq) = 0,

H(µ)∗(Σ∗y2q) = Σ∗yq ⊗ yq,

H(µ)∗(Σ∗y3q) = Σ∗yq ⊗ y2q + Σ∗y2q ⊗ yq.
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One can see that ΣQ satisfies

ΣQ ≅2 (Sq+1 ∨ S2q) ∪Σᾱ e2q+1.

By combining Proposition 2.3 with Σα = 0, one obtains that Σᾱ corresponds to

(0,±2ι2q) under the isomorphism π2q(Sq+1 ∨ S2q) ∼= π2q(Sq+1) ⊕ π2q(S2q). Hence

we obtain

ΣQ ≅2 ΣSq ∨ ΣM2q,

where M2q = S2q−1 ∪±2ι e2q. Thus we obtain

ΣQ ∧ Q ≅2 Σ(Sq ∨ M2q) ∧ (Sq ∨ M2q),

which contains Σ(M2q ∧ M2q). We denote by H̄(µ) the restriction of H(µ) to the

subcomplex Σ(M2q ∧M2q) and by Q(2) the mapping cone of H̄(µ). Then we have

an exact sequence associated with it:

· · · → H̃∗−1(Σ(M2q ∧ M2q);Z/2Z) δ−→ H̃∗(Q(2);Z/2Z) → H̃∗(ΣE;Z/2Z) → · · ·

For dimensional reasons, the sequence splits and we have

H̃∗(Q(2);Z/2Z) ∼= Z/2{vq+1, v2q+1, v3q+1} ⊕ Im δ,

Im δ ∼= H̃∗(Σ(M2q ∧ M2q); Z/2Z)

∼= Z/2{y2q−1 ⊗ y2q−1, y2q−1 ⊗ y2q, y2q ⊗ y2q−1, y2q ⊗ y2q}.

Then from [Th3] it follows that

v2
2q+1 = δΣ∗(y2q ⊗ y2q) ̸= 0

and hence 0 ̸= Sq2q+1v2q+1. Let us recall the Adem relation

SqqSqq+1 = Sq2q+1 +
(

q − 1
q − 2

)
Sq2qSq1 + ... +

( q
2

0

)
Sq3q/2+1Sqq/2,

for q even. For j with 1 ≤ j ≤ q/2, we have deg Sqjv2q+1 = 2q+j+1 < 3q+1 < 4q.

Thus we obtain, for dimensional reasons,

Sqjv2q+1 = 0for 1 ≤ j ≤ q/2.
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Hence Sqq+1v2q+1 ̸= 0. The Adem relation Sqq+1 = Sq1Sqq (q even) implies that

Sqqv2q+1 ̸= 0 and therefore Sqqv2q+1 = v3q+1. Hence Sq1v3q+1 ̸= 0 where deg

Sq1v3q+1 = 3q + 2 ≤ 4q. Thus 3q + 2 = 4q and hence q = 2.

Even when q = 2, one has

Sq1v3q+1 = δΣ∗(y2q−1 ⊗ y2q−1)

and hence

0 = Sq1Sq1v3q+1

= δΣ∗Sq1(y2q−1 ⊗ y2q−1)

= δΣ∗(y2q ⊗ y2q−1 + y2q−1 ⊗ y2q) ̸= 0,

which is a contradiction. This implies that Σα ̸= 0. Thus H(α) = ±1 and hence q

= 2, 4 or 8.

This implies Lemma 2.2 and it completes the proof of Proposition 2.1.

§3 A GW-space whose cohomology is an exterior algebra

Throughout the section let E be a (non-stable) Poincaré complex of type (q,n,q+

n). Let us assume that E is a GW-space at 2 (or at p for p odd) such that

H∗(E;R) = ∧(xq, xn), 1 ≤ q < n

where the coefficient ring R is Z(2) (or Z/p, respectively).

We adopt the abbreviation H∗(E) for H∗(E;R) if it does not cause a confusion.

If q = 1 and R = Z(2), then the universal covering space Ẽ of E has the homotopy

type (at 2) of Sn, which inherits the GW-space structure. Let us recall that a sphere

is a GW-space (at 2) if and only if it is an H-space. Hence n = 3 or 7.

We will prove that both q and n are odd integers, when q > 1.

Let q > 1. First we show

Proposition 3.1. q is odd.

Consider the cohomology Serre spectral sequence with R coefficient associated

with the path fibration G ↪→ PE → E. Since the element xq ∈ Hq(E) is in the

image of the transgression, we have 0 ̸= σ∗xq ∈ Hq−1(G) ∼= R, where σ∗ : H∗(E) →

H∗−1(G) is the cohomology suspension. So uq−1 = σ∗xq is transgressive, and hence
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is primitive. Thus the element Σ∗uq−1 ∈ Hq(ΣG) is extendable to the projective

plane P 2G and the extension is given by the image of xq under the induced map of

the composite map

λ2 : P 2G ↪→ P∞G ≅ E

since σ∗xq is represented by a loop map whose delooping is given by xq. Hence we

obtain

x̄2
q = 0in H∗(P 2G),

where the element x̄2
q is given by x̄2

q = ± δ2Σ∗(uq−1⊗uq−1) and δ2 is the connecting

homomorphism of Mayer-Vietoris exact sequence given in [Th2]. So it follows from

the triviality of x̄2
q that uq−1 ⊗ uq−1 is in the image of µ̄∗ = µ∗ − p∗1 − p∗2 :

µ̄∗ = µ∗ − p∗1 − p∗2 : H̃∗(G) → H̃∗(G) ⊗ H̃∗(G).

So by (0.1) we obtain that the element uq−1 ⊗ uq−1 is T ∗-invariant where T is

the switching map. If q is even, then T ∗(uq−1 ⊗ uq−1) = −uq−1 ⊗ uq−1. Hence

uq−1 ⊗ uq−1 is not T ∗-invariant, since it is a generator of H̃2(q−1)(G ∧ G) ∼=

H̃q−1(G)⊗ H̃q−1(G) which has no 2-torsion. Thus q has to be odd and this implies

the proposition.

Next we show

Proposition 3.2. n is odd.

Suppose that n is even. Then n−1 (≥ q−1) is odd and is not divisible by q−1,

because q − 1 is known to be even. Let us recall the following exact sequence for

bicommutative biassociative Hopf algebra over Z/p the prime field of characteristic

p:

0 → P (Z/p(ξpH
∗(G;Z/p))) → PH∗(G;Z/p) → QH∗(G;Z/p).

Then by the Serre spectral sequence associated with the fibration G = ΩE → PE

→ E, it follows that un−1 = σ∗xn generates Hn−1(G) ∼= R and hence is primitive

indecomposable. As in the proof of (3.1), the element Σ∗un−1 is extendable over

P 2G. Denoting the extended element by x̄n, we have

x̄2
n = 0in H∗(P 2G),

since x̄2
n = λ∗

2(xn).
13



It means that the element un−1 ⊗ un−1 is in the image of µ̄∗. On the other

hand, un−1 ⊗ un−1 generates the direct summand H̃n−1(G) ⊗ H̃n−1(G) ∼= R in

H̃2n−2(G ∧ G), which cannot be in the image of µ̄∗. It implies that un−1 ⊗ un−1

̸∈ Im µ̄∗. It is a contradiction. This implies that n is odd and this implies the

proposition.

Thus we have shown

Proposition 3.3. (1) Let q = 1 < n and R = Z(2). If E is a GW-space at 2, then

n = 3 or 7. (2) Let 1 < q < n and a ring R be Z(2) (or Z/pZ for p odd). If E is a

GW-space at 2 (or at p, respectively) with H∗(E;R) = ∧(xq,xn), then both q and

n are odd.

In the remainder of this section, assuming q > 1 and R = Z(2), we study further

on the dimensions q and n using the cohomology structure of G. We remark that

q + 1 < n, since q and n are odd.

Now we choose an inclusion map j : Sq → E such that j∗xq is a generator of

Hq(Sq) ∼= Z(2). Recall that we do not assume the existence of a fibration Sq ↪→

E → Sn. Let F be the homotopy fibre of j. Thus F → Sq → E and ΩSq ↪→

G → F are Serre fibrations. Then by the Serre spectral sequence associated with

F → Sq → E one sees

H∗(F ) ∼= H∗(ΩSn)

which is concentrated in even dimensions. Hence the Serre spectral sequence asso-

ciated with the fibration ΩSq ↪→ G → F collapses and we obtain

(3.4) H∗(G) ∼= H∗(ΩSq) ⊗ H∗(ΩSn)as modules.

In particular

(3.4’) H∗(G) ∼= H∗(ΩSq)for ∗ < n − 1.

Here a system of ring generators of H∗(ΩSq) is given by

(3.5) uq−1 = γ1uq−1, γ2uq−1, ..., γjuq−1, ...,

where j ≥ 1 and uq−1 = σ∗xq.
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One obtains from (3.4) the following extension of bicommutative biassociative

Hopf algebrae:

Z(2) → H∗(ΩSn) → H∗(G) → H∗(ΩSq) → Z(2)

The following is a commutative diagram of exact sequences:

(3.7)
0y

0 −−−−→ PH∗(ΩSn;Z/2Z) −−−−→ QH∗(ΩSn;Z/2Z)y y
0 −−−−→ P (Z/2(ξ2H

∗(G;Z/2Z))) −−−−→ PH∗(G;Z/2Z) −−−−→ QH∗(G;Z/2Z)y y
0 −−−−→ PH∗(ΩSq;Z/2Z) −−−−→ QH∗(ΩSq;Z/2Z)y

0

where PH∗(ΩSn;Z/2Z) ∼= Z/2Zũn−1 (and PH∗(ΩSq;Z/2Z) ∼= Z/2Zũq−1, resp.)

in which the element ũt−1 is the modulo 2 reduction of ut−1 for t = q and n.

