GENERALIZED WHITEHEAD SPACES WITH FEW CELLS
Dedicated to the memory of Professor J. Frank Adams

Norio Ifase and Mamoru Mimura
11th Apr. 1990

§0 Introduction

A topological space E is called a generalized Whitehead space (a GW space, for short) if every generalized Whitehead product on E is trivial.

The following are well known:
(0.1) E is a GW space if and only if for given maps $f: \Sigma X \rightarrow E$ and $g: \Sigma Y \rightarrow E$ there is an 'axial' map $H: \Sigma X \times \Sigma Y \rightarrow E$ such that $\left.H\right|_{\Sigma X}=f$ and $\left.H\right|_{\Sigma Y}=g$.
$(0.2) E$ is a GW space if and only if for a given space W, the homotopy set $[\Sigma W, E] \cong$ [$W, \Omega E]$ is an abelian group whose multiplication is given by the suspension structure or the loop addition.
(0.3) E is a GW space if and only if the loop space ΩE of E is homotopy abelian, that is,

$$
\mu \circ T \simeq \mu
$$

where $\mu: \Omega E \times \Omega E \rightarrow \Omega E$ is the loop multiplication and $T: \Omega E \times \Omega E \rightarrow \Omega E \times \Omega E$ is the switching map.

As is well known, a Hopf space always admits an axial map, and hence a Hopf space is a GW space. In other words, the notion of a GW space is a generalization of that of a Hopf space. For a sphere, however, the two notions are equivalent.

Let E be a $(q+n)$-Poincaré complex whose cells are in dimensions $0, q, n$ and $q+n$ with $0<q \leq n$, for example, the total space of a spherical bundle (or fibration) over a sphere. We call such a complex a Poincaré complex of type (q, n). The purpose of this paper is to show

Theorem. If a Poincaré complex E of type (q, n) is a $G W$ space, then $\{q, n\} \subseteq\{1,3,7\}$ or $(q, n)=(1,2),(2,4),(3,4)$ or $(3,5)$.

The examples for these cases are as follows:
$S^{q} \times S^{n}$ for $\{q, n\} \subseteq\{1,3,7\}$,
$L^{3}(m)(m \geq 1)$ for $(q, n)=(1,2)$,
$C P(3)$ for $(q, n)=(2,4)$,
S^{7} for $(q, n)=(3,4)$,
$S U(3)$ for $(q, n)=(3,5)$ and
$S p(2)$, or more generally, $E_{m \omega}(\mathrm{~m} \not \equiv 2 \bmod 4)$ for $(q, n)=(3,7)$. (See $[\mathbf{H}-\mathbf{R}]$ and $[\mathbf{Z}]$ for further on $E_{m \omega}$)

This paper is organized as follows. In $\S 1$, we study a space whose cohomology is a truncated polynomial algebra of height 3 on two generators. In $\S 2$, we study a GW space whose cohomology is a truncated polynomial algebra of height 4 on one generator. In
$\S \S 3-5$, we study a GW space whose cohomology is an exterior algebra on two generators. In the last section $\S 6$, we prove the main theorem.

Throughout the paper, G stands for ΩE whose loop multiplication is denoted by μ. The abbreviations $H^{*}(X)$ and $K^{*}(X)$ will be used for $H^{*}\left(X ; Z_{(2)}\right)$ and $K^{*}\left(X ; Z_{(2)}\right)$, resp. \tilde{H}^{*} and \tilde{K}^{*} denotes the augmentation ideal. $P H^{*}(X ; R)$ is the submodule of primitive elements and $Q H^{*}(X ; R)$ is the quotient module of indecomposables for any coefficient ring R. $R\{a, b, c, \ldots\}$ means that it is an R-module with generators a, b, c, \ldots.

§1 A stable GW space

Suppose that there is a space X satisfying

$$
\begin{equation*}
H^{*}(X ; Z / 2) \cong Z / 2^{[3]}\left[v_{q+1}, v_{n+1}\right] \quad \text { with } q \leq n \tag{1.1}
\end{equation*}
$$

where the right hand side is the polynomial algebra truncated at height 3 with 2 generators v_{q+1} and v_{n+1} of degree $q+1$ and $n+1$, respectively.

Hence $A=H^{*}(X ; Z / 2)$ is a truncated polynomial algebra over the modulo 2 Steenrod algebra $\mathcal{A}(2)$. Then from Theorem 2.1 of [Th1], it follows that $q=2^{r}-1$ and $n=2^{r}+2^{s}-1$ $(r-1 \geq s \geq 0)$ or $n=2^{t}-1(t \geq r)$. Again from Theorem 1.4 of [T1], it follows that

$$
\begin{equation*}
Q A^{i+j} \subseteq \operatorname{Im} S q^{i} \cap \operatorname{Ker} S q^{j} \quad \text { if }\binom{i-1}{j} \equiv 1 \bmod 2 \tag{1.2}
\end{equation*}
$$

where $Q A^{*}$ indicates the quotient module of indecomposables.
Furthermore if one replaces $P_{2} E$ with our X in the argument given in $\S 4$ of [$\mathbf{T h 2}$] and the result [Th2, 4.5] due to Browder with the result (1.2) above which does not suppose the existence of an H -structure, one can obtain

$$
\begin{equation*}
q=1,3,7 \text { or } 15 ; \tag{1.3}
\end{equation*}
$$

if X has 2-torsion in its homology, then n is even and hence $n=q+1$ and so $v_{n+1}=$ $S q^{1} v_{q+1}$. In particular, if $q=15$, then $n=16$ and $S q^{1} v_{16}=v_{17}$.

If X has no 2 -torsion in its homology, then we have

$$
\begin{aligned}
H^{*}(X) & \cong Z_{(2)}^{[3]}\left[\bar{v}_{(q+1) / 2}, \bar{v}_{(n+1) / 2}\right], \\
K^{*}(X) & \cong Z_{(2)}^{[3]}\left[w_{(q+1) / 2}, w_{(n+1) / 2}\right] .
\end{aligned}
$$

Hence there is a ring isomorphism $J: H^{*}(X) \rightarrow K^{*}(X)$ given by

$$
J\left(\bar{v}_{i}\right)=w_{i}, \quad \text { for } i=(q+1) / 2 \text { and }(n+1) / 2 .
$$

Now the Adams operation ψ^{k} decomposes through Hubbuck operations $R_{J}^{h}(k)$ for an element $J\left(x_{n}\right)$, where x_{n} is in dimension n, as follows:

$$
J^{-1} \psi^{k} J\left(x_{n}\right)=\sum_{i=0}^{\infty} \frac{k^{n}}{2^{i}} R_{J}^{h}(k)\left(x_{n}\right)
$$

where $R_{J}^{h}(k)\left(x_{n}\right)$ increases dimension by h. The multiplicativity of Adams operations is expressed by using Hubbuck operations as the following "Cartan formula" (see [Hu]):

$$
R_{J}^{h}(k)\left(v \cdot v^{\prime}\right)=\sum_{i+j=h} R_{J}^{i}(k)(v) \cdot R_{J}^{j}(k)\left(v^{\prime}\right)
$$

Set

$$
\begin{aligned}
& R^{h}=\frac{1}{2^{i}} R_{J}^{h}(3) \\
& P^{h}=R_{J}^{h}(2) \quad\left(\text { the reduction } \bmod 2 \text { of } P^{h} \text { is } S q^{2 h}\right)
\end{aligned}
$$

The relation $\psi^{3} \psi^{2}=\psi^{2} \psi^{3}$ of Adams operations is expressed by using the Hubbuck operations as follows:

$$
\begin{equation*}
\left(3^{n}-1\right) P^{n}+\sum_{i=1}^{n} 3^{n-i} 2^{i} R^{i} P^{n-i}=\sum_{i=1}^{n} 2^{2 i} P^{n-i} R^{i} \tag{1.4}
\end{equation*}
$$

Furthermore, the relation $\psi^{2}\left(x_{n}\right) \equiv x_{n}^{2} \bmod 2$ is interpreted as

$$
\begin{align*}
P^{n+j}\left(x_{n}\right) & \equiv 0 \quad \bmod \quad 2^{j+1} \text { and } \tag{1.5}\\
P^{n}\left(x_{n}\right) & \equiv x_{n}^{2} \quad \bmod \quad 2 \text { in } H^{*}(X) .
\end{align*}
$$

Note that the above formula is independent of the choice of the splitting J.
Following (1.3), we check the cases $q=15,7,3$ and 1 , one by one.
Consider the case $q=15$; by (1.3) one has $n=16$ and $S q^{1} v_{16}=v_{17}$. By (1.2) one has $v_{17} \in \operatorname{Im} S q^{8}$, since $\binom{9-1}{8} \equiv 1 \bmod 2 ;$ but it contradicts $H^{9}(X ; Z / 2)=0$. Thus $q \neq 15$.

Consider the case $q=7$ and $n=7+2^{s}$ with $s \leq 2$: If $s=0$, then $S q^{1} v_{8}=v_{9}$. By (1.2) $v_{9} \in \operatorname{Im} S q^{4}$, since $\binom{5-1}{4} \equiv 1 \bmod 2$, but it contradicts $H^{5}(X ; Z / 2)=0$.
If $s=1$, then $n=9$ and $v_{10} \in \operatorname{Im} S q^{4}$, since $\binom{6-1}{4} \equiv 1 \bmod 2$; but it contradicts $H^{6}(X ; Z / 2)=0$.
Thus $s=2$ and then $n=11$. We have

$$
\begin{aligned}
H^{*}(X) & \cong Z_{(2)}^{[3]}\left[\bar{v}_{4}, \bar{v}_{6}\right] \\
K^{*}(X) & \cong Z_{(2)}^{[3]}\left[w_{4}, w_{6}\right]
\end{aligned}
$$

since the homology of X is free of 2 torsion. It follows from (1.4) and (1.5) that $P^{\text {odd }}=0$ implies $R^{2} \equiv 2 P^{2} \bmod 4$, and hence we obtain

$$
\begin{aligned}
2 P^{6} P^{2}\left(\bar{v}_{4}\right) & \equiv R^{4} P^{4}\left(\bar{v}_{4}\right) \quad \bmod 4, \\
2 \bar{v}_{6}^{2} & \equiv R^{4} P^{4}\left(\bar{v}_{4}\right) \quad \bmod 4 .
\end{aligned}
$$

Also from $R^{2} \equiv 2 P^{2} \bmod 4, P^{4}\left(\bar{v}_{4}\right) \equiv \lambda \bar{v}_{4}^{2} \bmod 4$ where $(\lambda, 2)=1$, and the Cartan formula, one obtains

$$
0 \not \equiv 2 \bar{v}_{6}^{2} \equiv \lambda R^{4}\left(\bar{v}_{4}^{2}\right) \equiv \lambda \bar{v}_{4} R^{4}\left(\bar{v}_{4}\right) \quad \bmod 4 .
$$

It is a contradiction, since the right hand side does not contribute $2 \bar{v}_{6}^{2}$.
Thus $n \neq 7+2^{s}$ with $s \leq 2$.
Consider the case $q=7$ and $n=2^{t}-1$ with $t \geq 3$: If $t=3$, then $(q, n)=(7,7)$.
If $t=4$, then $n=15$. We have

$$
\begin{aligned}
& H^{*}(X) \cong Z_{(2)}^{[3]}\left[\bar{v}_{4}, \bar{v}_{8}\right] \\
& K^{*}(X) \cong Z_{(2)}^{[3]}\left[w_{4}, w_{8}\right]
\end{aligned}
$$

Then by combining (1.4) with $P^{\text {odd }}=P^{2 \cdot o d d}=0$, one obtains that

$$
\begin{equation*}
2 P^{8} \equiv P^{4} P^{4} \quad \bmod \quad 4 \text { in } H^{*}(X) \tag{1.6}
\end{equation*}
$$

From (1.5), it follows that

$$
\begin{aligned}
& P^{4}\left(\bar{v}_{8}\right)=\alpha \bar{v}_{4} \bar{v}_{8}, \quad \text { with } \alpha \in Z_{(2)}, \\
& P^{8}\left(\bar{v}_{8}\right) \equiv \bar{v}_{8}^{2} \quad \bmod 2 \\
& P^{4}\left(\bar{v}_{4}\right) \equiv \bar{v}_{4}^{2} \quad \bmod 2
\end{aligned}
$$

and hence

$$
P^{4}\left(\bar{v}_{4}\right)=\lambda \bar{v}_{4}^{2}+2 \beta \bar{v}_{8}, \quad \text { where } \lambda \equiv 1 \bmod 2 .
$$

Then from (1.6), it follows that

$$
\begin{aligned}
2 \bar{v}_{8}^{2} & \equiv 2 P^{8}\left(\bar{v}_{8}\right) \equiv P^{4} P^{4}\left(\bar{v}_{8}\right) \equiv \alpha P^{4}\left(\bar{v}_{4} \bar{v}_{8}\right) \quad \bmod 4 \\
& \equiv \alpha P^{4}\left(\bar{v}_{4}\right) \bar{v}_{8} \equiv 2 \alpha \beta \bar{v}_{8}^{2} \quad \bmod 4
\end{aligned}
$$