Proposition 3.6. The first non-trivial relation in the algebra structure of H∗(G)

can occur in dimension n − 1 when n − 1 = 2(q − 1). The possible relation is

ũn−1 = ũ2
q−1.

Proof. It follows from (3.4’) and (3.5) that ũq−1 is primitive and hence PH∗(G;Z/2Z)

is generated by ũn−1 and ũq−1. By (3.5), the first non-trivial relation in the algebra

structure can occur in dimension n−1 only when n−1 = 2j(q−1) for some integer

j > 0. Then the possible relation is

ũn−1 = (γ2j ũq−1)2.

Since ũq−1 is the only primitive element in H∗(Sq;Z/2Z), we obtain that j must

be 1. This implies the proposition.

We show the following
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Theorem 3.8. (i) q ≡ 3 mod 4,

(ii) If n ≡ 1 mod 4, then x̃n = Sq2 x̃q and (q,n) = (3,5),

where x̃t is the modulo 2 reduction of xt for t = q and n.

The remainder of this section is devoted to proving this theorem. First in the

general situation, we will construct a space and compute its cohomology ring. The

cell structure of the n-skeleton of G is as follows:

G[n] ≅2 (ΩSq)[n−1] ∪ en−1.

Thus putting Q = Σ(G[n]), we have

Q ≅2 (
[n−1
q−1]∨
i=1

Si(q−1)+1) ∪ en

The module QH∗(E) is mapped injectively into H∗(Q) by the homomorphism

induced from the composite map ℓ : Q → E of the canonical inclusion Q ⊂ ΣG

and the evaluation λ1 : ΣG ⊂ P∞G ≅ E.

In fact, as was already seen, PH∗(G) ∼= Z(2){uq−1, un−1} with ui transgressive,

and ℓ∗ gives rise to the cohomology suspension. Thus we obtain

Im (Σℓ)∗ ∼= Z(2){vq+1, vn+1}

which is a direct summand of H̃∗(ΣQ). Hence we have

H̃∗(ΣQ) ∼= Im (Σℓ)∗ ⊕ D,

where D is the module generated by elements γiuq−1 with i ≥ 2. Since Q is a

suspension space, there exists an axial map

µ : Q × Q → E

with axes (ℓ,ℓ). So the Hopf construction of µ gives rise to a map

H(µ) : ΣQ ∧ Q ≅ Q ∗ Q → ΣE.

We denote by Q(2) the mapping cone of H(µ), and then we have a cofibre sequence

(3.9) ΣE
j−→ Q(2) −→ ΣQ ∧ ΣQ.
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The elements xq, xn ∈ H̃∗(E) are primitive with respect to µ in the sense of

Thomas, since H̃odd(Q ∧ Q) = 0. Hence we have

µ̃∗(xi) = 0for i = q,n,

µ̃∗(xqxn) = ℓ∗xq ⊗ ℓ∗xn − ℓ∗xn ⊗ ℓ∗xq.

So the image of j∗ induced by the inclusion j : ΣE ↪→ Q(2) are given by

Im j∗ ∼= Z(2){Σ∗xq,Σ∗xn}.

Also the image and the kernel of the homomorphism δ induced from the collapsing

map Q(2) → ΣQ ∧ ΣQ ∼= Σ4(G[n] ∧ G[n]) is given by

(3.10)
Ker δ ∼= (Σ4)∗Z(2){uq−1 ⊗ un−1 − un−1 ⊗ uq−1},

Im δ ∼= δ(Σ4)∗Z(2){ui ⊗ uj ; i, j = q − 1 or n − 1} ⊕ S2

where S2
∼= δ(D ⊗ H̃∗(ΣQ)) ⊕ δ(H̃∗(ΣQ)⊗D). Therefore by (3.9), we obtain the

following short exact sequence:

0 → Im δ → H̃∗(Q(2)) → Z(2){Σ∗xq,Σ∗xn} → 0.

Thus denoting by vi+1 the extension of Σ∗xi over Q(2), i = q and n, we obtain

the following ring isomorphisms by virtue of [Th3]:

(3.11)
H∗(Q(2)) ∼= Z

[3]
(2)[vq+1, vn+1] ⊕ S2,

H̃∗(Q(2)) · S2 = 0,

where vi+1 · vj+1 = δ(Σ4)∗(ui−1 ⊗ uj−1).

We remark that these results are independent of the choice of vq+1 and vn+1.

Proposition 3.12. (1) Q(2) has no torsion and hence Sq1H̃∗(Q(2);Z/2Z) = 0.

(2) A(2)(Z/2{ṽq+1, ṽn+1}) ⊂ Z/2[3][ṽq+1, ṽn+1] ⊕ (S2 ⊗ Z/2Z), where ṽt is the

modulo 2 reduction of vt for t = q + 1 and n + 1.

(3) θ(δ ⊗ Z/2Z) = (δ ⊗ Z/2Z)θ, for any θ ∈ A(2).

The following two propositions imply Theorem 3.8.
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Proposition 3.13. If n ≡ 1 mod 4, then x̃n = Sq2x̃q and (q,n) = (3,5).

Proof. By (3.11), H∗(Q(2);Z/2Z) has a direct summand Z/2[3][ṽq+1, ṽn+1],

where ṽt is the modulo 2 reduction of vt for t = q + 1 and n + 1. If n = 4k + 1 for

some k ≥ 1, we have

0 ̸= ṽ2
n+1 = Sq4k+2ṽn+1.

Since Sq4k+2 = Sq2Sq4k + Sq1Sq4kSq1, one obtains that ṽ2
n+1 ∈ Im Sq2, since Sq1

= 0 on H∗(Q(2);Z/2Z). Then it follows that ṽ2
n+1 = δ(Σ4)∗(ũn−1 ⊗ ũn−1) ∈ Sq2

Im δ, where ũt is the modulo 2 reduction of ut, t = q+1 and n+1, for dimensional

reasons. Hence one obtains that ũn−1 ⊗ ũn−1 ∈ Im Sq2 in H̃∗(G[n] ∧ G[n];Z/2Z)

modulo the kernel of δ ⊗ Z/2.

By (3.10), we have Z/2{ũn−1 ⊗ ũn−1} ∩ Ker δ = 0, which implies that ũn−1 ⊗

ũn−1 ∈ Im Sq2. Thus we obtain that ũn−1 ∈ Im Sq2 in H̃∗(G[n];Z/2Z).

There are two cases: ũn−1 is indecomposable or not.

If ũn−1 is decomposable, one obtains ũn−1 = ũ2
q−1 by Proposition 3.6, and hence

(ũq−1)2 ∈ Im Sq2. Then for dimensional reasons, then (ũq−1)2 = Sq2ũq−1 and

hence q − 1 = 2. This implies that (q,n) = (3,5) and ũn−1 = Sq2ũq−1, and hence

x̃n = Sq2x̃q.

If ũn−1 is indecomposable, then there exists a non-negative integer r ≥ 0 such

that Sq2γ2r ũq−1 = ũn−1 with 2 < 2r(q − 1). Comparing the dimensions of both

hand sides, one obtains 2 + 2r(q − 1) = n − 1 = 4m, whence one has r = 0, since

q − 1 is even by Proposition 3.3 (2). This implies that Sq2ũq−1 = ũn−1 ̸= 0 and

hence n = q + 2 > 4 and Q ≅2 Sq ∪ en. Then the mod 2 cohomology of Q(2)

satisfies the condition given in §1. Hence from Corollary 1.9 it follows that (q,n) =

(q,q + 2) have to be (3,5) which contradicts 2 < 2r(q − 1).

This implies the proposition.

Proposition 3.14. q ≡ 3 mod 4.

Proof. We consider H̃∗(Q(2);Z/2Z) which is given in the proof of the above

proposition. We have ṽ2
q+1 ̸= 0 in H̃∗(Q(2);Z/2Z).

Assume that q ≡ 1 mod 4. Then one has ṽ2
q+1 ∈ Im Sq2. Also deg ṽ2

q+1−2 = 2q

≡ 2 mod 4. If n ≡ 1 mod 4, then q = 3 ̸≡ 1 mod 4, which is a contradiction. So

n ≡ 3 mod 4, whence 2q ̸= n+1. Thus, one has that ṽ2
q+1 ∈ Sq2 Im δ. By a similar
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argument to that given in the proof of Proposition 3.13, we obtain that ũq−1⊗ ũq−1

∈ Im Sq2 in H̃∗(G[n] ∧ G[n];Z/2Z). This implies that ũq−1 ⊗ ũq−1 = Sq2ũn−1 in

H̃∗(G[n]), since G[n] is (q − 2) connected. Then by comparing dimensions, we have

2(q − 1) = (n − 1) + 2 and hence n = 2q − 3 < 2q. Hence from Corollary 1.9 it

follows that (q,n) = (q,2q − 3) have to be (3,5) which contradicts q ≡ 1 mod 4.

This implies the proposition.

§4 Non-stable GW-spaces

Let E be a GW-space Poincaré complex of type (q,n,q+n) such that H̃∗(E;Z/2Z)

= ∧(xq, xn) with 1 ≤ q < n. E has the homotopy type of Sq ∪α en ∪β en+q where

α ∈ πn−1(Sq) and β ∈ πn−q−1(Sq ∪ Sn).

Definition 4.1. E ≅ Sq ∪α en ∪β eq+n is said to be non-stable if 2q ≤ n. In other

words, α is not in the stable range.

By Proposition 3.3 (2), we have that both q and n are odd integers. So 2q < n,

if E is non-stable.

We will show

Theorem 4.2. If the above E is a non-stable GW-space, then (q,n) is one of the

following: (1,3), (1,7), (3,7), (3,11) or (7,15).

The remainder of this section is devoted to proving Theorem 4.2.

Let j : Sq → E be the inclusion of the bottom sphere Sq. Consider the map

{j, j} : Sq ∨ Sq → E. We have that the Whitehead product [j, j] is homotopic to

zero, as E is a GW-space. Hence the map {j, j} is extendable over Sq × Sq → E.

By the assumption that 2q < n, the image of µ is compressible into Sq so that Sq

is an H-space, whence q = 1, 3 or 7 by Adams’ theorem [Ad1].

[The case q = 1] The universal covering space Ẽ of E is easily seen to be a

GW-space having the same homotopy type as Sn, which then becomes an H-space.

Again by the theorem of [Ad1], n = 1, 3 or 7. Omitting the case n = 1, we have

(q,n) = (1,3) or (1,7).

[The case q = 3 or 7] Put ε = 1 or 3 according as q = 3 or 7, i.e. ε = (q − 1)/2.

If n ≡ 1 mod 4, we obtain, by Theorem 3.8, that (q,n) = (3,5), which contradicts

n > 2q. Hence n ≡ 3 mod 4. If the element un−1 = σ∗xn in PHn−1(E;Z/2Z) is

decomposable in H∗(G;Z/2Z), then by the commutativity of 3.7 it is in the image
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of ξ2 : PH∗(G;Z/2Z) → PH∗(G;Z/2Z). It is impossible by the fact that n− 1 ≡

2 mod 4. Thus un−1 is indecomposable in H∗(G;Z/2Z).

Proposition 4.3. If Sq2 ̸= 0 on H∗(G;Z/2Z), then n = 2i+2ε + 3 for some i ≥

0.

Proof. Put uq−1 = σ∗xq and un−1 = σ∗xn. Let ω ∈ H∗(G;Z/2Z) be an element

of the lowest dimension such that Sq2ω ̸= 0. Then Sq2ω is primitive, and so Sq2ω

= uq−1 or un−1. It follows from Hq−3(G;Z/2Z) = 0, that Sq2ω = un−1. Thus

ω is a generator of lower dimension than n − 1, whence one can express it as ω =

γ2i+1uq−1 for some i ≥ 0 (, since γ1uq−1 = uq−1 is not mapped to un−1 by Sq2).

Comparing the dimensions we have 2i+1(q − 1) + 2 = n − 1, and so n = 2i+1ε + 3

for some i ≥ 0.

This implies the proposition.

Proposition 4.4. If Sq2 = 0 on H∗(G;Z/2Z), then Sq2i

H∗(G;Z/2Z) = 0 for

any i ≥ 0.

Proof. Suppose Sq1 = . . . = Sq2j−1
= 0 and Sq2j ̸= 0 on H∗(G;Z/2Z). By

assumption we have j ≥ 2. As in the proof of Proposition 4.3, one can conclude

that

Sq2j

γ2i+1uq−1 = un−1for some i ≥ 0,

since γ1uq−1 = uq−1 is not mapped to un−1 by any squaring operation from the

fact that 2(q − 1) < n − 1. Comparing the dimensions one has 2i+1(q − 1) + 2j

= n − 1; it gives n − 1 ≡ 0 mod 4, since j ≥ 2 and q − 1 ≡ 0 mod 2. This

contradicts n ≡ 3 mod 4.

This implies the proposition.

Corollary 4.5. If un−1 ∈ Im Sq2j

in H∗(G;Z/2Z), then j = 1.

We will discuss the two cases, whether Sq2 acts trivially or not, by using the

methods given in §3.

Theorem 4.6. If Sq2 = 0 on H∗(G;Z/2Z), then (q,n) = (3, 7).

Proof. It follows from Proposition 4.4 that every mod 2 Steenrod operation

acts trivially on H∗(G;Z/2Z). Let Q(2) be as in §3, then we have

H∗(Q(2);Z(2)) ∼= Z
[3]
(2)[vq+1, vn+1] ⊕ S2,
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To proceed, we need the following proposition, which is an immediate conse-

quence of (3.10), (3.11), Proposition 3.12 and Corollary 4.5

Proposition 4.7. If v2
n+1 ∈ Im Sqt in the algebra H∗(Q(2);Z(2)) for some t > 0

and if Sq2 = 0 on H∗(G;Z/2Z) = 0, then t ≥ n + 1.

Now we will examine the decomposition of Sq2k+1
(k ≥ 0) through secondary

operations on the space X = Q(2), which is the main result in [Ad1]. If n + 1 is

not a power of 2, then by the Adem relation

0 ̸= v2
n+1 = Sqn+1(vn+1) =

∑
i

aibi(vn+1), 0 < deg ai < n + 1,

which contradicts Proposition 4.7.

When n = 2k+4 − 1, k ≥ 0, there holds

0 ̸= v2
n+1 = Sqn+1(vn+1) =

∑
i,j

aijΦij(vn+1), 0 < deg aij < n + 1

modulo aijkQ2n+2−l(i, j, k)(Q(2);Z/2Z) where 0 < l(i, j, k) = deg aijk < n + 1.

Thus the element v2
n+1 belongs to the image of a certain Steenrod operation a with

0 < deg a < n + 1. This also contradicts Proposition 4.7. So, if n + 1 = 2k, then k

= 0, 1, 2 or 3.

The equation 2q = 4ε + 1 < n = 2k − 1 implies that n = 7 if q = 3 and that n

does not exist if q = 7.

This completes the proof of Theorem 4.6.

Theorem 4.8. If Sq2 ̸= 0 on H̃∗(G;Z/2Z), then (q,n) = (3,7), (3,11) or (7,15).

Proof. It follows from Proposition 4.3 that n = 2i+2 · ε + 3 for some i ≥ 0.

If i = 0, then (q,n) = (3,7) or (7,15).

We assume i ≥ 1. Then n + 1 = 2i+2 · ε + 4 ≡ 4 mod 8. So by the Adem

relation we have

Sq4Sq2i+2·ε = Sqn+1 + Sq2i+2·ε+2Sq2 + Sq2i+2·ε+3Sq1

= Sqn+1 + Sq2+2i+2·εSq2 + Sq3Sq2i+2εSq1.

Again by (3.10), (3.11) and Proposition 3.12, we obtain

Sq2vn+1 ∈ δ(Σ4)∗H̃∗(ΩSq ∧ ΩSq) ⊆ δ(Σ4)∗H∗(G ∧ G),
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since deg Sq2vn+1 = 2 + deg vn+1 = 4 + deg un−1 (= 4 + 2i+2 · ε + 2). Thus the

following conditions are necessary for Sq2+2i+2·εSq2vn+1 to contribute to v2
n+1 =

δ(Σ4)∗(un−1 ⊗ un−1): There are elements ûi1 and ûi2 of degree i1 and i2, respec-

tively, such that

Sq2vn+1 = δΣ4(
∑

ûi1 ⊗ ûi2),

Sq2+2i+2ε(
∑

ûi1 ⊗ ûi2) = un−1 ⊗ un−1 + independent terms

modulo decomposables, where the summation ranges over the pairs (i1,i2) with

i1+i2 = deg Sq2vn+1 - 4 = deg un−1 = 2 + 2i+2 ·ε. Therefore Sq2+2i+2·ε(û1⊗û2) =

û2
1 ⊗ û2

2, which contradicts the indecomposability of un−1. Thus Sq2+2i+2·εSq2vn+1

does not contribute to v2
n+1, and hence Sq4Sq2i+2·εvn+1 has to do contribute, since

Sq1vn+1 = 0 for dimensional reasons. Here we have

Sq2i+2εvn+1 ∈ Im δ.

So the following two cases can be considered:

Sq2i+2·εvn+1 = δΣ4(γ2i1 uq−1 ⊗ γ2i2 uq−1) + other terms(1)

Sq4(γ2i1 uq−1 ⊗ γ2i2 uq−1) = un−1 ⊗ un−1 + other terms,

Sq2i+2·εvn+1 = δΣ4(γ2i1 uq−1 ⊗ un−1) + other terms(2)

Sq4γ2i1 uq−1 = un−1 + other terms.