Hence $\alpha \beta \equiv 1 \bmod 2$. By using (1.5), however, it follows from (1.6) that

$$
\begin{aligned}
0 & \equiv 2 P^{8}\left(\bar{v}_{4}\right) \equiv P^{4} P^{4}\left(\bar{v}_{4}\right) \equiv P^{4}\left(\lambda \bar{v}_{4}^{2}+2 \beta \bar{v}_{8}\right) \quad \bmod 4 \\
& \equiv 2 \lambda \bar{v}_{4} P^{4}\left(\bar{v}_{4}\right)+2 \beta P^{4}\left(\bar{v}_{8}\right) \equiv 2 \beta P^{4}\left(\bar{v}_{8}\right) \equiv 2 \alpha \beta \bar{v}_{4} \bar{v}_{8} \quad \bmod 4
\end{aligned}
$$

which contradicts $\alpha \beta \equiv 1 \bmod 2$. Hence $t \neq 4$.
If $t \geq 5$, we have

$$
H^{*}(X ; Z / 2) \cong Z / 2^{[3]}\left[\bar{v}_{4}, \bar{v}_{2^{t-1}}\right] .
$$

Then from the main result of $[\mathbf{A}]$, it follows that

$$
S q^{2^{t}} \equiv \sum_{i=0}^{t-1} S q^{2^{i}} \Psi_{i}
$$

modulo the total indeterminacy which is in the image of $S q^{i}$ with $2^{t}>i>0$. Now the formula gives a contradiction. In fact, the left hand side gives $S q^{2^{t}} v_{2^{t}} \not \equiv \equiv 0 \bmod 2$ while the right hand side and the total indeterminacy are trivial, since

$$
H^{2^{t+1}-2^{i}}(X)=0 \quad \text { for } i \leq t-1
$$

It is a contradiction.
Thus $(q, n)=(7,7)$, provided that $q=7$.
Consider the case $q=3$ and $n=3+2^{s}$ with $s \leq 1$: If $s=0$, then $n=4$ and $S q^{1} v_{4}=$ v_{5}. We have $v_{5} \in \operatorname{Im} S q^{2}$ by (1.2), since $\binom{4-2}{2} \equiv \overline{1} \bmod 2$. This contradicts $H^{2}(X ; Z / 2)$ $=0$. Hence $s=1$ and then $n=5$ and $(q, n)=(3,5)$. Moreover we have $v_{6} \in \operatorname{Im} S q^{2}$ by (1.2), since $\binom{5-2}{2} \equiv 1 \bmod 2$.

Consider the case $q=3$ and $n=2^{t}-1$ with $t \geq 2$: If $t=2$, then $(q, n)=(3,3)$.
If $t=3$, then $(q, n)=(3,7)$.
If $t \geq 4$, then we will be led to a contradiction as in the case ($q=7$ and $n=2^{t}-1$ with $t \geq 5$).

Thus $(q, n)=(3,3),(3,5)$ or $(3,7)$, provided that $q=3$.
Consider the case $q=1$ and $n=1+2^{s}$ with $s \leq 0$: We have $s=0$ and hence $(q, n)=$ $(1,2)$. Moreover by (1.3), $S q^{1} v_{2}=v_{3}$.

Consider the case $q=1$ and $n=2^{t}-1$ with $t \geq 1$: If $t=1$, then $(q, n)=(1,1)$.
If $t=2$, then $(q, n)=(1,3)$.
If $t=3$, then $(q, n)=(1,7)$.
If $t \geq 4$, then we will be led to a contradiction as in the case ($q=7$ and $n=2^{t}-1$ with $t \geq 5)$.

Thus $(q, n)=(1,1),(1,2),(1,3)$ or $(1,7)$, provided that $q=1$.
Therefore we have shown
Proposition 1.7. If there is a space X such that

$$
H^{*}(X ; Z / 2) \cong Z / 2^{[3]}\left[v_{q+1}, v_{n+1}\right]
$$

with $q \leq n$, then $\{q, n\} \subseteq\{1,3,7\}$ or $(q, n)=(1,2)$ or $(3,5)$. Moreover if $(q, n)=(1,2)$, then $S q^{\overline{1}} v_{2}=v_{3}$; if $(q, n)=(3,5)$, then $S q^{2} v_{4}=v_{6}$.

To apply this, we introduce the following notion.
Definition. $E \simeq S^{q} \cup_{\alpha} e^{n} \cup e^{q+n}$ is said to be stable if $n<2 q$.
we get
Corollary 1.8. Let E be a Poincaré complex of type (q, n). If E is a stable $G W$ space, then $\{q, n\} \subseteq\{1,3,7\}$ or $(q, n)=(1,2),(3,4)$ or $(3,5)$.

Proof. By the hypotheses, $q>1$ or $\alpha=0$. Let Q be the subspace $S^{q} \cup e^{n}$ of E. Then, from the hypotheses, it follows that Q is desuspendable and the mod 2 cohomology of E is an exterior algebra except the case when $n=q+1$ and $\alpha=m \iota_{q}, m$ odd.
(Case 1: $n=q+1$ and $\alpha=m \iota_{q}, m$ odd). E has the homotopy type of a $(2 q+1)$-sphere at 2 . Hence by the theorem of Adams $[\mathbf{A}], q=1$ or 3 . Thus $(q, n)=(1,2)$ or $(3,4)$.
(Case 2: The mod 2 cohomology of E is an exterior algebra). There exists an axial map $\mu: Q \times Q \rightarrow E$ with axis the inclusion $Q \hookrightarrow E$. Let $Q(2)$ be the mapping cone of the Hopf construction of μ. From a direct computation using [Th3], we obtain that the mod 2 cohomology of $Q(2)$ is the polynomial algebra truncated at height 3 on the generators in dimensions $q+1$ and $n+1$. Hence $\{q, n\} \in\{1,3,7\}$ or $(q, n)=(3,5)$. This implies the corollary.

QED.

§2 A GW space whose cohomology is a truncated polynomial algebra

Let E be a Poincaré complex of type (q, n) with GW space structure such that $H^{*}(E ; Q)$ $\cong Q\left[x_{q}\right] /\left(x_{q}^{4}\right)$. In this section, we will show
Proposition 2.1. If a $G W$ space E satisfies the above condition, then $q=2$ and $H^{*}(E)$ $\cong Z_{(2)}\left[x_{2}\right] /\left(x_{2}^{4}\right)$.

The remainder of this section is devoted to proving the proposition.
By the assumption on the cohomology ring, q is even. It is easy to see that

$$
H^{*}\left(E ; Z_{(2)}\right) \cong Z_{(2)}\left\{x_{q}, x_{2 q}, x_{3 q}\right\},
$$

where $x_{q}^{2}=a x_{2 q}$ and $x_{q} x_{2 q}=x_{3 q}$ with $a \in Z_{(2)}$. So we have

$$
E \quad \simeq_{2} \quad S^{q} \cup_{\alpha} e^{2 q} \cup e^{3 q}, \quad \alpha \in \pi_{2 q-1}\left(S^{q}\right)
$$

Since E is a GW space, the Whitehead product of the inclusion $i: S^{q} \hookrightarrow E$ vanishes, and hence $i_{*}\left[\iota_{q}, \iota_{q}\right]=0$ where $\iota \in \pi_{q}\left(S^{q}\right)$ is the class of the identity. For dimensional reasons $i_{*}\left[\iota_{q}, \iota_{q}\right]$ is already trivial in $\pi_{2 q-1}\left(E^{[2 q]}\right)=\pi_{2 q-1}\left(S^{q} \cup_{\alpha} e^{2 q}\right)$. Denoting by F the homotopy fibre of i, there is a map $f: S^{2 q-1} \rightarrow E$ such that $\hat{i} \circ f \simeq\left[\iota_{q}, \iota_{q}\right]$ where $\hat{i}: F \rightarrow S^{q}$ is the inclusion of the homotopy fibre. On the other hand,

$$
F \quad \simeq_{2} \quad S^{2 q-1} \cup(\text { higher dimensional cells })
$$

so that $\left.i\right|_{S^{2 q-1}}=\alpha$. If one compresses f to the lowest dimensinal cell $S^{2 q-1}$, one obtains $\left[\iota_{q}, \iota_{q}\right]=\alpha \circ f$, where $f=\lambda \iota_{2 q-1}: S^{2 q-1} \rightarrow S^{2 q-1}$ with $\lambda \in Z$. Thus one obtains $\left[\iota_{q}, \iota_{q}\right]=$ $\lambda \alpha$. Taking the Hopf invariants of the both sides, one has $2=\lambda H(\alpha)$, whence $a= \pm H(\alpha)$ $= \pm 1$ or ± 2.

Lemma 2.2. $H(\alpha)= \pm 1$ and hence $q=2,4$ or 8 .
Proof. Suppose $H(\alpha)= \pm 2$ so that $a= \pm 2, \alpha=\left[\iota_{q}, \iota_{q}\right]$ and $\Sigma \alpha=0$. This assumption leads us to a contradiction. Now the ($2 q$)-skeleton of G has the following cell decomposition:

$$
G^{[2 q]} \quad \simeq_{2} \quad S^{q-1} \cup_{\left[\iota_{q-1}, \iota_{q-1}\right]} e^{2 q-2} \cup e^{2 q-1}
$$

Thus putting $Q=\Sigma\left(G^{[2 q]}\right)$, we have

$$
Q \quad \simeq_{2} \quad\left(S^{q} \vee S^{2 q-1}\right) \cup_{\bar{\alpha}} e^{2 q}
$$

where $\bar{\alpha}$ is in $\pi_{2 q-1}\left(S^{q} \vee S^{2 q-1}\right)$.
Proposition 2.3. $\bar{\alpha}$ corresponds to $\left(\alpha, \pm 2 \iota_{2 q-1}\right)$ under the isomorphism $\pi_{2 q-1}\left(S^{q} \vee S^{2 q-1}\right)$ $\cong \pi_{2 q-1}\left(S^{q}\right) \oplus \pi_{2 q-1}\left(S^{2 q-1}\right)$.

Proof. By calculating the cohomology Serre spectral sequence associated with the path fibration $G \hookrightarrow P E \rightarrow E$, one obtains

$$
\begin{aligned}
& H^{q-1}(G) \cong Z_{(2)} \\
& H^{q-1+j}(G)=0, \quad \text { for } 1 \leq j \leq q-1, \\
& H^{2 q-1}(G) \cong Z / 2
\end{aligned}
$$

Hence the composite map $p_{2} \bar{\alpha}$ is homotopic to $\pm 2 \iota_{2 q-1}$, where p_{2} indicates the projection to the second factor. Moreover the natural inclusion $\lambda_{1}: Q \hookrightarrow \Sigma G \hookrightarrow P^{\infty} G \simeq E$ induces the following commutative diagram.

Here both the $q-1$ and the $2 q-1$ dimensional generators in $H^{*}(G)$ are transgressive and therefore λ_{1} induces a surjection of cohomology groups in dimensions $\leq 2 q$. Hence $p_{1} \bar{\alpha}$ is homotopic to α, where p_{1} indicates the projection to the first factor.

QED.
Let us recall that Q is a suspended space and E is a GW space. Hence there exists an axial map

$$
\mu: Q \times Q \rightarrow E
$$

with axis λ_{1}. So the Hopf construction of μ gives rise to a map

$$
H(\mu): \Sigma Q \wedge Q \simeq Q * Q \rightarrow \Sigma E
$$

One can see that ΣQ satisfies

$$
\Sigma Q \quad \simeq_{2} \quad\left(S^{q+1} \vee S^{2 q}\right) \cup_{\Sigma \bar{\alpha}} e^{2 q+1}
$$

By combining Proposition 2.3 with $\Sigma \alpha=0$, one obtains that $\Sigma \bar{\alpha}$ corresponds to $\left(0, \pm 2 \iota_{2 q}\right)$ under the isomorphism $\pi_{2 q}\left(S^{q+1} \vee S^{2 q}\right) \cong \pi_{2 q}\left(S^{q+1}\right) \oplus \pi_{2 q}\left(S^{2 q}\right)$. Hence we obtain

$$
\Sigma Q \quad \simeq_{2} \quad \Sigma S^{q} \vee \Sigma M^{2 q}
$$

where $\Sigma M^{2 q}=S^{2 q-1} \cup_{ \pm 2 \iota} e^{2 q}$. Thus we obtain

$$
\Sigma Q \wedge Q \quad \simeq_{2} \quad \Sigma\left(S^{q} \vee M^{2 q}\right) \wedge\left(S^{q} \vee M^{2 q}\right)
$$

which contains $\Sigma\left(M^{2 q} \wedge M^{2 q}\right)$. We denote by $\bar{H}(\mu)$ the restriction of $H(\mu)$ to the subcomplex $\Sigma\left(M^{2 q} \wedge M^{2 q}\right)$ and by $Q(2)$ the mapping cone of $\bar{H}(\mu)$. Then we have an exact sequence associated with it:

$$
\cdots \rightarrow \tilde{H}^{*-1}\left(\Sigma\left(M^{2 q} \wedge M^{2 q}\right) ; Z / 2\right) \xrightarrow{\delta} \tilde{H}^{*}(Q(2) ; Z / 2) \rightarrow \tilde{H}^{*}(\Sigma E ; Z / 2) \rightarrow \cdots
$$

For dimensional reasons, the sequence splits and we have

$$
\begin{aligned}
\tilde{H}^{*}(Q(2) ; Z / 2) & \cong Z / 2\left\{v_{q+1}, v_{2 q+1}, v_{3 q+1}\right\} \oplus \operatorname{Im} \delta \\
& \cong \tilde{H}^{*}\left(\Sigma\left(M^{2 q} \wedge M^{2 q}\right) ; Z / 2\right) \\
& \cong Z / 2\left\{x_{2 q-1} \otimes x_{2 q-1}, x_{2 q-1} \otimes x_{2 q}, x_{2 q} \otimes x_{2 q-1}, x_{2 q} \otimes x_{2 q}\right\}
\end{aligned}
$$

From [Th3], it follows that

$$
v_{2 q+1}^{2}=\delta \Sigma^{*}\left(x_{2 q} \otimes x_{2 q}\right) \neq 0
$$

and hence $0 \neq S q^{2 q+1} v_{2 q+1}$. Let us recall the Adem relation

$$
S q^{q} S q^{q+1}=S q^{2 q+1}+\binom{q-1}{q-2} S q^{2 q} S q^{1}+\ldots+\binom{\frac{q}{2}}{0} S q^{3 q / 2+1} S q^{q / 2}
$$

for q even. For j with $1 \leq j \leq q / 2$, we have

$$
\operatorname{deg} S q^{j} v_{2 q+1}=2 q+j+1<3 q+1<4 q,
$$

which implies $S q^{j} v_{2 q+1}=0$ and hence $S q^{q+1} v_{2 q+1} \neq 0$. The Adem relation $S q^{q+1}=S q^{1} S q^{q}$ (q even) implies that $S q^{q} v_{2 q+1} \neq 0$ and therefore $S q^{q} v_{2 q+1}=v_{3 q+1}$. Hence $S q^{1} v_{3 q+1} \neq 0$ where $\operatorname{deg} S q^{1} v_{3 q+1}=3 q+2 \leq 4 q$. Thus $3 q+2=4 q$ and hence $q=2$.