But the case (2) does not occur by Proposition 4.3. So the only possibility is in

(1). For dimensional reasons we obtain

Sq2i+2·εvn+1 = δΣ4(γ2i1 uq−1 ⊗ γ2i1 uq−1) + other terms.(a)

Sq2(γ2i1 uq−1) = un−1 + other terms.(b)

Comparing the dimensions we obtain i1 = i from (b). We also have γ2i1 uq−1 ∈

H̃∗(ΩSq) ⊆ H̃∗(G), as deg γ2iuq−1 < n − 1. Hence the element γ2iuq−1 does not

belong to the image of any squaring operations on H̃∗(G;Z/2Z).

Now we divide the arguments into the two cases, ε = 1 and ε = 3.

[The case ε = 3] The Adem relation

Sq2i+2ε = Sq2i+3+2i+2
=

i+2∑
t=0

Sq2t

at, at ∈ A(2)
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implies that γ2iuq−1 ⊗ γ2iuq−1 ∈ Sq2t

at for some 0 ≤ t ≤ i + 2. On the other

hand, one can deduce from at(vn+1) ∈ Im δ that γ2iuq−1 ⊗ γ2iuq−1 ∈ Im Sq2t

in

H∗(G ∧ G;Z/2Z) for some t, which contradicts the fact that γ2iuq−1 is not in the

image of any squaring operations.

[The case ε = 1] If i = 1, then (q,n) = (3,11).

Suppose i ≥ 2. By [Ad1] Sq2i+2
is decomposable through secondary operations,

that is, the following holds:

Sq2i+2
(vn+1) =

∑
i,j

aijΦij(vn+1), 0 < deg aij < 2i+2

modulo the total indeterminacy aijkQ2i+3+4−l(i,j,k)(Q(2);Z/2Z), 0 < l(i, j, k) =

deg aijk < 2i+2. This leads us to a contradiction similarly to the case when ε = 3.

This completes the proof of Theorem 4.8. Thus we obtain Theorem 4.2.

§5 The non-existence of types (3,11) and (7,15)

Proposition 5.1. (q,n) ̸= (3,11)

Proof. If (q,n) = (3,11), then E ≅ S3∪α e11 ∪β e14 where α ∈ π10(S3) ∼= Z/15.

So E ≅2 (S3 ∨ S11) ∪β e14. Since Q = S3 ∨ S11 is desuspendable, the Whitehead

product [i,i] of the inclusion i : Q ↪→ E vanishes by assumption. So the map {i, i}

: Q ∨ Q → E is extendable over Q×Q. We denote the extension by µ : Q×Q →

E. If we put Q(2) = CH(µ), the cofibre of the Hopf construction of µ, then Q(2)

satisfies the condition of §1. It gives a contradiction, and so (q,n) ̸= (3,11). This

implies the proposition.

Proposition 5.2. (q,n) ̸= (7,15)

Proof. Suppose (q,n) = (7,15) so that E ≅2 S7 ∪α e15 ∪ e22. Then we have

H∗(E) ∼= Λ(x7, x15)

K∗(E) ∼= Λ(ξ7, ξ15).

The 15-skeleton of G is given by

G[15] ≅2 S6 ∪[ι6,ι6] e12 ∪ e14.

Now we put Q = Σ(G[15]); then

Q ≅2 (S7 ∨ S13) ∪̄
α

e15,where ᾱ ∈ π14(S7 ∨ S13) ∼= π14(S7) ⊕ π14(S13).
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The generators of H∗(E) (and K∗(E)) are mapped monomorphically to H∗(Q)

(and K∗(Q), resp.) by the induced homomorphism of the composite map ℓ : Q ⊂

ΣG ⊂ P∞G ≅ E. In fact, as was already seen, PH∗(G) ∼= Z(2){u6, u4} with ui

transgressive, and ℓ∗ gives rise to the cohomology suspension. Thus we obtain

Im (Σℓ)∗ ∼= Z(2){v8, v16} ⊆ H∗(ΣQ) = Z(2){v8, v14, v16},

Im (Σℓ)∗ ∼= Z(2){w4, w8} ⊆ K∗(ΣQ) = Z(2){w4, w7, w8}.

Then the Adams operation ψk in K∗(ΣQ) is given by

(5.3)

ψkw4 = k4w4 + a(k)w8

ψkw7 = k7w7 + b(k)w8

ψkw8 = k8w8

Since Q is a suspended space and since E is a GW-space, there exists an axial map

µ : Q × Q → E

with axes (ℓ,ℓ). We denote by Q(2) the mapping cone of the Hopf construction

H(µ) of the map µ so that we have a cofibre sequence

(5.4) ΣE
j

↪→ Q(2) → ΣQ ∧ ΣQ.

The elements x7, x15 ∈ H∗(E) are primitive with respect to µ in the sense of

Thomas as H11(Q ∧ Q) = H15(Q ∧ Q) = 0. Hence we have

µ̄∗(xi) = 0 for i = 7,15,

µ̄∗(x7, x15) = ℓ∗x7 ⊗ ℓ∗x15 − ℓ∗x15 ⊗ ℓ∗x7.

So the image of j∗ induced by the inclusion j: ΣE → Q(2) is given by

Im j∗ = Z(2){Σ∗x7,Σ∗x15}.

Also the image of δ induced by the collapsing map Q(2) → ΣQ ∧ ΣQ is given

by

Im δ ∼= Z(2){δ(v8 ⊗ v8), δ(v8 ⊗ v16) = δ(v16 ⊗ v8), δ(v16 ⊗ v16)} ⊕ S2

where S2 = Z(2){δ(v8 ⊗ v14), δ(v14 ⊗ v8), δ(v14 ⊗ v14), δ(v14 ⊗ v16), δ(v16 ⊗ v14)}.
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Therefore by (5.4) we obtain the following short exact sequence:

0 → Im δ ↪→ H̃∗(Q(2))
j∗

→ Z(2){Σ∗x7,Σ∗x19} → 0

Thus, denoting by v̄4 and v̄8 the extensions over Q(2) of Σ∗x7 and Σ∗x15, respec-

tively, we obtain the following ring isomorphisms by virtue of [Th3]:

(5.5)
H∗(Q(2)) ∼= Z

[3]
(2)[v̄4, v̄8] ⊕ S2,

H̃∗(Q(2)) · Im δ = 0, S2 ⊆ Im δ.

We remark that these results are independent of the choice of v̄4 and v̄8.

Similarly one obtains

(5.6)
K∗(Q(2)) ∼= Z

[3]
(2)[w̄4, w̄8] ⊕ SK

2 ,

K̃∗(Q(2)) · SK
2 = 0,

ψk(K̃∗(Q(2)) · K̃∗(Q(2))) ⊆ K̃∗(Q(2)) · K̃∗(Q(2)),

Im δK ∼= Z(2){δK(w4 ⊗ w4), δK(w4 ⊗ w8) = δK(w8 ⊗ w4), δK(w8 ⊗ w8)} ⊕ SK
2 ,

SK
2 = Z(2){δK(w4 ⊗ w7), δK(w7 ⊗ w4), δK(w7 ⊗ w7), δK(w7 ⊗ w5), δK(w8 ⊗ w7)},

where the elements w̄4 and w̄8 are the extensions over Q(2) of Σ∗ξ7 and Σ∗ξ15,

respectively.

Furthermore, by (5.3) one obtains

Proposition 5.7.

ψkδK(w4 ⊗ w7) ≡ k11δK(w4 ⊗ w7) + k4b(k)δK(w4 ⊗ w8)

ψkδK(w7 ⊗ w4) ≡ k11δK(w7 ⊗ w4) + k9b(k)δK(w8 ⊗ w4)

modulo higher CW filtration > 14.

Now (5.5) and (5.6) imply that K∗(Q(2)) and H∗(Q(2)) are isomorphic as rings.

So we define a ring isomorphism J : H∗(Q(2)) → K∗(Q(2)) by the following

(5.8)
J(v̄i) = w̄ifor i = 4 and 8

J(δ(v2i ⊗ v2j)) = δ(wi ⊗ wj)for i,j = 4,7 or 8.

By virtue of these relations we introduce Hubbuck operations following [Hu]. Then

one obtains the following by using (1.5) as in the case (q,n) = (7,15) in §1:

(5.9)

P 8(v̄8) ≡ v̄2
8 mod 2

P 4(v̄8) = αv̄4v̄8

P 4(v̄4) ≡ v̄2
4 mod 2

P 4(v̄4) = λv̄2
4 + 2βv̄4v̄8,
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where λ, α, β ∈ Z(2) and λ ≡ 1 mod 2. (Note that J depends on the choice of w̄i

and hence, so do the exact values of P i and Ri. But these relations do not depend

on the choice of J .)

Next, we will derive a contradiction from the relations of these Hubbuck opera-

tions. The relations

Hi(Q(2)) = 0for i = 10, 12, 14, 18, 20, 26

and Proposition 5.7 imply the following

(5.10)

R1(v̄8) = P 1(v̄8) = 0,P 1(v̄4) = R1(v̄4) = 0,

R2(v̄8) = P 2(v̄8) = 0,P 2(v̄4) = R2(v̄4) = 0,

P 3(v̄4) = R3(v̄4) = 0,

P 5(v̄8) = 0,P 5(v̄4) = 0,

P 6(v̄4) = 0.

Further, by (1.4) together with ν2(33 − 1) = 1 (by ignoring the odd multiple) one

has

2P 3(v̄8)+2R1P 2(v̄8)+22R2P 1(v̄8)+23R3(v̄8) ≡ 22P 2R1(v̄8)+24P 1R2(v̄8) mod 26

and hence by (5.10) one obtains the following

(5.11) 2P 3(v̄8) + 23R3(v̄8) ≡ 0 mod 26.

In particular

(5.11’) P 3(v̄8) ≡ 0 mod 22.

Also, (1.4) implies

(24P 4 +
4∑

i=1

2iRiP 4−i)(v̄4) ≡ 22P 3R1(v̄4) + 24P 2R2(v̄4) mod 26

and hence one obtains the following

(5.12) P 4(v̄4) + R4(v̄4) ≡ 0 mod 22.

Moreover one obtains
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Proposition 5.13.

P 6(v̄8) ≡ 23R6(v̄8) mod 24.

Proof. The equation (1.4) implies

23P 6(v̄8)+
6∑

i=1

2iRiP 6−i(v̄8) ≡ 22P 5R1(v̄8)+24P 4R2(v̄8)+26P 3R3(v̄8) mod 27

Recall that P 4(v̄8) ∈ Z(2){v̄4v̄8}, where we have

R2(v̄4v̄8) = R2(v̄4)v̄8 + R1(v̄4)R1(v̄8) + v̄4R
2(v̄8) = 0

and hence R2P 4(v̄8) = 0. So by (5.10) and (5.11) the congruence equation above

reduces to

23P 6(v̄8) + 25R3R3(v̄8) + 26R6(v̄8) ≡ 26P 3R3(v̄8) mod 27

where R3(v̄8) ∈ Z(2){δ(v8 ⊗ v14), δ(v14 ⊗ v8)}. Hence by (5.10) we have R3R3(v̄8)

= P 3R3(v̄8) = 0. Thus the congruence equation above reduces to

P 6(v̄8) + 23R6(v̄8) ≡ 0 mod 24.

This implies the proposition.

Proposition 5.14.

2P 8(v̄8) ≡ R4P 4(v̄8) mod 4.

Proof. The equation (1.4) implies

2P 7(v̄8) +
5∑

i=1

2iRiP 7−i(v̄8) ≡ 22P 6R1(v̄8) + 24P 5R2(v̄8) mod 26.

So by using (5.10), (5.11’) and Proposition 5.13 one obtains

2P 7(v̄8) + 24R1R6(v̄8) + 23R3P 4(v̄8) ≡ 0 mod 26,

where P 4(v̄8) ∈ Z(2){v̄4v̄8 = δ(v8 ⊗ v16)} ⊆ H̃∗(Q(2)) · H̃∗(Q(2)), and hence

R3P 4(v̄8) ∈ Z(2){R3(v̄4v̄8)}.
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By (5.10) and the Cartan formula we have

R3(v̄4v̄8) = v̄4R
3(v̄8)

with R3(v̄8) ∈ S2. So by (5.5) we have R3P 4(v̄8) = 0. Therefore we obtain

(5.15) 2P 7(v̄8) + 24R1R6(v̄8) ≡ 0 mod 26.

Also the equation (1.4) implies

(5.16) 25P 8(v̄8) +
5∑

i=1

2iRiP 8−i(v̄8) ≡ 22P 7R1(v̄8) + 24P 6R2(v̄8) mod 26

Then by (5.10), (5.11’), Proposition 5.13 and (5.15), one obtains

(5.17) 25P 8(v̄8) + 24R1R1R6(v̄8) + 25R2R6(v̄8) + 24R4P 4(v̄8) ≡ 0 mod 26.

From (1.4) it follows that

2P 1 + 2R1 ≡ 22R1, mod 23

and hence P 1 ≡ ±R1 mod 22. Also from (1.4), one has

23P 2 + 2R1P 1 + 22R2 ≡ 22P 1R1 + 24R2 mod 23.

Then it follows that

R1R1 = 2R2 mod 22.

Hence

R1R1R6(v̄8) + 2R2R6(v̄8) ≡ 0 mod 22.

Substituting this into (5.17) one obtains

25P 8(v̄8) + 24R4P 4(v̄8) ≡ 0 mod 26.

By dividing by 24, we obtain Proposition 5.14.

Proposition 5.18. Let β be as in (5.9). If β ̸≡ 0 mod 2, R4P 4(v̄4) ≡ 0 mod

4.

Proof. The equation (1.4) implies

25P 8(v̄4) +
5∑

i=1

2iRiP 8−i(v̄4) ≡ 22P 7R1(v̄4) + 24P 6R2(v̄4) mod 26.
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So by (1.5) and (5.10) one obtains

(5.19) 22R1P 7(v̄4) + 24R4P 4(v̄4) ≡ 0 mod 26.

Furthermore (1.4) implies

2P 7(v̄4) +
5∑

i=1

2iRiP 7−i(v̄4) ≡ 22P 6R1(v̄4) + 24P 5R2(v̄4) mod 26.

So by (5.10) one obtains

(5.20) 2P 7(v̄4) + 23R3P 4(v̄4) ≡ 0 mod 26.

Recall from (5.9) that

P 4(v̄4) = λv̄2
4 + 2βv̄8.

So by (5.10) one has

R3P 4(v̄4) = 2βR3(v̄8).

Suppose β ̸≡ 0 mod 2. By (1.5), one has P 7(v̄4) ≡ 0 mod 24 and hence by

(5.20) one obtains

(5.21) 23R3P 4(v̄4) ≡ 0 mod 25,

so 24βR3(v̄8) ≡ 0 mod 25. Thus

(5.22) R3(v̄8) ≡ 0 mod 2.

Then it follows from (5.11) that

P 3(v̄8) ≡ 22R3(v̄8) ≡ 0 mod 23.

So by rechoosing the ring isomorphism J appropriately (or more precisely, re-

choosing the extension w̄8 = J(v̄8) appropriately) one obtains the following lemma

(due to [Hu]).

Lemma 5.23. One can choose a ring isomorphism J which satisfies P 3
J (v̄8) = 0,

if β ̸≡ 0 mod 2.

Proof. If P 3(v̄8) ̸= 0, we can choose v̄11 ∈ H22(Q(2)) so that P 3(v̄8) = 23v̄11.

The element w̄′
8 = w̄8 + νw̄11 with ν = 1

1−23 , where w̄11 = J(v̄11), is an extension of
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Σ∗ξ15. Then from J , we define a new ring isomorphism J ′ : H∗(Q(2)) → K∗(Q(2))

by setting

J ′(v̄8) = w̄′
8, J ′(v̄4) = w̄4

J ′(δ(v2i ⊗ v2j)) = δK(wi ⊗ wj).

Then one obtains the following formula modulo higher filtration > 11:

ψ2(J(v̄8)) ∼= 28J(v̄8) + 28J(v̄11) mod (higher filtration > 11)

ψ2(J(v̄11)) ∼= 211J(v̄11) mod (higher filtration > 11)

ψ2(J ′(v̄8)) = ψ2(J(v̄8) + νJ(v̄11))

= ψ2(J(v̄8)) + νψ2(J(v̄11))

∼= 28J(v̄8) + 28J(v̄11) + 211νJ(v̄11) mod (higher filtration > 11)

∼= 28(J(v̄8) + (23ν + 1)J(v̄11)) mod (higher filtration > 11)

= 28J ′(v̄8).

Thus P 3
J′(v̄8) = 0. (Note that the operation P 3

J ′ with respect to J ′ is different

from P 3 = P 3
J with respect to J). The operations P i

J ′ and Ri
J′ satisfy all the

formulae given above for the ones with respect to general ’J ’. So, we may assume

that our ring isomorphism J satisfies P 3
J = 0. This implies the lemma.

Hence from (5.11), (5.21) and (5.20) it follows that

R3(v̄8) ≡ 0 mod 23,

R3P 4(v̄4) ≡ 0 mod 24,

2P 7(v̄4) ≡ 0 mod 26.

Substituting them into (5.19) one obtains

24R4P 4(v̄4) ≡ 0 mod 26.

That is, if β ̸≡ 0 mod 2, then R4P 4(v̄4) ≡ 0 mod 4. This completes the proof

of the Proposition 5.18.

Now these two propositions, Proposition 5.14 and 5.18, will give us a contradic-

tion in the folloing manner:
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By Proposition 5.14, we have the following equation

0 ̸≡ 2v̄2
8 ≡ R4P 4(v̄8) ≡ R4(αv̄4v̄8) ≡ αR4(v̄4)v̄8 + αv̄4R

4(v̄8) mod 4

by (5.10) and the Cartan formula, where R4(v̄8) ∈ Im δ and hence v̄4R
4(v̄8) = 0

by (5.5). Furthermore, using (5.10) together with (1.4), one obtains the following

relation:

24P 4(v̄4) + 24R4(v̄4) ≡ 0 mod 26,

which implies

(5.25) R4(v̄4) ≡ −P 4(v̄4) ≡ −λv̄2
4 − 2βv̄8 mod 4.

Hence from (5.24) it follows that

0 ̸≡ 2v̄2
8 ≡ −2αβv̄2

8 mod 4.

Then it follows that

(5.26) αβ ≡ 1 mod 2; in particular, β ≡ 1 mod 2.

Since β ̸≡ 0 mod 2, Proposition 5.18 implies

(5.27) 0 ≡ R4P 4(v̄4) ≡ R4(λv̄2
4 + 2βv̄8) ≡ 2λv̄4R

4(v̄4) + 2βR4(v̄8) mod 4

by (5.10) and the Cartan formula. Here, by (5.25), we have

2λv̄4R
4(v̄4) ≡ 0 mod 4.