Even when $q=2$, one has

$$
S q^{1} v_{3 q+1}=\delta \Sigma^{*}\left(x_{2 q-1} \otimes x_{2 q-1}\right)
$$

and hence

$$
\begin{aligned}
0 & =S q^{1} S q^{1} v_{3 q+1} \\
& =\delta \Sigma^{*} S q^{1}\left(x_{2 q-1} \otimes x_{2 q-1}\right) \\
& =\delta \Sigma^{*}\left(x_{2 q} \otimes x_{2 q-1}+x_{2 q-1} \otimes x_{2 q}\right) \\
& \neq 0
\end{aligned}
$$

which is a contradiction. This implies that $\Sigma \alpha \neq 0$. Thus $H(\alpha)= \pm 1$ and hence $q=2,4$ or 8 .

QED.
According to $[\mathbf{T o}],\left[\iota_{q}, \iota_{q}\right]=2 \alpha$ holds only when $q=2$. Thus we have $H^{*}(E) \cong$ $Z_{(2)}\left[x_{2}\right] /\left(x_{2}^{4}\right)$.
Remark. $H^{*}\left(C P^{3}\right) \cong Z_{(2)}\left[x_{2}\right] /\left(x_{2}^{4}\right)$.

$\S 3$ A GW space whose cohomology is an exterior algebra

Throughout the section let E be a Poincaré complex of type (q, n) with GW space structure such that

$$
H^{*}(E)=\wedge\left(x_{q}, x_{n}\right), \quad 1 \leq q<n
$$

If $q=1$, then the GW space structure inherits the universal covering space \tilde{E} of E, which has the homotopy type of S^{n}. Let us recall that a sphere is a GW space if and only if it is an H-space. Hence $n=3$ or 7 .

We will prove that both q and n are odd integers, even when $q>1$.
First we show q is odd.

Consider the cohomology Serre spectral sequence with $Z_{(2)}$ coefficients associated with the path fibration $G \hookrightarrow P E \rightarrow E$. Since the element $x_{q} \in H^{q}(E)$ is in the image of the transgression, we have $0 \neq \sigma^{*} x_{q} \in H^{q-1}(G) \cong Z_{(2)}$, where $\sigma^{*}: H^{*}(E) \rightarrow H^{*-1}(G)$ is the cohomology suspension. So $u_{q-1}=\sigma^{*} x_{q}$ is transgressive, and hence is primitive. Thus the element $\Sigma^{*} u_{q-1} \in H^{q}(\Sigma G)$ is extendable to $P^{2} G$ and the extension is given by the image of x_{q} under the induced map of the composite map

$$
\lambda_{2}: P^{2} G \hookrightarrow P^{\infty} G \simeq E
$$

since $\sigma^{*} x_{q}$ is represented by a loop map whose delooping is given by x_{q}. Hence we obtain

$$
\bar{x}_{q}^{2}=0 \quad \text { in } \quad H^{*}\left(P^{2} G\right) .
$$

Now we recall that the element \bar{x}_{q}^{2} is given by $\bar{x}_{q}^{2}= \pm \delta_{2} \Sigma^{*}\left(u_{q-1} \otimes u_{q-1}\right)$ where δ_{2} is the operation given in [Th2]. So it follows from the triviality of \bar{x}_{q}^{2} that $u_{q-1} \otimes u_{q-1}$ is in the image of $\overline{\mu^{*}}=\mu^{*}-p_{1}^{*}-p_{2}^{*}$:

$$
\bar{\mu}^{*}=\mu^{*}-p_{1}^{*}-p_{2}^{*}: \tilde{H}^{*}(G) \rightarrow \tilde{H}^{*}(G) \otimes \tilde{H}^{*}(G) .
$$

So the relation (0.1) implies that the element $u_{q-1} \otimes u_{q-1}$ is T^{*}-invariant where T is the switching map. On the other hand, $T^{*}\left(u_{q-1} \otimes u_{q-1}\right)=-u_{q-1} \otimes u_{q-1}$ if q is even. Hence it cannot be T^{*}-invariant, since it is a generator of $\tilde{H}^{2(q-1)}(G \wedge G) \cong \tilde{H}^{q-1}(G) \otimes \tilde{H}^{q-1}(G)$ and not of order 2 . Thus q have to be odd.

Next we show

$$
\begin{equation*}
n \text { is odd. } \tag{3.2}
\end{equation*}
$$

Suppose that n is even. Then $n-1$ is odd and is not divisible by $q-1$, which is known to be even. It follows that $u_{n-1}=\sigma^{*} x_{n}$ is non trivial and indecomposable. As in the case with q, the element $\Sigma^{*} u_{n-1}$ is extendable over $P^{2} G$. Denoting by \bar{x}_{n} the extended element, we have

$$
\bar{x}_{n}^{2}=0 \quad \text { in } H^{*}\left(P^{2} G\right) .
$$

It means that the element $u_{n-1} \otimes u_{n-1}$ is in the image of $\overline{\mu^{*}}$. On the other hand $u_{n-1} \otimes u_{n-1}$ belongs to $\tilde{H}^{2 n-2}(G \wedge G)$, which contains the direct summand $\tilde{H}^{n-1}(G) \otimes \tilde{H}^{n-1}(G) \cong Z_{(2)}$ generated by $u_{n-1} \otimes u_{n-1}$, which implies that $u_{n-1} \otimes u_{n-1} \notin \operatorname{Im} \overline{\mu^{*}}$; it is a contradiction. This implies that n is odd.

Thus we have shown
Proposition 3.3. If E is a $G W$ space with $H^{*}(E)=\wedge\left(x_{q}, x_{n}\right)$, then both q and n are odd. If in addition $q=1$, then $n=3$ or 7 .

In the remainder of this section, we assume that $q>1$. Since q and n are odd, we may assume that $q+1<n$.

Now we choose an inclusion map $j: S^{q} \rightarrow E$ such that $j^{*} x_{q}$ is a generator of $H^{q}\left(S^{q}\right) \cong$ $Z_{(2)}$ (since we do not assume that $S^{q} \hookrightarrow E \rightarrow S^{n}$ is a fibration in this section). Denote by
F the homotopy fibre of j, that is, $F \rightarrow S^{q} \rightarrow E$ is a Serre fibration). Then by the Serre spectral sequence one sees

$$
H^{*}(F) \cong H^{*}\left(\Omega S^{q}\right)
$$

Similarly the Serre spectral sequence of the fibration $\Omega S^{q} \hookrightarrow G \rightarrow F$ collapses and hence

$$
\begin{equation*}
H^{*}(G) \cong H^{*}\left(\Omega S^{q}\right) \otimes H^{*}\left(\Omega S^{n}\right) \quad \text { as modules, } \tag{3.4}
\end{equation*}
$$

in particular

$$
\begin{equation*}
H^{*}(G) \cong H^{*}\left(\Omega S^{q}\right) \quad \text { for } *<n-1 \tag{3.4’}
\end{equation*}
$$

Here a system of ring generators of $H^{*}\left(\Omega S^{q}\right)$ is given by

$$
\begin{equation*}
u_{q-1}=\gamma_{1} u_{q-1}, \gamma_{2} u_{q-1}, \ldots, \gamma_{j} u_{q-1}, \ldots \tag{3.5}
\end{equation*}
$$

where $j \geq 1$ and $u_{q-1}=\sigma^{*} x_{q}$.
One obtains from (3.4) the following extension of bicommutative biassociative Hopf algebras:

$$
Z_{(2)} \rightarrow H^{*}\left(\Omega S^{n}\right) \rightarrow H^{*}(G) \rightarrow H^{*}\left(\Omega S^{q}\right) \rightarrow Z_{(2)}
$$

Proposition 3.6. The following is a commutative diagram of the exact sequences:

where the element \tilde{u}_{n-1} (and \tilde{u}_{q-1}) the modulo 2 reduction of u_{n-1} (and u_{q-1}, resp.) generates $P H^{*}\left(\Omega S^{n} ; Z / 2\right) \cong Z / 2$ (and $P H^{*}\left(\Omega S^{q} ; Z / 2\right) \cong Z / 2$, resp.).

It follows from (3.5) that the first non-trivial relation can occur in degree $n-1$ only when there is a non-negative integer r such that

$$
n-1=2^{r+1}(q-1) .
$$

Then the relation is

$$
\begin{equation*}
\tilde{u}_{n-1}=\left(\gamma_{2^{r}} \tilde{u}_{q-1}\right)^{2} \tag{3.7}
\end{equation*}
$$

where \tilde{u}_{ℓ} is the modulo 2 reduction of u_{ℓ} for $\ell=q-1$ and $n-1$. Thus it follows that n $\equiv 1 \bmod 4$.

Theorem 3.8. (i) If $n \equiv 1 \bmod 4$, then $\tilde{x}_{n}=S q^{2} \tilde{x}_{q}$ and $(q, n)=(3,5)$,
(ii) $q \equiv 3 \bmod 4$,
where \tilde{x}_{ℓ} is the modulo 2 reduction of x_{ℓ} for $\ell=q$ and n.
The remainder of this section will be devoted to proving this theorem. First in the general situation, we will construct a space and compute its cohomology ring. The cell structure of the n-skeleton of G is as follows:

$$
G^{[n]} \simeq_{2}\left(\Omega S^{q}\right)^{[n]} \cup e^{n-1}
$$

Thus putting $Q=\Sigma\left(G^{[n]}\right)$, we have

$$
\begin{array}{cl}
Q & \simeq_{2} \quad\left(\bigvee_{i=1}^{\left[\frac{n-1}{q-1}\right]} S^{i(q-1)+1}\right) \cup e^{n} \\
\Sigma Q \quad \simeq_{2} \quad\left(\bigvee_{i=1}^{\left[\frac{n-1}{q-1}\right]} S^{i(q-1)+2}\right) \cup e^{n+1}
\end{array}
$$

The module $Q H^{*}(E)$ is mapped injectively into $H^{*}(Q)$ by the induced homomorphism of the canonical inclusion

$$
\lambda_{1}: Q \subset \Sigma G \subset P^{\infty} G \simeq E .
$$

In fact, as was already seen, $P H^{*}(G) \cong Z_{(2)}\left\{u_{q-1}, u_{n-1}\right\}$ with u_{i} transgressive, and λ_{1}^{*} gives rise to the cohomology suspension. Thus we obtain

$$
\operatorname{Im}\left(\Sigma \lambda_{1}\right)^{*} \cong Z_{(2)}\left\{v_{q+1}, v_{n+1}\right\}
$$

which is a direct summand of $\tilde{H}^{*}(\Sigma Q)$. Hence we have

$$
\tilde{H}^{*}(\Sigma Q) \cong \operatorname{Im}\left(\Sigma \lambda_{1}\right)^{*} \oplus D
$$

where D is the module generated by elements $\gamma_{i} u_{q-1}$ with $i \geq 2$. Since Q is a suspension space, there exists an axial map

$$
\mu: Q \times Q \rightarrow E
$$

with axis λ_{1}. So the Hopf construction of μ gives rise to a map

$$
H(\mu): \Sigma Q \wedge Q \simeq Q * Q \rightarrow \Sigma E
$$

We denote by $Q(2)$ the mapping cone of $H(\mu)$, so that we have a cofibre sequence

$$
\begin{equation*}
\Sigma E \xrightarrow{j} Q(2) \rightarrow \Sigma Q \wedge \Sigma Q . \tag{3.9}
\end{equation*}
$$