Also by (1.4) using (5.10) and Lemma 5.23 we have

24P 4(v̄8) + 24R4(v̄8) ≡ 0 mod 26

and hence

R4(v̄8) ≡ −P 4(v̄8) = −αv̄4v̄8 mod 4.

Substituting them into (5.27) we obtain

0 ≡ R4P 4(v̄4) ≡ −2αβv̄4v̄8 mod 4,

which contradicts (5.26).

Thus we have shown that there exists no Poincaré complex with GW-space struc-

ture whose cohomology ring is an exterior algebra of type (7,15). This completes

the proof of Proposition 5.2.

§6. Proof of the main theorem

In this section, we always assume that E is a complex of type (q,n,m). Let

us assume that E has a cell structure Sq ∪α en ∪β em with α ∈ πn−1(Sq), β ∈

πm−1(Sq ∪α en). At first, we look at cohomological structure of E.
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Proposition 6.1. Let E be a GW-space at Π where Π is a set of primes. If α =

0 at Π, then E ≅ St with t odd or Sq × Sn with q and n odd. If further 2 ∈ Π, we

have t ∈ {1, 3, 7} and {q, n} ⊂ {1, 3, 7}.

Proof. We will prove here the integral case. The localised version can be obtained

by a quite similar manner and is left to the reader.

Since α = 0, E ≅ (Sq ∨ Sn) ∪β em. We denote by i1 : Sq ↪→ E and i2 : Sn

↪→ E the canonical inclusions. Since a sphere is desuspendable, by (0.3), there is

an axial map ν : Sq × Sn → E with axes (i1,i2) by the assumption. We remark

here that the attaching map of the top cell of Sq × Sn is given by the Whitehead

product [i1,i2].

Since E has cells only in dimensions 0, q, n and m, there are three possibilities

on its cohomology: H∗(E;Z) ∼= Z ⊕ Z ⊕ Z, Z ⊕ Z/rZ (for some r > 1) or Z. In

the last case, m has to be q + 1 (n + 1, resp.). Then H∗(E;Z) is isomorphic to

H∗(Sn;Z) (H∗(Sq;Z), resp.) which is given by i∗2 (i∗1, resp.). Since E is simple, E

has the homotopy type of Sn (Sq, resp.).

Let us recall that a sphere is a GW-space (at 2) if and only if it is S1, S3 or S7

by [Ad1]. Thus n (q, resp.) = 1, 3 or 7.

In the other cases, i1 and i2 induce non-trivial homomorphisms of cohomologies

for some coefficient ring Z/pZ, p a prime. Then ν∗ is a surjection, since the gener-

ators in H∗(Sq ×Sn;Z/pZ) are in its image. Thus we obtain that Hq+n(E;Z/pZ)

̸= 0, and hence m = q + n > n. If H∗(E;Z) ∼= Z ⊕Z/rZ, then the action of some

higher order Bockstein operation is not trivial on H∗(E;Z/pZ) for some prime p,

but is trivial on H∗(Sq × Sn;Z/pZ) for any p. It is a contradiction and we have

H∗(E;Z) = Z ⊕ Z ⊕ Z. Hence ν∗ is an isomorphism. Since E is simple, E has

the homotopy type of Sq × Sn, which is a Poincaré complex and a stable GW-

space. Also the mod 2 Steenrod algebra acts trivially on H∗(E;Z/2Z). Then by

Corollary 1.9, one has {q, n} ⊂ {1, 3, 7}.

This implies the proposition.

Proposition 6.2. Let n > q > 1 and p a prime. If Hj(E;Z/pZ) are non-zero for

j = q and n, then E is a Poincaré complex of type (q,n,q + n).

Proof. Let Q be the following suspended subspace of ΣΩE and l : Q → E be
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the composite map Q ⊂ ΣG ⊂ P∞G ≅ E:

Q = Q[n−1] ∪ en ⊆ Σ(ΩE)[n−1],

Q[n−1] ≅
[n−2

q−1]∨
i=1

Si(q−1)+1 ⊆ Σ(ΩE)[n−2].

Then by the Serre spectral sequence for the fibration G → PE → E, one obtains,

similarly to the proof of Proposition 3.3 (2), that σ∗xq and σ∗xn are non-zero

primitive generators in dimensions q−1 and n−1 in H∗(G;Z/pZ). Since l induces

the cohomology suspension, l∗ is an isomorphism in dimensions q and n.

Since Q and Sq are suspended spaces, there exists an axial map µ : Q × Sq

→ E with axes (l,l|Sq ). Then µ induces a homomorphism µ∗ : H∗(E;Z/pZ) →

H∗(Q × Sq;Z/pZ) ∼= H∗(Q;Z/pZ) ⊗ H∗(Sq;Z/pZ). We have

µ∗(xq) = l∗(xq) ⊗ 1 + 1 ⊗ l∗(xq),

µ∗(xn) = l∗(xn) ⊗ 1 + yn−q ⊗ l∗(xq).

for some yn−q ∈ Hn−q(Q;Z/pZ).

Then we obtain that µ∗(xnxq) = l∗(xn) ⊗ l∗(xq)+l∗(xq)yn−q ⊗ l∗(xq) = l∗(xn)⊗

l∗(xq) ̸= 0, since Q is suspended. Thus xnxq ̸= 0 and hence Hq+n(E;Z/pZ) ̸= 0.

This implies that m = q + n > n + 1 and we obtain

E ≅ Sq ∪α en ∪β eq+n.

Moreover we obtain that

Hj(E;Z/rZ) ∼= Z/rZ{xj}for j = q, q + 1 and 2q + 1,

Hq(E;Z) ∼= 0, Hn(E;Z) ∼= Z/rZ, Hq+n(E;Z) ∼= Z,

if n = q + 1 and α = rιq with r ̸= ±1 nor 0, and that

Hj(E;Z) ∼= Z{xj}for j = q, n and q + n,

otherwise.

Let us turn our attention to the top cells of Q × Sq and E. We have shown
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6.3. In the case α = rιq with r ̸= ±1 nor 0, µ∗ is an isomorphism of mod r

cohomology in dimension q + n. In other cases, by comparing integral cohomolo-

gies by µ∗ similarly to the above, we obtain that µ∗ is an isomorphism of integral

cohomology in dimension q + n.

This implies that E has an (orientation) class in dimension q + n which induces

a Poincaré duality. Thus E is a Poincaré complex of type (q,n,q + n).

This implies the proposition.

We can now state the key lemma to our main theorem, which is first known to

H. Kachi for simply connected case.

Lemma 6.4. If E is a GW-space (at 2), then it has the homotopy type (at 2)

of either a sphere of dimension 1, 3 or 7, or a 3-cell Poincaré complex of type

(q,n,q + n) of exactly q + n dimension.

Proof. Let q = 1. When n = 1 or n > 2, it clearly holds that α is trivial.

If α is trivial, it follows from Proposition 6.1 that E has a homotopy type of

either S1 or a product of S1 and Sn with n ∈ {1, 3, 7} which is a Poincaré complex

of type (1,n,1+n).

If n = 2 and α = ±ι1, then E ≅ Sm with m ≥ 2, which must be a GW-space

(at 2), and hence m ∈ {3, 7}.

If n = 2, α = pι1 and p ̸= ±1 nor 0, then π1(E) = Z/pZ. Then S1 ∪α e2 ⊂ E

is nothing but L2(p), the 2-skeleton of the standard lens space L3(p), and is not

2-simple (nor 2-nilpotent) ; The universal covering space of L2(p) has the homotopy

type of a wedge sum of (p − 1) copies of 2-spheres:

π1(L2(p)) ∼= Z/pZτ,

π2(L2(p)) ∼=
p−1∑
i=1

Zαi.

Let π = π1(L2(p)) ∼= π1(E) = Z/pZτ . The action of a generator τ ∈ π on π2(L2(p))

is given as follows:

(6.6) π2(L2(p)) ∼= Zπ/(1 + τ + ... + τp−1), ταi = αi+1, for i ≤ p − 1,

where αp = −
∑p−1

j=1 αj .
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If m = 2, a similar argument given in above yields that E is not simple. It

contradicts the assumption that E is a GW-space (at 2). Thus m > 2 and we have

the following exact sequence:

π3(E,L2(p)) → π2(L2(p)) → π2(E) → 0.

Since E is simple, τ acts trivially on π2(E). Then it follows that π2(E) is a quotient

group of π2(L2(p))/π ∼= Z/pZ. Thus π3(E,L2(p)) ̸= 0, and hence m = 3.

Then it follows that H∗(E;Z) ∼= H∗(L3(p)) as modules.

Let us consider the Serre spectral sequence associated with the fibration Ẽ →

E → B(Z/pZ), where Ẽ → E denotes the universal covering. Since E is simple,

so is the fibration and H2(E;Z) ∼= π2(E) is finite. A routine computation on the

E2 term of the Serre spectral sequence shows that the only non-trivial differential

is d4, which yields that H∗(Ẽ;Z) ∼= H∗(S3;Z) as algebrae.