The elements $x_{q}, x_{n} \in \tilde{H}^{*}(E)$ are primitive with respect to μ in the sense of Thomas, since $\tilde{H}^{\text {odd }}(Q \wedge Q)=0$. Hence we have

$$
\begin{aligned}
& \tilde{\mu}^{*}\left(x_{i}\right)=0 \quad \text { for } i=q, n, \\
& \tilde{\mu}^{*}\left(x_{q} x_{i}\right)=\lambda_{1}^{*} x_{q} \otimes \lambda_{1}^{*} x_{n}-\lambda_{1}^{*} x_{n} \otimes \lambda_{1}^{*} x_{q} .
\end{aligned}
$$

So the image of j^{*} induced by the inclusion $j: \Sigma E \hookrightarrow Q(2)$ are given by

$$
\operatorname{Im} j^{*} \cong Z_{(2)}\left\{\Sigma^{*} x_{q}, \Sigma^{*} x_{n}\right\} .
$$

Also the image and the kernel of δ induced by the collapsing map $Q(2) \rightarrow \Sigma Q \wedge \Sigma Q \cong$ $\Sigma^{4}\left(G^{[n]} \wedge G^{[n]}\right)$ is given by

$$
\begin{align*}
& \operatorname{Im} \delta \cong \delta\left(\Sigma^{4}\right)^{*} Z_{(2)}\left\{u_{i} \otimes u_{j} ; i, j=q-1 \text { or } n-1\right\} \oplus S_{2}, \\
& \text { Ker } \delta \cong\left(\Sigma^{4}\right)^{*} Z_{(2)}\left\{u_{q-1} \otimes u_{n-1}-u_{n-1} \otimes u_{q-1}\right\} \tag{3.10}
\end{align*}
$$

where $S_{2} \cong \delta\left(D \otimes \tilde{H}^{*}(\Sigma Q)\right) \oplus \delta\left(\tilde{H}^{*}(\Sigma Q) \otimes D\right)$. Therefore by (3.9), we obtain the following short exact sequence :

$$
0 \rightarrow \operatorname{Im} \delta \rightarrow \tilde{H}^{*}(Q(2)) \rightarrow Z_{(2)}\left\{\Sigma^{*} x_{q}, \Sigma^{*} x_{n}\right\} \rightarrow 0
$$

Thus denoting by v_{i+1} the extension of $\Sigma^{*} x_{i}$ over $Q(2), i=q$ and n, we obtain the following ring isomorphisms by virtue of [Th3]:

$$
\begin{align*}
& H^{*}(Q(2)) \cong Z_{(2)}^{[3]}\left[v_{q+1}, v_{n+1}\right] \oplus S_{2}, \tag{3.11}\\
& \tilde{H}^{*}(Q(2)) \cdot S_{2}=0
\end{align*}
$$

where $v_{i+1} \cdot v_{j+1}=\delta\left(\Sigma^{4}\right)^{*}\left(u_{i-1} \otimes u_{j-1}\right)$
Remark that these results are independent of the choice of v_{q+1} and v_{n+1}.
Proposition 3.12. (1) $Q(2)$ has no torsion and hence $S q^{1} \tilde{H}^{*}(Q(2) ; Z / 2)=0$
(2) $\mathcal{A}(2)\left(Z / 2\left\{\tilde{v}_{q+1}, \tilde{v}_{n+1}\right\}\right) \subset Z / 2^{[3]}\left[\tilde{v}_{q+1}, \tilde{v}_{n+1}\right] \oplus\left(S_{2} \otimes Z / 2\right)$
(3) $\mathcal{A}(2)(\operatorname{Im} \delta \otimes Z / 2) \subseteq \operatorname{Im} \delta \otimes Z / 2$, where \tilde{v}_{ℓ} is the modulo 2 reduction of v_{ℓ} for $\ell=$ $q+1$ and $n+1$.

The following two propositions imply Theorem 3.8.
Proposition 3.13. If $n \equiv 1 \bmod 4$, then $\tilde{x}_{n}=S q^{2} \tilde{x}_{q}$ and $(q, n)=(3,5)$
Proof. By (3.11), $H^{*}(Q(2) ; Z / 2)$ has a direct summand $Z / 2{ }^{[3]}\left[\tilde{v}_{q+1}, \tilde{v}_{n+1}\right]$, where \tilde{v}_{ℓ} is the modulo 2 reduction of v_{ℓ} for $\ell=q+1$ and $n+1$. If $n=4 m+1$ for some $m \geq 1$, we have

$$
0 \neq \tilde{v}_{n+1}^{2}=S q^{4 m+2} \tilde{v}_{n+1}
$$

where $S q^{4 m+2}=S q^{2} S q^{4 m}+S q^{1} S q^{4 m} S q^{1}$.
So we have that $\tilde{v}_{n+1}^{2} \in \operatorname{Im} S q^{2}$, since $S q^{1}=0$ on $H^{*}(Q(2) ; Z / 2)$. Hence we have \tilde{v}_{n+1}^{2} $=\delta\left(\Sigma^{4}\right)^{*}\left(\tilde{u}_{n-1} \otimes \tilde{u}_{n-1}\right) \in S q^{2} \operatorname{Im} \delta$, where \tilde{u}_{ℓ} is the modulo 2 reduction of $u_{\ell}, \ell=q+1$ and $n+1$, for dimensional reasons.

Hence we obtain that $\tilde{u}_{n-1} \otimes \tilde{u}_{n-1} \in \operatorname{Im} S q^{2}$ in $\tilde{H}^{*}\left(G^{[n]} \wedge G^{[n]} ; Z / 2\right)$ modulo the kernel of $\delta \otimes Z / 2$.

By (3.10), we have $Z / 2\left\{\tilde{u}_{n-1} \otimes \tilde{u}_{n-1}\right\} \cap \operatorname{Ker} \delta=0$, which implies that $\tilde{u}_{n-1} \otimes \tilde{u}_{n-1}$ $\in \operatorname{Im} S q^{2}$. Thus we obtain that $\tilde{u}_{n-1} \in \operatorname{Im} S q^{2}$ in $\tilde{H}^{*}\left(G^{[n]} ; Z / 2\right)$. There are two cases:

If \tilde{u}_{n-1} is decomposable, we have $\tilde{u}_{n-1}=\left(\gamma_{j} \tilde{u}_{q-1}\right)^{2}$ for some $j>0$ by Proposition 3.6, and so $\gamma_{2^{r}} \tilde{u}_{q-1} \in \operatorname{Im} S q^{2}$. This relation holds in $\tilde{H}^{*}\left(\left(\Omega S^{q}\right)^{[n]} ; Z / 2\right)$, since $\operatorname{deg} \gamma_{2^{r}} \tilde{u}_{q-1}<$ $n-1$. This contradicts that $\Sigma \Omega S^{q}$ is a bouquet of spheres. Thus \tilde{u}_{n-1} is indecomposable. Therefore there exists a non-negative integer r such that $S q^{2} \gamma_{2^{r}} \tilde{u}_{q-1}=\tilde{u}_{n-1}$.

Comparing the degrees of both sides, we have $2+2^{r}(q-1)=n-1=4 m$, whence one has $r=0$, since $q-1$ is even by Proposition 3.3. This implies that $S q^{2} \tilde{u}_{q-1}=\tilde{u}_{n-1} \neq 0$ and hence $n=q+2>4$ and $Q \simeq_{2} S^{q} \cup e^{n}$. Then the $\bmod 2$ cohomology of $Q(2)$ satisfies the condition given in $\S 1$. Hence from Corollary 1.8, it follows that $(q, n)=(q, q+2)$ have to be $(3,5)$.
Proposition 3.14. $q \equiv 3 \bmod 4$.
Proof. Similarly we have $\tilde{v}_{q+1}^{2} \not \equiv 0$ in $\tilde{H}^{*}(Q(2) ; Z / 2)$. If $q \equiv 1 \bmod 4$, then one has \tilde{v}_{q+1}^{2} $\in \operatorname{Im} S q^{2}$. Also deg $\tilde{v}_{q+1}^{2}-2=2 q \equiv 2 \bmod 4$. If $n \equiv 1 \bmod 4$, then $q=3 \not \equiv 1 \bmod 4$, which is a contradiction. So $n \equiv 3 \bmod 4$, whence $2 q \neq n+1$. Thus, one has that \tilde{v}_{q+1}^{2} $\in S q^{2} \operatorname{Im} \delta$. By an argument similar to that given in the proof of Proposition 3.13, we obtain that $\tilde{u}_{q-1} \otimes \tilde{u}_{q-1} \in \operatorname{Im} S q^{2}$ in $\tilde{H}^{*}\left(G^{[n]} \wedge G^{[n]} ; Z / 2\right)$. This implies that $\tilde{u}_{q-1} \in \operatorname{Im}$ $S q^{2}$ in $\tilde{H}^{*}\left(G^{[n]}\right)$ while $G^{[n]}$ is $(q-2)$ connected. It is a contradiction and completes the proof of the proposition.

QED.

$\S 4$ Unstable GW spaces

Let E be a GW space such that $\tilde{H}^{*}(E ; Z / 2)=\wedge\left(x_{q}, x_{n}\right)$ with $1 \leq q<n$.
Proposition 4.1. E has the homotopy type of $S^{q} \underset{\alpha}{\cup} e^{n} \cup_{\beta} e^{n+q}$ where $\alpha \in \pi_{n-1}\left(S^{q}\right)$ and $\beta \in \pi_{n-q-1}\left(S^{q} \cup S^{n}\right)$.
Definition. $E \simeq S^{q} \cup_{\alpha} e^{n} \cup e^{q+n}$ is said to be unstable if $2 q \leq n$.
By Proposition 3.3, we have that both q and n are odd integers. So $2 q<n$, if E is unstable.

We will show
Theorem 4.2. If the above E is an unstable $G W$ space, then (q, n) is one of the following: $(1,3),(1,7),(3,7),(3,11)$ or $(7,15)$.

The remainder of the section is devoted to proving the theorem.
Let $j: S^{q} \rightarrow E$ be the inclusion of the bottom sphere S^{q}. Consider the map $\{j, j\}$: $S^{q} \vee S^{q} \rightarrow E$. We have that the Whitehead product $[j, j]$ is homotopic to zero, as E is a GW space. Hence the map $\{j, j\}$ is extendable over $S^{q} \times S^{q} \rightarrow E$. By the assumption that $2 q<n$, the image of μ is compressible into S^{q} so that S^{q} is an H-space, whence $q=$ $1,3$ or 7 by the theorem of Adams [$\mathbf{A}]$.
[The case $q=1$] The universal covering space \tilde{E} of E is easily seen to be a GW space having the same homotopy type as S^{n}, which then becomes an H-space. Again by the theorem of $[\mathbf{A}], n=1,3$ or 7 . Omitting the case $n=1$, we have $(q, n)=(1,3)$ or $(1,7)$. [The case $q=3$ or 7] Put $\varepsilon=1$ or 3 according as $q=3$ or 7 , i.e. $\varepsilon=\frac{1}{2}(q-1)$. If $n \equiv 1 \bmod$ 4, we obtain, by Theorem 3.8, that $(q, n)=(3,5)$, which contradicts $n>2 q$. Hence $n \equiv 3$ $\bmod 4$. If the element $u_{n-1}=\sigma^{*} x_{n}$ of $P H^{n-1}(E ; Z / 2)$ is decomposable in $H^{*}(\Omega E ; Z / 2)$, then by Proposition 3.6 it is in the image of $\xi: H^{*}(\Omega E ; Z / 2) \rightarrow H^{*}(\Omega E ; Z / 2)$, which is impossible by the fact that $n-1 \equiv 2 \bmod 4$. Thus u_{n-1} is indecomposable in $H^{*}(\Omega E ; Z / 2)$.

Proposition 4.3. If $S q^{2}$ is non-trivial on $H^{*}(\Omega E ; Z / 2)$, then $n=2^{i+2} \varepsilon+3$ for some $i \geq$ 0 .

Proof. Put $u_{q-1}=\sigma^{*} x_{q}$ and $u_{n-1}=\sigma^{*} x_{n}$. Let $\omega \in H^{*}(\Omega E ; Z / 2)$ be an element of the lowest degree such that $S q^{2} \omega \neq 0$. Then $S_{q}^{2} \omega$ is primitive, and so $S_{q}^{2} \omega=u_{q-1}$ or u_{n-1}. It follows from $H^{q-3}(\Omega E ; Z / 2)=0$, that $S q^{2} \omega=u_{n-1}$. Thus ω is a generater of lower degree than $n-1$, whence one can express it as $\omega=\gamma_{2}^{i+1} u_{q-1}$ for some $i \geq 0\left(\right.$, since $\gamma_{1} u_{q-1}=$ u_{q-1} is not mapped to u_{n-1} by $\left.S q^{2}\right)$. Comparing the degrees we have $2^{i+1}(q-1)+2=$ $n-1$, and so $n=2^{i+1} \varepsilon+3$ for some $i \geq 0$.

Proposition 4.4. If $S q^{2}=0$ on $H^{*}(\Omega E ; Z / 2)$, then $S q^{2^{i}}=0$ on $H^{*}(\Omega E ; Z / 2)$ for any i ≥ 0.

Proof. Suppose $S q^{1}=\ldots=S q^{2^{j-1}}=0$ and $S q^{2^{j}} \neq 0$ on $H^{*}(\Omega E ; Z / 2)$. By assumption, we have $j \geq 2$. As in the proof of Proposition 4.3, one can conclude that

$$
S q^{2^{j}} \gamma_{2^{i+1}} u_{q-1}=u_{n-1} \quad \text { for some } i \geq 0,
$$

(since $\gamma_{1} u_{q-1}=u_{q-1}$ is not mapped to u_{n-1} by any squaring operation from the fact that $2(q-1)<n-1)$. Comparing the degrees one has $2^{i+1}(q-1)+2^{j}=n-1$; it gives $n-1$ $\equiv 0 \bmod 4$ after reducing $\bmod 4$, since $j \geq 2$ and $q-1 \equiv 0 \bmod 2$. This contradicts $n \equiv$ 3 mod 4.

QED.
Quite similarly one obtains
Proposition 4.5. If $u_{n-1} \in \operatorname{Im} S q^{2^{j}}$, then $j=1$.
We will discuss the two cases, whether $S q^{2}$ acts trivially or not, by using the methods given in $\S 3$.
Theorem 4.6. If $S q^{2}=0$ on $H^{*}(\Omega E ; Z / 2)$, then $(q, n)=(3,7)$.
Proof. It follows from Proposition 4.4 that any mod 2 Steenrod operations act trivially on $H^{*}(\Omega E ; Z / 2)$. Let $Q(2)$ be as in $\S 3$, then we have

$$
H^{*}\left(Q(2) ; Z_{(2)}\right) \cong Z_{(2)}^{[3]}\left[v_{q+1}, v_{n+1}\right] \oplus S_{2},
$$

By (3.10), (3.11), Proposition 3.12 and Proposition 4.4, we get
Proposition 4.7. If $v_{n+1}^{2} \in \operatorname{Im} \theta$ in the algebra $H^{*}\left(Q(2) ; Z_{(2)}\right)$ for some $\theta \in \mathcal{A}(2)$ and if $S q^{2}=0$ on $H^{*}(\Omega E ; Z / 2)=0$, then $\theta=S q^{n+1}$.

Now we will examine the decomposition of $S q^{2^{k+1}}(k \geq 0)$ through secondary operations on the space $X=Q(2)$, which is the main result in $[\mathbf{A}]$. If $n+1$ is not a power of 2 , then by the Adem relation

$$
0 \neq v_{n+1}^{2}=S q^{n+1}\left(v_{n+1}\right)=\sum_{i} a_{i} b_{i}\left(v_{n+1}\right), 0<\operatorname{deg} a_{i}<n+1
$$

which contradicts Proposition 4.7.

When $n=2^{k+4}-1, k \geq 0$, there holds

$$
0 \neq v_{n+1}^{2}=S q^{n+1}\left(v_{n+1}\right)=\sum_{i, j} a_{i j} \Phi_{i j}\left(v_{n+1}\right), 0<\operatorname{deg} a_{i j}<n+1
$$

modulo $a_{i j k} Q^{2 n+2-l}(i, j, k)(Q(2) ; Z / 2)$ where $0<l(i, j, k)=\operatorname{deg} a_{i j k}<n+1$. Thus the element v_{n+1}^{2} belongs to the image of a certain Steenrod operation a with $0<\operatorname{deg} a<$ $n+1$. This also contradicts Proposition 4.7. So, if $n+1=2^{k}$, then $k=0,1,2$ or 3 .

The equation $2 q=4 \varepsilon+1<n=2^{k}-1$ implies that $n=7$ if $q=3$ and that n does not exist if $q=7$. Thus Theorem 4.6 is proved.

QED
Theorem 4.8. If $S q^{2} \neq 0$ on $\tilde{H}^{*}(\Omega E ; Z / 2)$, then $(q, n)=(3,7),(3,11)$ or $(7,15)$.
Proof. It follows from Proposition 4.5 that $n=2^{i+2} \cdot \varepsilon+3$ for some $i \geq 0$. If $i=0$, then $(q, n)=(3,7)$ or $(7,15)$. We assume $i \geq 1$. Then $n+1=2^{i+2} \cdot \varepsilon+4 \equiv 4 \bmod 8$. So by the Adem relation we have

$$
\begin{aligned}
S q^{4} S q^{2^{i+2} \cdot \varepsilon} & =S q^{n+1}+S q^{2^{i+2} \cdot \varepsilon+2} S q^{2}+S q^{2^{i+2} \cdot \varepsilon+3} S q^{1} \\
& =S q^{n+1}+S q^{2+2^{i+2} \cdot \varepsilon} S q^{2}+S q^{3} S q^{2^{i+2} \varepsilon} S q^{1}
\end{aligned}
$$

Again by (3.10), (3.11) and Proposition 3.12, we obtain

$$
S q^{2} v_{n+1} \in \delta\left(\Sigma^{4}\right)^{*} \tilde{H}^{*}\left(\Omega S^{q} \wedge \Omega S^{q}\right) \subseteq \delta\left(\Sigma^{4}\right)^{*} H^{*}(\Omega E \wedge \Omega E)
$$

since $\operatorname{deg} S q^{2} v_{n+1}=2+\operatorname{deg} v_{n+1}=4+\operatorname{deg} u_{n-1}\left(=4+2^{i+2} \cdot \varepsilon+2\right)$. Thus the folowing conditions are necessary for $S q^{2+2^{i+2} \cdot \varepsilon} S q^{2} v_{n+1}$ to contribute to $v_{n+1}^{2}=\delta\left(\Sigma^{4}\right)^{*}\left(u_{n-1} \otimes\right.$ $\left.u_{n-1}\right)$: There are elements \hat{u}_{1} and \hat{u}_{2} such that

$$
\begin{aligned}
& S q^{2} v_{n+1}=\delta \Sigma^{4}\left(\hat{u}_{1} \otimes \hat{u}_{2}\right)+\text { other terms } \\
& S q^{2+2^{i+2} \varepsilon}\left(\hat{u}_{1} \otimes \hat{u}_{2}\right)=u_{n-1} \otimes u_{n-1}+\text { other terms }
\end{aligned}
$$

However, we have deg $\hat{u}_{1} \otimes \hat{u}_{2}=2+2^{i+2} \cdot \varepsilon$ since deg $u_{n-1}=2+2^{i+2} \cdot \varepsilon$. Therefore $S q^{2+2^{i+2} \cdot \varepsilon}\left(\hat{u}_{1} \otimes \hat{u}_{2}\right)=\hat{u}_{1}^{2} \otimes \hat{u}_{2}$, which contradicts the indecomposability of u_{n-1}. Thus, since $S q^{2+2^{i+2} \cdot \varepsilon} S q^{2} v_{n+1}$ does not contribute to v_{n+1}^{2}, one of elements $S q^{4} S q^{2^{i+2} \cdot \varepsilon} v_{n+1}$ has to do so in its place. Here we remark that

$$
S q^{2^{i+2} \varepsilon} v_{n+1} \in \operatorname{Im} \delta
$$

So the following two cases can occur:

$$
\begin{align*}
& S q^{2^{i+2} \cdot \varepsilon} v_{n+1}=\delta \Sigma^{4}\left(\gamma_{2^{i_{1}}} u_{q-1} \otimes \gamma_{2^{i_{2}}} u_{q-1}\right)+\text { other terms } \tag{1}\\
& S q^{4}\left(\gamma_{2^{i_{1}}} u_{q-1} \otimes \gamma_{2^{i_{2}}} u_{q-1}\right)=u_{n-1} \otimes u_{n-1}+\text { other terms } \\
& S q^{2^{i+2} \cdot \varepsilon} v_{n+1}=\delta \Sigma^{4}\left(\gamma_{2^{i_{1}}} u_{q-1} \otimes u_{n-1}\right)+\text { other terms } \tag{2}\\
& S q^{4} \gamma_{2^{i_{1}}} u_{q-1}=u_{n-1}+\text { other terms }
\end{align*}
$$

But the latter case does not occur by Proposition 4.3. So we obtain
(a)

$$
S q^{2^{i+2} \varepsilon} v_{n+1}=\delta \Sigma^{3}\left(\gamma_{2^{i_{1}}} u_{q-1} \otimes \gamma_{2^{i_{1}}} u_{q-1}\right)+\text { other terms }
$$

(b)

$$
S q^{2} \gamma_{2^{i_{1}}} u_{q-1}=u_{n-1}+\text { other terms }
$$

Comparing the degrees we obtain $i_{1}=i$ from (b). We also have $\gamma_{2^{i_{1}}} u_{q-1} \in \tilde{H}^{*}\left(\Omega S^{q}\right) \subseteq$ $\tilde{H}^{*}(\Omega E)$, as $\operatorname{deg} \gamma_{2^{i}} u_{q-1}<n-1$. Hence the element $\gamma_{2^{i}} u_{q-1}$ does not belong to the image of any squaring operations on $\tilde{H}^{*}(\Omega E ; Z / 2)$.

Now we divide the arguments into the two cases, $\varepsilon=1$ and $\varepsilon=3$.
[The case $\varepsilon=3$] The Adem relation

$$
S q^{2^{i+2} \varepsilon}=S q^{2^{i+3}+2^{i+2}}=\sum_{t=0}^{i+2} S q^{2^{t}} a_{t}, a_{t} \in A(2)
$$

implies that $\gamma_{2^{i}} u_{q-1} \otimes \gamma_{2^{i}} u_{q-1} \in S q^{2^{t}} a_{t}$ for some $0 \leq t \leq i+2$. On the other hand, one can deduce from $a_{t}\left(v_{n+1}\right) \in \operatorname{Im} \delta$ that $\gamma_{2^{i}} u_{q-1} \otimes \gamma_{2^{i}} u_{q-1} \in \operatorname{Im} S q^{2^{t}}$ in $H^{*}(\Omega E \wedge \Omega E ; Z / 2)$ for some t, which contradicts the fact that $\gamma_{2^{i}} u_{q-1}$ is not in the image of any squaring operations.
[The case $\varepsilon=1$] If $i=1$, then $(q, n)=(3,11)$. Suppose $i \geq 2$. By $[\mathbf{A}] S q^{2^{i+2}}$ is decomposable through secondary operations, that is, the following holds

$$
S q^{2^{i+2}}\left(v_{n+1}\right)=\sum_{i, j} a_{i j} \Phi_{i j}\left(v_{n+1}\right), 0<\operatorname{deg} a_{i j}<2^{i+2}
$$

modulo the total indeterminacy $a_{i j k} Q^{2^{i+3}+4-l(i, j, k)}(Q(2) ; Z / 2), 0<l(i, j, k)=\operatorname{deg} a_{i j k}<$ 2^{i+2}.

This leads us to a contradiction similarly to the case when $\varepsilon=3$.

$\S 5$ The non-existence of types $(3,11)$ and $(7,15)$

Proposition 5.1.

$$
(q, n) \neq(3,11)
$$

Proof. If $(q, n)=(3,11)$, then $E \simeq S^{3} \cup_{\alpha} e^{11} \cup_{\beta} e^{1} 4$ where $\alpha \in \pi_{10}\left(S^{3}\right) \cong \mathrm{Z} / 15$. So E $\simeq_{2}\left(S^{3} \vee S^{11}\right) \cup_{\beta} e^{14}$. Since $Q=S^{3} \vee S^{11}$ is desuspendable, the Whitehead product $[i, i]$ of the inclusion $i: Q \hookrightarrow E$ vanishes by assumption. So the map $\{i, i\}: Q \vee Q \rightarrow E$ is extendable over $Q \times Q$. We denote the extension by $\mu: Q \times Q \rightarrow E$. If we put $Q(2)=$ $C_{H(\mu)}$, the cofibre of the Hopf construction of μ, then $Q(2)$ satisfies the condition of $\S 1$. It gives a contradiction, and so $(q, n) \neq(3,11)$.