Since Ẽ is simply connected, Ẽ is a homotopy 3-sphere. Hence the boundary

homomorphism ∂ : π3(E,L2(p)) → π2(L2(p)) is onto and preserves the actions of

τ ∈ π on π3(E,L2(p)):

π3(E,L2(p)) ∼=
p∑

i=1

Zβi
∼= Zπ, τβi = βi+1, for i ≤ p,

where βp+1 = β1 which corresponds to the 3-cell of E. Thus β = ∂β1 is a

unit in π2(L2(p)). We remark that the direct summand generated by
∑p

j=1 βj

in π3(E,L2(p)) is the kernel of ∂, since there is no element in π2(L2(p)) other

than 0 to be stable under the action of τ by (6.6). Again by the Serre spectral

sequence mod p associated with the fibration Ẽ → E → B(Z/pZ), it follows that

H∗(E;Z/pZ) ∼= H∗(L3(p);Z/pZ) as algebrae. This implies that E is a Poincaré

complex of type (1,2,3).

Conversely, let ℓ be a unit in π2(L2(p)), which is also a unit in π2(L2(p))/π ∼=

Z/pZ. Let L3(p, ℓ) be the space given by attaching a 3-cell by ℓ on L2(p). Then

its cohomology ring mod p is isomorphic to H∗(L3(p);Z/pZ), since the universal

covering space is a homotopy 3-sphere. Thus it is a Poincaré complex of type

(1,2,3).

Let q be odd > 1. Unless n = q + 1, α has a finite order.

If α is trivial, it follows from Proposition 6.1 that E has the homotopy type of

a q-sphere (q ∈ {3, 7}, since q is odd > 1) or Sq × Sn ({q, n} ⊂ {3, 7}).
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If n = q, then α is trivial and E has the homotopy type of either Sq or Sq ×Sq,

q ∈ {3, 7}.

If n = q +1 and α = ±ιq, then E has the homotopy type of m-sphere with q +1

≤ m = 7.

If n = q+1 and α = pιq with p ̸= ±1 nor 0, then Hj(E;Z/pZ) are non-zero when

j = q and n. Then by Proposition 6.2, we obtain that E is a Poincaré complex of

type (q,n,q + n).

If n > q + 1 and α ̸= 0, then α has a finite order > 1. Hence by Proposition 6.1,

we obtain that E has the rational homotopy type of a sphere Sq or the product of

spheres Sq × Sn. In the former case, we have m = n + 1 and the homomorphism

πn(Sq∪en) → πn(Sn) induced from the collapsion to the n-cell sends β to an integer

≡ 0 mod p where p is the order of α. Thus Hj(E;Z/pZ) is non-zero when j = n

(and j = q). Then by Proposition 6.2, we obtain that E is a Poincaré complex of

type (q,n,q + n).

Let q be even > 0. Unless n = q + 1 or 2q, α has a finite order.

If α is trivial, it follows from Proposition 6.1 that E has the homotopy type of

a q + 1-sphere and n = m = q + 1 ∈ {3, 7}, since q is even.

If n = q, then α is trivial and hence n = q + 1. It is a contradiction.

If n = q + 1 and α = ±ι1, then E has the homotopy type of an m-sphere with

q + 1 ≤ m ∈ {3, 7}.

If n = q + 1 and α = pι1, p ̸= ±1 nor 0, then by Proposition 6.2 we obtain that

E is a Poincaré complex of type (q,n,q + n).

If q +1 < n ̸= 2q or α has a finite order, then E has the rational homotopy type

of either an odd sphere or a product of two odd spheres. It is impossible.

If n = 2q and α has an infinite order, then E has the rational homotopy type of

J2(Sq)∪β em, where we denote by Jt(X) the James’ (t-fold) reduced product space

of X.

Let us recall that πt(J2(Sq))⊗Q = 0, unless t = q or 3q− 1. Thus β has a finite

order, unless t = q or 3q − 1.

Let us assume that β has a finite order and hence E has the rational homotopy

type of J2(Sq)∨Sm. We can choose maps i1 : Sq ↪→ E and i2 : Sm ↪→ E which are

rationally the canonical inclusions. Since a sphere is desuspendable, by (0.3), there

is rationally an axial map µ : Sq × Sm → E with axes (i1,i2) by the assumption.
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By the definition, we have that i1 and i2 induce non-trivial homomorphisms

of rational cohomologies. Hence µ induces a surjection, since the generators in

H∗(Sq × Sn;Q) are in its image. This implies that the product of generators in

dimensions q and m is non-zero in Hq+m(E;Q), but it is impossible. Thus β is

rationally non-trivial. Since m ≥ 2q, it follows that m = 3q and β is rationally

non-trivial, E has the rational homotopy type of J3(Sq). Hence by Proposition 6.2,

we obtain that E is a Poincaré complex of type (q,2q,3q).

This completes the proof of the theorem.

Using the above, we show the proof of the main theorem.

We may assume by Lemma 6.4 that E is actually a 3-cell Poincaré complex of

type (q,n,q + n) of exactly q + n dimension, except the spheres S1, S3 and S7 (at

2).

[The case q = 1.] By the proof of Lemma 6.4, E has the homotopy type of either

a product of spheres S1 × Sn with n ∈ {1, 3, 7} or a (general) lens space L3(p, ℓ).

[The case n = q > 1.] Then E has a cell structure (Sq ∨ Sq) ∪β e2q. Thus by

Proposition 6.1, One obtains that E has the homotopy type of Sq × Sq and q is in

{3, 7}.

[The case n = q +1 > 2.] Then E has a cell structure Sq ∪pιq eq+1 ∪ e2q+1 where

pιq ∈ πq(Sq) ∼= Z. By Corollary 1.9, we have that (q,n) = (3,4) and E ≅ S7 (at 2).

[The case 2q > n > q + 1 > 2.] Then E has the cell structure Sq ∪α en ∪β en+q.

By assumption, n < 2q and α is a suspended element, that is, Q = Sq ∪α en is

desuspendable. There is a map µ : Q × Q → E since E is a GW-space. Quite

similarly to the above cases, one can construct a space Q(2) satisfying

H∗(Q(2);Z/2Z) = Z/2[3][vq+1, vn+1].

From Proposition 1.7 and Corollary 1.9, it follows that (q,n) = (3,5) and Sq2vq+1

= vn+1. Thus H∗(E;Z/2Z) ∼= H∗(SU(3);Z/2Z) as algebrae over the mod 2

Steenrod algebra. This implies that the 5-skeleton of E has the homotopy type of

ΣCP 2. Thus β lies in π7(ΣCP 2) ∼= Z, whose generator is given by the attaching

map of the 8-cell of SU(3). Since E is a Poincaré complex, β has to be a generator

and hence E has the homotopy type of SU(3).

[The case n = 2q > 2.] Then E has a cell structure Sq ∪α e2q ∪β e3q, q ≥ 2.

Thus H∗(E;Z) ∼= Z{xq, x2q, x3q} with x3q = xqx2q If x2
q = 0, one has H∗(E;Z) ∼=
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∧(xq, x2q) which contradicts Proposition 3.3 (2). Thus x2
q ̸= 0 and hence H∗(E;Q)

∼= Q[xq]/(x4
q). Then from Proposition 2.1, we obtain that (q,n) = (2,4) and

H∗(E;Z) ∼= H∗(CP 3;Z).

Thus the 4-skeleton of E has the homotopy type of CP 2. Hence the attaching

map of the top cell lies in π5(CP 2) ∼= Z, whose generator is the attaching map

of the 6-cell of CP 3. Since E is a Poincaré complex, β must be a generator in

π5(CP 2). This implies that E has the homotopy type of CP 3.

[The case n > 2q > 2.] Then E has the the homotopy type of Sq ∪α en ∪ eq+n

with α ∈ πn−1(Sq). By Proposition 3.3 (2), one has

H∗(E;Z) ∼= ∧(xq, xn), q, n odd.

Then from Theorem 4.2 and Propositions 5.1 and 5.2 it follows that (q,n) = (3,7).

Hence we obtain

H∗(E;Z/2Z) ∼= ∧(x̄q, x̄n)

with the trivial action of the mod 2 Steenrod algebra. Since (q,n) = (3,7), the

attaching element α of the 7-cell in E is of the form α = kω, where ω is the Blakers-

Massey element in π6(S3) ∼= Z/12Z. We have that k is odd or k ≡ 0 mod 4. In

fact, if λ ≡ 2 mod 4, α is desuspendable at 2 and so is the space Q = (S3∪α e7)(2).

Then one can construct a space Q(2) from which one can deduce a contradiction

to the result of Sigrist-Suter [S-S] (since the result in [S-S] is essentially a result

localised at 2).

If λ is odd or λ ≡ 0 mod 4, the pull-back Ekω by kι7 from the principal bundle

Sp(2) → S7 is known to be an H-space and thus it is a GW-space (see [H-R] and

[Z]).

In case k = 0 mod 4, the 6-skeleton of E has the homotopy type of S3 ∨ S7.

Thus E has the same homotopy type with S3 × S7 and hence with Ekω.

In case k ≡ 4 or 8 mod 12, the 6-skeleton of E has the homotopy type of S3∨S7

at 2 and of S3 ∪ω e7 at odd primes.