Proposition 5.2.

$$
(q, n) \neq(7,15)
$$

Proof. Suppose $(q, n)=(7,15)$ so that $E \simeq_{2} S^{7} \cup_{\alpha} e^{15} \cup e^{22}$. Then we have

$$
\begin{aligned}
H^{*}(E) & \cong \Lambda\left(x_{7}, x_{15}\right) \\
K^{*}(E) & \cong \Lambda\left(\xi_{7}, \xi_{15}\right) .
\end{aligned}
$$

The 15 -skeleton of $G=\Omega E$ is given by

$$
G^{[15]} \simeq_{2} S^{6} \cup_{\left[\iota_{6}, \iota_{6}\right]} e^{12} \cup e^{14}
$$

Now we put $Q=\Sigma\left(G^{[15]}\right)$; then

$$
\begin{aligned}
& Q \simeq_{2}\left(S^{7} \vee S^{13}\right) \cup \underset{\bar{\alpha}}{\cup} e^{15}, \text { where } \bar{\alpha} \in \pi_{14}\left(S^{7} \vee S^{13}\right) \cong \pi_{14}\left(S^{7}\right) \oplus \pi_{14}\left(S^{13}\right) ; \\
& \Sigma Q \simeq_{2}\left(S^{8} \vee S^{14}\right) \cup \underset{\Sigma \bar{\alpha}}{\cup} e^{16} .
\end{aligned}
$$

The generators of $H^{*}(E)$ and $K^{*}(E)$ are mapped monomorphically to $H^{*}(Q)$ and $K^{*}(Q)$, respectively, by the induced homomorphism of the canonical inclusion $\lambda_{1}: Q \subset \Sigma G \subset$ $P^{\infty} G \simeq E$. In fact, as was already seen, $P H^{*}(G) \cong Z_{(2)}\left\{u_{6}, u_{4}\right\}$ with u_{i} trangressive, and λ_{1}^{*} gives rise to the cohomology suspension. Thus we obtain

$$
\begin{aligned}
& \operatorname{Im}\left(\Sigma \lambda_{1}\right)^{*} \cong Z_{(2)}\left\{v_{8}, v_{16}\right\} \subseteq H^{*}(\Sigma Q) \cong Z_{(2)}\left\{v_{8}, v_{14}, v_{16}\right\}, \\
& \operatorname{Im}\left(\Sigma \lambda_{1}\right)^{*} \cong Z_{(2)}\left\{w_{4}, w_{8}\right\} \subseteq K^{*}(\Sigma Q) \cong Z_{(2)}\left\{w_{4}, w_{7}, w_{8}\right\} .
\end{aligned}
$$

Then the Adams operation ψ^{k} in $K^{*}(\Sigma Q)$ is given by

$$
\begin{align*}
\psi^{k} w_{4} & =k^{4} w_{4}+a(k) w_{8} \\
\psi^{k} w_{7} & =k^{7} w_{7}+b(k) w_{8} \tag{5.3}\\
\psi^{k} w_{8} & =k^{8} w_{8}
\end{align*}
$$

Since Q is a suspended space and since E is a GW space, there exists an axial map

$$
\mu: Q \times Q \rightarrow E
$$

with axis λ_{1}. We denote by $Q(2)$ the mapping cone of the Hopf construction $H(\mu)$ of the map μ so that we have a cofibre sequence

$$
\begin{equation*}
\Sigma E \stackrel{j}{\hookrightarrow} Q(2) \rightarrow \Sigma Q \wedge \Sigma Q . \tag{5.4}
\end{equation*}
$$

The elements $x_{7}, x_{15} \in H^{*}(E)$ are primitive with respect to μ in the sense of Thomas as $H^{11}(Q \wedge Q)=H^{15}(Q \wedge Q)=0$. Hence we have

$$
\begin{aligned}
& \bar{\mu}^{*}\left(x_{i}\right)=0 \quad \text { for } i=7,15, \\
& \bar{\mu}^{*}\left(x_{7}, x_{15}\right)=\lambda_{1}^{*} x_{7} \otimes \lambda_{1}^{*} x_{15}-\lambda_{1}^{*} x_{15} \otimes \lambda_{1}^{*} x_{7}
\end{aligned}
$$

So the image of j^{*} induced by the inclusion $j: \Sigma E \rightarrow Q(2)$ is given by

$$
\operatorname{Im} j^{*} \cong Z_{(2)}\left\{\Sigma^{*} x_{7}, \Sigma^{*} x_{15}\right\}
$$

Also the image of δ induced by the collapsing map $Q(2) \rightarrow \Sigma Q \wedge \Sigma Q$ is given by

$$
\operatorname{Im} \delta \cong Z_{(2)}\left\{\delta\left(v_{8} \otimes v_{8}\right), \delta\left(v_{8} \otimes v_{16}\right)=\delta\left(v_{16} \otimes v_{8}\right), \delta\left(v_{16} \otimes v_{16}\right)\right\} \oplus S_{2}
$$

where $S_{2} \cong Z_{(2)}\left\{\delta\left(v_{8} \otimes v_{14}\right), \delta\left(v_{14} \otimes v_{8}\right), \delta\left(v_{14} \otimes v_{14}\right), \delta\left(v_{14} \otimes v_{16}\right), \delta\left(v_{16} \otimes v_{14}\right)\right\}$.
Therefore by (5.4) we obtain the following short exact sequence:

$$
0 \rightarrow \operatorname{Im} \delta \hookrightarrow \tilde{H}^{*}(Q(2)) \xrightarrow{j^{*}} Z_{(2)}\left\{\Sigma^{*} x_{7}, \Sigma^{*} x_{19}\right\} \rightarrow 0
$$

Thus, denoting by \bar{v}_{4} and \bar{v}_{8} the extensions over $Q(2)$ of $\Sigma^{*} x_{7}$ and $\Sigma^{*} x_{15}$, respectively, we obtain the following ring isomorphisms by virtue of [Th3]:

$$
\begin{align*}
& H^{*}(Q(2)) \cong Z_{(2)}^{[3]}\left[\bar{v}_{4}, \bar{v}_{8}\right] \oplus S_{2}, \tag{5.5}\\
& \tilde{H}^{*}(Q(2)) \cdot \operatorname{Im} \delta=0, \quad S_{2} \subseteq \operatorname{Im} \delta
\end{align*}
$$

We remark that these results are independent of the choice of \bar{v}_{4} and \bar{v}_{8}.
Similarly one obtains

$$
\begin{aligned}
& K^{*}(Q(2)) \cong Z_{(2)}^{[3]}\left[\bar{w}_{4}, \bar{w}_{8}\right] \oplus S_{2}^{K} \\
& \tilde{K}^{*}(Q(2)) \cdot S_{2}^{K}=0 \\
& \psi^{k}\left(\tilde{K}^{*}(Q(2)) \cdot \tilde{K}^{*}(Q(2))\right) \subseteq \tilde{K}^{*}(Q(2)) \cdot \tilde{K}^{*}(Q(2)) \\
& \left.\operatorname{Im} \delta^{K} \cong Z_{(} 2\right)\left\{\delta^{K}\left(w_{4} \otimes w_{4}\right), \delta^{K}\left(w_{4} \otimes w_{8}\right)=\delta^{K}\left(w_{8} \otimes w_{4}\right), \delta^{K}\left(w_{8} \otimes w_{8}\right)\right\} \oplus S_{2}^{K} \\
& S_{2}^{K}=Z_{(2)}\left\{\delta^{K}\left(w_{4} \otimes w_{7}\right), \delta^{K}\left(w_{7} \otimes w_{4}\right), \delta^{K}\left(w_{7} \otimes w_{7}\right), \delta^{K}\left(w_{7} \otimes w_{5}\right), \delta^{K}\left(w_{8} \otimes w_{7}\right)\right\}
\end{aligned}
$$

where the elements \bar{w}_{4} and \bar{w}_{8} are the extensions over $Q(2)$ of $\Sigma^{*} \xi_{7}$ and $\Sigma^{*} \xi_{15}$, respectively.
Furthermore, by (5.3) one obtains

Proposition 5.7.

$$
\begin{aligned}
& \psi^{k} \delta^{K}\left(w_{4} \otimes w_{7}\right) \equiv k^{11} \delta^{K}\left(w_{4} \otimes w_{7}\right)+k^{4} b(k) \delta^{K}\left(w_{4} \otimes w_{8}\right) \\
& \psi^{k} \delta^{K}\left(w_{7} \otimes w_{4}\right) \equiv k^{11} \delta^{K}\left(w_{7} \otimes w_{4}\right)+k^{9} b(k) \delta^{K}\left(w_{8} \otimes w_{4}\right)
\end{aligned}
$$

modulo CW filtration > 14 .
Now (5.5) and (5.6) imply that $K^{*}(Q(2))$ and $H^{*}(Q(2))$ are isomorphic as rings. So we define a ring isomorphism $J: H^{*}(Q(2)) \rightarrow K^{*}(Q(2))$ by the following

$$
\begin{align*}
& J\left(\bar{v}_{i}\right)=\bar{w}_{i} \quad \text { for } i=4 \text { and } 8 \\
& J\left(\delta\left(v_{2 j} \otimes v_{2 j}\right)\right)=\delta\left(w_{i} \otimes w_{j}\right) \quad \text { for } i, j=4,7 \text { or } 8 . \tag{5.8}
\end{align*}
$$

By virtue of these relations we introduce Hubbuck operations following $[\mathbf{H u}]$. Then one obtains the following by using (1.5) as in the case $(q, n)=(7,15)$ in $\S 1$:

$$
\begin{align*}
& P^{8}\left(\bar{v}_{8}\right) \equiv \bar{v}_{8}^{2} \quad \bmod 2 \\
& P^{4}\left(\bar{v}_{8}\right)=\alpha \bar{v}_{4} \bar{v}_{8} \\
& P^{4}\left(\bar{v}_{4}\right) \equiv \bar{v}_{4}^{2} \quad \bmod 2 \tag{5.9}\\
& P^{4}\left(\bar{v}_{4}\right)=\lambda \bar{v}_{4}^{2}+2 \beta \bar{v}_{4} \bar{v}_{8},
\end{align*}
$$

where $\lambda, \alpha, \beta \in Z_{(2)}$ and $\lambda \equiv 1 \bmod 2$. (Note that J depends on the choice of \bar{w}_{i} and hence, so do the exact values of P^{i} and R^{i}. But these relations do not depend on the choice of J.)

Next, we will derive a contradiction from the relations of these Hubbuck operations. The relations

$$
H^{i}(Q(2))=0 \quad \text { for } i=10,12,14,18,20,26
$$

and Proposition 5.7 imply the following

$$
\begin{align*}
R^{1}\left(\bar{v}_{8}\right)=P^{1}\left(\bar{v}_{8}\right)=0, P^{1}\left(\bar{v}_{4}\right) & =R^{1}\left(\bar{v}_{4}\right)=0, \\
R^{2}\left(\bar{v}_{8}\right)=P^{2}\left(\bar{v}_{8}\right)=0, P^{2}\left(\bar{v}_{4}\right) & =R^{2}\left(\bar{v}_{4}\right)=0, \\
P^{3}\left(\bar{v}_{4}\right) & =R^{3}\left(\bar{v}_{4}\right)=0, \tag{5.10}\\
P^{5}\left(\bar{v}_{8}\right)=0, P^{5}\left(\bar{v}_{4}\right) & =0, \\
P^{6}\left(\bar{v}_{4}\right) & =0 .
\end{align*}
$$

Further, by (1.4) together with $\nu_{2}\left(3^{3}-1\right)=1$ (by ignoring the odd multiple) one has

$$
2 P^{3}\left(\bar{v}_{8}\right)+2 R^{1} P^{2}\left(\bar{v}_{8}\right)+2^{2} R^{2} P^{1}\left(\bar{v}_{8}\right)+2^{3} R^{3}\left(\bar{v}_{8}\right) \equiv 2^{2} P^{2} R^{1}\left(\bar{v}_{8}\right)+2^{4} P^{1} R^{2}\left(\bar{v}_{8}\right) \quad \bmod 2^{6}
$$ and hence by (5.10) one obtains the following

$$
\begin{equation*}
2 P^{3}\left(\bar{v}_{8}\right)+2^{3} R^{3}\left(\bar{v}_{8}\right) \equiv 0 \quad \bmod 2^{6} . \tag{5.11}
\end{equation*}
$$

In particular

$$
P^{3}\left(\bar{v}_{8}\right) \equiv 0 \quad \bmod 2^{2}
$$

Also, (1.4) implies

$$
\left(2^{4} P^{4}+\sum_{i=1}^{4} 2^{i} R^{i} P^{4-i}\right)\left(\bar{v}_{4}\right) \equiv 2^{2} P^{3} R^{1}\left(\bar{v}_{4}\right)+2^{4} P^{2} R^{2}\left(\bar{v}_{4}\right) \quad \bmod 2^{6}
$$

and hence one obtains the following

$$
\begin{equation*}
P^{4}\left(\bar{v}_{4}\right)+R^{4}\left(\bar{v}_{4}\right) \equiv 0 \quad \bmod 2^{2} . \tag{5.12}
\end{equation*}
$$

Moreover one obtains
Proposition 5.13.

$$
P^{6}\left(\bar{v}_{8}\right) \equiv 2^{3} R^{6}\left(\bar{v}_{8}\right) \quad \bmod 2^{4}
$$

Proof. Equation (1.4) implies

$$
2^{3} P^{6}\left(\bar{v}_{8}\right)+\sum_{i=1}^{6} 2^{i} R^{i} P^{6-i}\left(\bar{v}_{8}\right) \equiv 2^{2} P^{5} R^{1}\left(\bar{v}_{8}\right)+2^{4} P^{4} R^{2}\left(\bar{v}_{8}\right)+2^{6} P^{3} R^{3}\left(\bar{v}_{8}\right) \quad \bmod 2^{7}
$$

Recall that $P^{4}\left(\bar{v}_{8}\right) \in Z_{(2)}\left\{\bar{v}_{4} \bar{v}_{8}\right\}$, where we have

$$
\begin{aligned}
R^{2}\left(\bar{v}_{4} \bar{v}_{8}\right) & =R^{2}\left(\bar{v}_{4}\right) \bar{v}_{8}+R^{1}\left(\bar{v}_{4}\right) R^{1}\left(\bar{v}_{8}\right)+\bar{v}_{4} R^{2}\left(\bar{v}_{8}\right) \\
& =0
\end{aligned}
$$

and hence $R^{2} P^{4}\left(\bar{v}_{8}\right)=0$. So by (5.10) and (5.11) the congruence equation above reduces to

$$
2^{3} P^{6}\left(\bar{v}_{8}\right)+2^{5} R^{3} R^{3}\left(\bar{v}_{8}\right)+2^{6} R^{6}\left(\bar{v}_{8}\right) \equiv 2^{6} P^{3} R^{3}\left(\bar{v}_{8}\right) \quad \bmod 2^{7}
$$

where $R^{3}\left(\bar{v}_{8}\right) \in Z_{(2)}\left\{\delta\left(v_{8} \otimes v_{14}\right), \delta\left(v_{14} \otimes v_{8}\right)\right\}$. Hence by (5.10) we have $R^{3} R^{3}\left(\bar{v}_{8}\right)=$ $P^{3} R^{3}\left(\bar{v}_{8}\right)=0$. Thus the congruence equation above reduces to

$$
P^{6}\left(\bar{v}_{8}\right)+2^{3} R^{6}\left(\bar{v}_{8}\right) \equiv 0 \quad \bmod 2^{4} .
$$

QED.
Proposition 5.14.

$$
2 P^{8}\left(\bar{v}_{8}\right) \equiv R^{4} P^{4}\left(\bar{v}_{8}\right) \quad \bmod 4
$$

Proof. Equation (1.4) implies

$$
2 P^{7}\left(\bar{v}_{8}\right)+\sum_{i=1}^{5} 2^{i} R^{i} P^{7-i}\left(\bar{v}_{8}\right) \equiv 2^{2} P^{6} R^{1}\left(\bar{v}_{8}\right)+2^{4} P^{5} R^{2}\left(\bar{v}_{8}\right) \quad \bmod 2^{6}
$$

So by using (5.10), (5.11') and Proposition 5.13 one obtains

$$
2 P^{7}\left(\bar{v}_{8}\right)+2^{4} R^{1} R^{6}\left(\bar{v}_{8}\right)+2^{3} R^{3} P^{4}\left(\bar{v}_{8}\right) \equiv 0 \quad \bmod 2^{6},
$$

where $P^{4}\left(\bar{v}_{8}\right) \in Z_{(2)}\left\{\bar{v}_{4} \bar{v}_{8}=\delta\left(v_{8} \otimes v_{16}\right)\right\} \subseteq \tilde{H}^{*}(Q(2)) \cdot \tilde{H}^{*}(Q(2))$, and hence

$$
R^{3} P^{4}\left(\bar{v}_{8}\right) \in Z_{(2)}\left\{R^{3}\left(\bar{v}_{4} \bar{v}_{8}\right)\right\}
$$

By (5.10) and the Cartan formula we have

$$
R^{3}\left(\bar{v}_{4} \bar{v}_{8}\right)=\bar{v}_{4} R^{3}\left(\bar{v}_{8}\right)
$$

with $R^{3}\left(\bar{v}_{8}\right) \in S_{2}$.
So by (5.5) we have $R^{3} P^{4}\left(\bar{v}_{8}\right)=0$. Therefore we obtain

$$
\begin{equation*}
2 P^{7}\left(\bar{v}_{8}\right)+2^{4} R^{1} R^{6}\left(\bar{v}_{8}\right) \equiv 0 \quad \bmod 2^{6} . \tag{5.15}
\end{equation*}
$$

Also the equation (1.4) implies

$$
\begin{equation*}
2^{5} P^{8}\left(\bar{v}_{8}\right)+\sum_{i=1}^{5} 2^{i} R^{i} P^{8-i}\left(\bar{v}_{8}\right) \equiv 2^{2} P^{7} R^{1}\left(\bar{v}_{8}\right)+2^{4} P^{6} R^{2}\left(\bar{v}_{8}\right) \quad \bmod 2^{6} \tag{5.16}
\end{equation*}
$$

Then by (5.10), (5.11'), Proposition 5.13 and (5.15), one obtains

$$
\begin{equation*}
2^{5} P^{8}\left(\bar{v}_{8}\right)+2^{4} R^{1} R^{1} R^{6}\left(\bar{v}_{8}\right)+2^{5} R^{2} R^{6}\left(\bar{v}_{8}\right)+2^{4} R^{4} P^{4}\left(\bar{v}_{8}\right) \equiv 0 \quad \bmod 2^{6} . \tag{5.17}
\end{equation*}
$$

From (1.4), it follows that

$$
2 P^{1}+2 R^{1} \equiv 2^{2} R^{1}, \quad \bmod 2^{3}
$$

and hence $P^{1} \equiv \pm R^{1} \bmod 2^{2}$. Also from (1.4), one has

$$
2^{3} P^{2}+2 R^{1} P^{1}+2^{2} R^{2} \equiv 2^{2} P^{1} R^{1}+2^{4} R^{2} \quad \bmod 2^{3}
$$

Then it follows that

$$
R^{1} R^{1}=2 R^{2} \quad \bmod 2^{2}
$$

Hence

$$
R^{1} R^{1} R^{6}\left(\bar{v}_{8}\right)+2 R^{2} R^{6}\left(\bar{v}_{8}\right) \equiv 0 \quad \bmod 2^{2}
$$

Substituting this into (5.17) one obtains

$$
2^{5} P^{8}\left(\bar{v}_{8}\right)+2^{4} R^{4} P^{4}\left(\bar{v}_{8}\right) \equiv 0 \quad \bmod 2^{6} .
$$

QED.
Proposition 5.18.

$$
\begin{aligned}
& R^{4} P^{4}\left(\bar{v}_{4}\right) \equiv 0 \quad \bmod 4 \text { or else } \\
& \beta \equiv 0 \quad \bmod 2 \text { where } \beta \text { is as in }(5.9)
\end{aligned}
$$

Proof. Equation (1.4) implies

$$
2^{5} P^{8}\left(\bar{v}_{4}\right)+\sum_{i=1}^{5} 2^{i} R^{i} P^{8-i}\left(\bar{v}_{4}\right) \equiv 2^{2} P^{7} R^{1}\left(\bar{v}_{4}\right)+2^{4} P^{6} R^{2}\left(\bar{v}_{4}\right) \quad \bmod 2^{6}
$$

So by (1.5) and (5.10) one obtains

$$
\begin{equation*}
2^{2} R^{1} P^{7}\left(\bar{v}_{4}\right)+2^{4} R^{4} P^{4}\left(\bar{v}_{4}\right) \equiv 0 \quad \bmod 2^{6} \tag{5.19}
\end{equation*}
$$

Furthermore (1.4) implies

$$
2 P^{7}\left(\bar{v}_{4}\right)+\sum_{i=1}^{5} 2^{i} R^{i} P^{7-i}\left(\bar{v}_{4}\right) \equiv 2^{2} P^{6} R^{1}\left(\bar{v}_{4}\right)+2^{4} P^{5} R^{2}\left(\bar{v}_{4}\right) \quad \bmod 2^{6}
$$

So by (5.10) one obtains

$$
\begin{equation*}
2 P^{7}\left(\bar{v}_{4}\right)+2^{3} R^{3} P^{4}\left(\bar{v}_{4}\right) \equiv 0 \quad \bmod 2^{6} \tag{5.20}
\end{equation*}
$$

Recall from (5.9) that

$$
P^{4}\left(\bar{v}_{4}\right)=\lambda \bar{v}_{4}^{2}+2 \beta \bar{v}_{8}
$$

So by (5.10) one has

$$
R^{3} P^{4}\left(\bar{v}_{4}\right)=2 \beta R^{3}\left(\bar{v}_{8}\right)
$$

Suppose $\beta \not \equiv 0 \bmod 2$. Then by substituting (1.5) into (5.20), one has $P^{7}\left(\bar{v}_{4}\right) \equiv 0 \bmod$ 2^{4} and hence

$$
\begin{equation*}
2^{3} R^{3} P^{4}\left(\bar{v}_{4}\right) \equiv 0 \quad \bmod 2^{5}, \tag{5.21}
\end{equation*}
$$

so $2^{4} \beta R^{3}\left(\bar{v}_{8}\right) \equiv 0 \bmod 2^{5}$. Thus

$$
\begin{equation*}
R^{3}\left(\bar{v}_{8}\right) \equiv 0 \quad \bmod 2 \tag{5.22}
\end{equation*}
$$

Then it follows from (5.11) that

$$
P^{3}\left(\bar{v}_{8}\right) \equiv 2^{2} R^{3}\left(\bar{v}_{8}\right) \equiv 0 \quad \bmod 2^{3}
$$

So by rechoosing the ring isomorphism J appropriately (or, in other words, rechoosing the extension $\bar{w}_{8}=J\left(\bar{v}_{8}\right)$ appropriately) one obtains the following (due to $[\mathbf{H u}]$)
Lemma 5.23. One can choose the ring isomorphism J to satisfy $P_{J}^{3}\left(\bar{v}_{8}\right)=0$, if $\beta \not \equiv 0 \bmod$ 2.

Proof. If $P^{3}\left(\bar{v}_{8}\right) \neq 0$, we can choose $\bar{v}_{11} \in H^{22}(Q(2))$ so that $P^{3}\left(\bar{v}_{8}\right)=2^{3} \bar{v}_{11}$. The element $\bar{w}_{8}^{\prime}=\bar{w}_{8}+\nu \bar{w}_{11}$ with $\nu=\frac{1}{1-2^{3}}$, where $\bar{w}_{11}=J\left(\bar{v}_{11}\right)$, is an extension of $\Sigma^{*} \xi_{15}$. Then from J, we define a new ring isomorphism $J^{\prime}: H^{*}(Q(2)) \rightarrow K^{*}(Q(2))$ by setting

$$
\begin{aligned}
& J^{\prime}\left(\bar{v}_{8}\right)=\bar{w}_{8}^{\prime}, \quad J^{\prime}\left(\bar{v}_{4}\right)=\bar{w}_{4} \\
& J^{\prime}\left(\delta\left(v_{2 i} \otimes v_{2 j}\right)\right)=\delta^{K}\left(w_{i} \otimes w_{j}\right) .
\end{aligned}
$$

Then one obtains the following formula modulo higher filtration >11.

$$
\begin{aligned}
\psi^{2}\left(J\left(\bar{v}_{8}\right)\right) & \cong 2^{8} J\left(\bar{v}_{8}\right)+2^{8} J\left(\bar{v}_{11}\right) \quad \text { mod }(\text { higher filtration }>11) \\
\psi^{2}\left(J\left(\bar{v}_{11}\right)\right) & \cong 2^{11} J\left(\bar{v}_{11}\right) \quad \bmod (\text { higher filtration }>11) \\
\psi^{2}\left(J^{\prime}\left(\bar{v}_{8}\right)\right) & =\psi^{2}\left(J\left(\bar{v}_{8}\right)+\nu J\left(\bar{v}_{11}\right)\right) \\
& =\psi^{2}\left(J\left(\bar{v}_{8}\right)\right)+\nu \psi^{2}\left(J\left(\bar{v}_{11}\right)\right) \\
& \cong 2^{8} J\left(\bar{v}_{8}\right)+2^{8} J\left(\bar{v}_{11}\right)+2^{11} \nu J\left(\bar{v}_{11}\right) \quad \text { mod }(\text { higher filtration }>11) \\
& \cong 2^{8}\left(J\left(\bar{v}_{8}\right)+\left(2^{3} \nu+1\right) J\left(\bar{v}_{11}\right)\right) \quad \text { mod }(\text { higher filtration }>11) \\
& =2^{8} J^{\prime}\left(\bar{v}_{8}\right) .
\end{aligned}
$$

Thus $P_{J^{\prime}}^{3}\left(\bar{v}_{8}\right)=0$ (Note that the operation $P_{J^{\prime}}^{3}$ with respect to J^{\prime} is different from P^{3} $=P_{J}^{3}$ with respect to $\left.J\right)$. The operations $P_{J^{\prime}}^{i}$ and $R_{J^{\prime}}^{i}$ satisfy all the formulae given above
for the ones with respect to the general ' J '. So, we may consider the ring isomorphism J to satisfy $P_{J}^{3}=0$.