Thus π9(Q) is isomorphic with Z[ι3, ι7] ⊕ (2 torsion) and E has the homotopy

type of S3 × S7 at 2, and hence the attaching map of the top cell of E is the same

as that of Ekω at 2. At odd primes, π9(E) is isomorphic to π9(Sp(2)) ∼= 0. Let
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us consider the homotopy fibre F → Q of the inclusion Q → Ekω. By using the

Serre spectral sequence associated with the above (homotopy) fibration, we deduce

that π9(F ) ∼= Z at odd primes. Since Ekω has the rational homotopy type of the

product of odd spheres, π10(Ekω) is finite and hence π9(Q) is isomorphic to Z at

odd primes. Thus π9(Q) is isomorphic with Z ⊕ (2 torsion) in which a generator of

the free part is given by the attaching map of the 10-cell of Ekω, and the attaching

map of the top cell of E is in the free part. On the other hand, β has to be a

generator, since E is a Poincaré complex. Thus E ≅ Ekω.

In case k odd, a similar argument as above shows that π9(Q) is isomorphic to

π9(S3 ∪ω e7) ∼= Z and the generator is given by the attaching map of the 10-cell of

Ekω. Thus E ≅ Ekω, since E is a Poincaré complex.

This completes the proof of the main theorem.

Appendix

Let E and B be connected CW complexes and consider a fibration

(A.1) F
ι

↪→ E
π→ B

with fibre F a (not necessarily connected) CW complex. It gives rise to the following

two fibrations:

(A.2) ΩB
q→ F

ι→ E,

(A.3) ΩE
Ωπ→ ΩB

q→ F.

Now suppose that ι is null homotopic. It follows from (A.2) that q has a right

inverse s : F → ΩB. So the homotopy exact sequence of (A.3) splits and we obtain

π∗(ΩB) ∼= π∗(ΩE) ⊕ π∗(F ),

where the above isomorphism is induced by the map h = µ ◦ (Ωπ× s) : ΩE ×F →

ΩB with µ the loop addition of ΩB. Thus h is a homotopy equivalence, since ΩB

and ΩE have the homotopy type of a CW complex. Hence we obtain

(A.4) h : ΩE × F ≅ ΩB

Thus the following hold for any space W :

(A.5)
1 → [W, ΩE]

Ωπ∗
↪→ [W,ΩB]as groups,

[W,ΩB] ∼= [W,ΩE] × [W,F ]as sets.
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Here Let us introduce a notion of a GW-action. A GW-action of E along π : E

→ B is a map

(A.6) ν : ΣΩE × ΣΩB → B

with axes ΣΩE → E
π→ B and ΣΩB → B, where the map ΣΩB → B is the

evaluating map.

Then we have

Theorem A.7. If ι is null-homotopic in (A.1) and if B admits a GW-action of

E along π (see (A.6)), then the following four statements hold:

(i) E is a GW-space and F is an H-space.

(ii) If B is a GW-space, then F is a homotopy commutative H-space.

(iii) B is a GW-space if and only if the Samelson product 〈s, s〉 is trivial for a

right inverse s of q.

(iv) If there is an H-map s which is a right inverse of q and if F is homotopy

commutative, then B is a GW-space and (A.4) is an H-equivalence.

Proof. (i) By [O, Theorem 2.7], the image of Ωπ∗ of (A.5) is contained in the

center of [W ,ΩE] ∼= [ΣW ,E] for any W , since a map from a suspension space to a

space X can be decomposed through the evaluating map ΣΩX → X. Furthermore

Ωπ∗ is a monomorphism by (A.5), and hence [W ,ΩE] is an abelian group for any

W , which implies that E is a GW-space by (0.2). Since F is a retract of a loop

space ΩB, it is an H-space.

(ii) Let us define the multiplication µ̄ of F by putting µ̄ = q ◦ µ ◦ (s× s), where

we denote by µ the loop addition of ΩB. As µ is homotopy commutative, so is µ̄.

(iii) Suppose that B is a GW-space. Since ΣF is a suspension space, the White-

head product [ad(s),ad(s)] is trivial for the adjoint map ad(s) : ΣF → B of s. Recall

that [ad(s),ad(s)] = ±ad〈s, s〉, where ad〈s, s〉 denotes the adjoint of the Samelson

product of s. Thus we obtain ad〈s, s〉 = ∗.

Conversely, suppose that ad〈s, s〉 = ∗. For simplicity we write µ(x, y) = x · y.

Then by the homotopy associativity of µ, we obtain the following homotopy:

h(x, y) · h(x̄, ȳ) = (Ωπ(x) · s(y)) · (Ωπ(x̄) · s(ȳ))

≅ (Ωπ(x) · (s(y) · Ωπ(x̄))) · s(ȳ).
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The image of Ωπ∗ is contained in the center as is seen in (i), and so we obtain

s(y) · Ωπ(x̄) ≅ Ωπ(x̄) · s(y).

Also from the homotopy commutativity of ΩE and F , it then follows that

(A.8)
h(x, y) · h(x̄, ȳ) ≅ (Ωπ(x) · (Ωπ(x̄) · s(y))) · s(ȳ)

≅ (Ωπ(x) · Ωπ(x̄)) · (s(y) · s(ȳ)).

Recalling that the loop map Ωπ is an H-map, one has

Ωπ(x) · Ωπ(x̄) ≅ Ωπ(x · x̄)

where we use the same symbol · to denote the loop additions of ΩB and ΩE. Let

us recall that ΩE is homotopy commutative by (i), and hence

Ωπ(x · x̄) ≅ Ωπ(x̄ · x).

Thus we obtain

Ωπ(x) · Ωπ(x̄) ≅ Ωπ(x̄) · Ωπ(x).

The hypothesis 〈s, s〉 = ∗ implies that s(y)·s(ȳ)·s(y)−1·s(ȳ)−1 ≅ ∗. Hence it follows

that

s(y)·s(ȳ) ≅ s(ȳ)·s(y).

Summing up we get

h(x, y) · h(x̄, ȳ) ≅ (Ωπ(x) · Ωπ(x̄)) · (s(y) · s(ȳ))

≅ h(x̄, ȳ) · h(x, y),

that is,

µ ◦ (h×h) ≅ µ◦T ◦ (h×h).

Since h is a homotopy equivalence in (A.4), it then follows that

µ ≅ µ◦T,

that is, ΩB is homotopy commutative. Thus B is a GW-space.

(iv) Let s : F → ΩB be an H-map which is a right inverse of q. Then the

H-deviation HD(s) of s satisfies HD(s) ≅ ∗, where the H-deviation HD(s) : F∧F

→ ΩB is given by

HD(s)(x∧y) = s(x)·s(y)·s(x + y)−1
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where + denotes the multiplication of F . It follows that

HD(s)(y∧x) = s(y)·s(x)·s(y + x)−1.

Since F is homotopy commutative, we have s(x + y) ≅ s(y + x). Thus we have

HD(s)(x∧y)·HD(s)(y∧x)−1 ≅ s(x)·s(y)·s(x + y)−1·s(y + x)·s(x)−1·s(y)−1

≅ s(x)·s(y)·s(x)−1·s(y)−1

= 〈s, s〉(x∧y).

This implies that 〈s, s〉 ≅ ∗, and hence B is a GW-space by (iii). Further, by (A.8)

we have

µ ◦ (h×h)((x, y), (x̄, ȳ) ≅ h(x, y)·h(x̄, ȳ)

≅ (Ωπ(x) · Ωπ(x̄)) · (s(y)·s(ȳ))

which, by using the H-structure of maps s and Ωπ, changes up to homotopy into
the following:

≅ Ωπ(x · x̄)·s(y + ȳ)

= h(x · x̄, y + ȳ).

This implies that h is an H-map and hence ΩB is H-equivalent to ΩE × F . This

completes the proof of the theorem.

Corollary A.9. (i) The standard lens space L(p) = S3/(Z/pZ) is a GW-space for

all p ≥ 1.

(ii) CP 3 = S7/T 1 is a GW-space.

Proof. (i) Put F = Z/pZ, E = S3 and B = L(p). They satisfy the conditions

of Theorem A.7. So it suffices to show that s : F → ΩE is an H-map. The H-

deviation of s is in the set [F∧F ,ΩE] ∼= [F∗F ,E] ∼= [∨αS1
α,S3] ∼= ⊕απ1(S3) = 0.

Hence HD(s) ≅ ∗, that is, s is an H-map. From (iv) of Theorem A.7, it follows

that B = L(p) is a GW-space.

(ii) Put F = T 1, E = S7 and B = CP 3. They satisfy the conditions of Theorem

A.7, since CP 3 is a Whitehead space and ΣΩCP 3 has the homotopy type of a

wedge sum of spheres. The H-deviation of s : F → ΩE is in the set [F∧F ,ΩE] ∼=

π3(S7) = 0, whence s is an H-map. From (iv) of Theorem A.7, it follows that B =

CP 3 is a GW-space. This implies the corollary.
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Remark. It is well-known that ΩS2 has the same homotopy type of ΩS3 ×T 1 and

the latter space is homotopy commutative. If we put F = T 1, E = S3 and B = S2,

they satisfy the conditions of Theorem A.7, but a splitting s : T 1 → ΩS2 cannot

be an H-map. In fact, its H-deviation is the adjoint of the Hopf map η : S3 → S2,

and S2 is not a GW-space. Thus the space ΩS2 has two completely different loop

structure: One is homotopy commutative and the other is not.
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