QED.
Hence from (5.11), (5.21) and (5.20), it follows that

$$
\begin{array}{ll}
R^{3}\left(\bar{v}_{8}\right) \equiv 0 & \bmod 2^{3}, \\
R^{3} P^{4}\left(\bar{v}_{4}\right) \equiv 0 & \bmod 2^{4}, \\
2 P^{7}\left(\bar{v}_{4}\right) \equiv 0 & \bmod 2^{6} .
\end{array}
$$

Substituting them into (5.19) one obtains

$$
2^{4} R^{4} P^{4}\left(\bar{v}_{4}\right) \equiv 0 \quad \bmod 2^{6}
$$

That is, if $\beta \not \equiv 0 \bmod 2$, then $R^{4} P^{4}\left(\bar{v}_{4}\right) \equiv 0 \bmod 4$.
QED.
Now these two propositions, Proposition 5.14 and 5.18 , give us a contradiction.
By Proposition 5.14, we have the following equation $\bmod 4$.

$$
\begin{align*}
0 \not \equiv 2 \bar{v}_{8}^{2} & \equiv R^{4} P^{4}\left(\bar{v}_{8}\right) \\
& \equiv R^{4}\left(\alpha \bar{v}_{4} \bar{v}_{8}\right) \tag{5.24}\\
& \equiv \alpha R^{4}\left(\bar{v}_{4}\right) \bar{v}_{8}+\alpha \bar{v}_{4} R^{4}\left(\bar{v}_{8}\right)
\end{align*}
$$

by (5.10) and the Cartan formula, where $R^{4}\left(\bar{v}_{8}\right) \in \operatorname{Im} \delta$ and hence $\bar{v}_{4} R^{4}\left(\bar{v}_{8}\right)=0$ by (5.5). Furthermore, using (5.10), one obtains the following from (1.4):

$$
2^{4} P^{4}\left(\bar{v}_{4}\right)+2^{4} R^{4}\left(\bar{v}_{4}\right) \equiv 0 \quad \bmod 2^{6}
$$

which implies

$$
\begin{equation*}
R^{4}\left(\bar{v}_{4}\right) \equiv-P^{4}\left(\bar{v}_{4}\right) \equiv-\lambda \bar{v}_{4}^{2}-2 \beta \bar{v}_{8} \quad \bmod 4 . \tag{5.25}
\end{equation*}
$$

Hence from (5.24), it follows that

$$
0 \not \equiv 2 \bar{v}_{8}^{2} \equiv-2 \alpha \beta \bar{v}_{8}^{2} \quad \bmod 4
$$

Then it follows that

$$
\begin{equation*}
\alpha \beta \equiv 1 \quad \bmod 2 ; \quad \text { in particular, } \beta \equiv 1 \quad \bmod 2 . \tag{5.26}
\end{equation*}
$$

Since $\beta \not \equiv 0 \bmod 2$, Proposition 5.18 implies

$$
\begin{align*}
0 \equiv R^{4} P^{4}\left(\bar{v}_{4}\right) & \equiv R^{4}\left(\lambda \bar{v}_{4}^{2}+2 \beta \bar{v}_{8}\right) \\
& \equiv 2 \lambda \bar{v}_{4} R^{4}\left(\bar{v}_{4}\right)+2 \beta R^{4}\left(\bar{v}_{8}\right) \tag{5.27}
\end{align*}
$$

by (5.10) and the Cartan formula.
Here, by (5.25), we have

$$
2 \lambda \bar{v}_{4} R^{4}\left(\bar{v}_{4}\right) \equiv 0 \quad \bmod 4
$$

Also by (1.4) using (5.10) and Lemma 5.23 we have

$$
2^{4} P^{4}\left(\bar{v}_{8}\right)+2^{4} R^{4}\left(\bar{v}_{8}\right) \equiv 0 \quad \bmod 2^{6}
$$

and hence

$$
R^{4}\left(\bar{v}_{8}\right) \equiv-P^{4}\left(\bar{v}_{8}\right)=-\alpha \bar{v}_{4} \bar{v}_{8} \quad \bmod 4 .
$$

Substituting them into (5.27) we obtain

$$
0 \equiv R^{4} P^{4}\left(\bar{v}_{4}\right) \equiv-2 \alpha \beta \bar{v}_{4} \bar{v}_{8},
$$

which contradicts (5.26).
Thus we have shown that there exists no Poincaré complex with GW space structure whose cohomology ring is an exterior algebra of type $(7,15)$.

\S. Proof of the main theorem

Let E be a Poincaré complex of type (q, n). One may assume that E has a cell structure $S^{q} \cup_{\alpha} e^{n} \cup e^{n+q}$ with $\alpha \in \pi_{n-1}\left(S^{q}\right)$.
[The case $n=q$.] Then E has a cell structure $S^{q} \vee S^{q} \cup e^{2 q}$. We define an inclusion ι : $Q \hookrightarrow E$ by the canonical inclusion $S^{q} \vee S^{q} \subset E$. Since Q is desuspendable, there is an axial map $\mu: Q \times Q \rightarrow E$ with axis ι by the assumption. Denote by $Q(2)$ the cofibre of the Hopf construction $H(\mu): Q * Q \rightarrow \Sigma E$ of the map μ. Then one has

$$
H^{*}(Q(2) ; Z / 2) \cong Z / 2^{[3]}\left[v_{q+1}, v n+1\right]
$$

and $S q^{1} Q H^{*}(Q(2) ; Z / 2)=0$. Then by Proposition 1.7 one has $\{q, n\} \subseteq\{1,3,7\}$.
[The case $n=q+1$.] Then E has a cell structure $S^{q} \cup_{m \iota} e^{q+1} \cup e^{2 q+1}$ where $m \iota \in \pi_{q}\left(S^{q}\right)$ $\cong Z$. If m is odd, then $E \simeq_{2} S^{2 q+1}$. So inheriting a GW space structure from $E, S_{(2)}^{2 q+1}$ becomes a GW space and, into particular, $S^{2 q+1}$ becomes a Hopf space, whence $q=1$ or 3. Therefore $(q, n)=(1,2)$ or $(3,4)$ and $E \simeq_{2} S^{3}$ or S^{7}. If m is even and $q=3$, then $H^{*}(E ; Z / 2) \cong \wedge\left(x_{q}, x_{n}\right)$. Putting $Q=S^{q} \cup_{m \iota_{q}} e^{q+1}$, we get a space $Q(2)$ as in case when $n \leq q$. Then one has

$$
H^{*}(Q(2) ; Z / 2) \cong Z / 2^{[3]}\left[v_{q+1}, v_{q+2}\right]
$$

Then Proposition 1.7 says that $q=1$, which is a contradiction. Hence $(q, n)=(1,2)$ or $(3,4)$, and $E \simeq_{2} S^{7}$ if $q=3$.
[The case $q+1<n<2 q$.] Then E has a cell structure $S^{q} \cup_{\alpha} e^{n} \cup e^{n+q}$ with $\alpha \in$ $\pi_{n-1}\left(S^{q}\right)$. By assumption, $n<2 q$ and α is a suspended element, that is, $Q=S^{q} \cup_{\alpha} \cup e^{n}$ is desuspendable. There is a map $\mu: Q \times Q \rightarrow E$ since E is a GW space. Quite similarly to the above cases, one can construct a space $Q(2)$ satisfying

$$
H^{*}(Q(2) ; Z / 2)=Z / 2^{[3]}\left[v_{q+1}, v_{n+1}\right]
$$

From Proposition 1.7 it follows that $(q, n)=(3,5)$
[The case $n=2 q>2$.] Then E has a cell structure $S^{q} \cup_{\alpha} e^{n} \cup e^{n+q}$ with $\alpha \in \pi_{n-1}\left(S^{q}\right)$. If q is odd, one has $H^{*}(E ; Z) \cong \wedge\left(x_{q}, x_{n}\right)$ which contradicts Proposition 3.3. Hence q is even. Take the bottom inclusion $j: S^{q} \rightarrow E$. Then the map $j \circ[\iota, \iota]: S^{2 q-1} \rightarrow E$ is null
homotopic, since E is a GW space. For dimensional reasons there is a map $\lambda: S^{2 q-1} \rightarrow$ $S^{2 q-1}$ such that the following diagram homotopy commutes:

Thus $\left[\iota_{q}, \iota_{q}\right]=\lambda \alpha$, where $\left[\iota_{q}, \iota_{q}\right]$ is an element in the free part of $\pi_{2 q-1}\left(S^{q}\right)$ and so is α. Therefore we get

$$
\begin{aligned}
H^{*}(E ; Z) & \cong Z\left[x_{q}\right] /\left(x_{q}^{4}\right) & & \text { if } \lambda=2 \\
& \cong Z\left\{x_{q}, x_{2 q}, x_{q} x_{2 q}\right\}, x_{q}^{2}=2 x_{2 q} & & \text { if } \lambda=1
\end{aligned}
$$

So it follows from Proposition 2.1 that $(q, n)=(2,4)$. That is,

$$
H^{*}(E ; Z) \cong H^{*}\left(C P^{3} ; Z\right)
$$

[The case $2 q<n$.] Then E has the the homotopy type of $S^{q} \cup_{\alpha} e^{n} \cup e^{q+n}$ with $\alpha \in$ $\pi_{n-1}\left(S^{q}\right)$. By Proposition 3.3, one has

$$
H^{*}(E ; Z) \cong \wedge\left(x_{q}, x_{n}\right)
$$

Hence from Theorem 4.2 and Proposition 5.1 and 5.2, it follows that $(q, n)=(1,3),(1,7)$ or $(3,7)$.
Remark. When $(q, n)=(3,7)$, the attaching element α of the 7 -cell in E is of the form α $=\lambda \omega$ with λ odd or $\lambda \equiv 0 \bmod 4$, where ω is the Blakers-Massey element in $\pi_{6}\left(S^{3}\right)$.

In fact, if λ is odd or $\lambda \equiv 0 \bmod 4$, the pullback by λ from the principal bundle $S p(2) \rightarrow$ S^{7} is known to be a Hopf space and so it is a GW space. If $\lambda \equiv 2 \bmod 4, \alpha$ is desuspendable at 2 and so is the space $Q=\left(S^{3} \cup_{\alpha} e^{7}\right)_{(2)}$. Then one can construct a space $Q(2)$ from which one can deduce a contradiction to the result of Sigrist-Suter [S-S] (since the result in $[\mathbf{S}-\mathbf{S}]$ is essentially a result localised at $p=2$).

We would like to propose the following
Conjecture. If E is a 1 -connected finite $G W$ space such that $H^{*}(E ; Z)$ is an exterior algebra on odd degree generators, then E is a Hopf space.

Appendix

Let E and B be connected CW complexes and consider a fibration

$$
\begin{equation*}
F \stackrel{\iota}{\hookrightarrow} E \xrightarrow{\pi} B \tag{A.1}
\end{equation*}
$$

with fibre F a (not necessarily connected) CW complex. It gives rise to the following two fibrations:

$$
\begin{align*}
& \Omega B \xrightarrow{q} F \xrightarrow{\iota} E, \tag{A.2}\\
& \Omega E \xrightarrow{\Omega \pi} \Omega B \xrightarrow{q} F . \tag{A.3}
\end{align*}
$$

Now suppose that ι is null homotopic. It follows from (A.2) that q has a right inverse s $: F \rightarrow \Omega B$. So the homotopy exact sequence of (A.3) splits and we obtain

$$
\pi_{*}(\Omega B) \cong \pi_{*}(\Omega E) \oplus \pi_{*}(F),
$$

where the above isomorphism is induced by the map $h=\mu \circ(\Omega \pi \times s): \Omega E \times F \rightarrow \Omega B$ with μ the loop multiplication of ΩB. Thus h is a homotopy equivalence, since ΩB and ΩE have the homotopy type of a CW complex. Hence we obtain

$$
\begin{equation*}
h: \Omega E \times F \simeq \Omega B \tag{A.4}
\end{equation*}
$$

Thus the following hold for any space W :

$$
\begin{align*}
& 1 \rightarrow[W, \Omega E] \stackrel{\Omega \pi_{*}}{\hookrightarrow}[W, \Omega B] \quad \text { as groups, } \tag{A.5}\\
& {[W, \Omega B] \cong[W, \Omega E] \times[W, F] \quad \text { as sets. }}
\end{align*}
$$

Here we would like to introduce a notion of GW action. A GW action of E along π : E $\rightarrow B$ is a map

$$
\begin{equation*}
\nu: \Sigma \Omega E \times \Sigma \Omega B \rightarrow B \tag{A.6}
\end{equation*}
$$

with axes $\Sigma \Omega E \rightarrow E \xrightarrow{\pi} B$ and $\Sigma \Omega B \rightarrow B$, where a map $\Sigma \Omega X \rightarrow X$ is the evaluating map.
Then we have
Theorem A.7. If ι is null-homotopic in (A.1) and if B admits a $G W$ action of E along π (see (A.6)), then the following three statements hold:
(i) E is a $G W$ space and F is an H-space.
(ii) If B is a $G W$ space, then F is a homotopy abelian H-space.
(iii) B is a $G W$ space if and only if the Sameleson product $\langle s, s\rangle$ is trivial for a right inverse s of q.
(iv) If there is an H-map s which is a right inverse of q and if F is homotopy abelian, then B is a $G W$ space and (A.4) is an H-equivalence.

Proof. (i) By [\mathbf{O}, Theorem 2.7], the image of $\Omega \pi_{*}$ of (A.5) is contained in the center of $[W, \Omega G] \cong[\Sigma W, G]$ for any W, since a map from a suspension space to a space X can be decomposed through the evaluating map $\Sigma \Omega X \rightarrow X$. Furthermore $\Omega \pi_{*}$ is a monomorphism by (A.5), and hence $[W, \Omega G]$ is an abelian group for any W, which implies that E is a GW space. Since F is a retract of a loop space ΩB, it is an H -space.
(ii) Let us define the multiplication $\bar{\mu}$ of F by putting $\bar{\mu}=q \circ \mu \circ(s \times s)$, where we denote by μ the loop multiplication of ΩB. As μ is homotopy abelian, so is $\bar{\mu}$.
(iii) First suppose that B is a GW space. Since ΣF is a suspension space, the Whitehead product $[a d(s), a d(s)]$ is trivial for the adjoint map $a d(s): \Sigma F \rightarrow B$ of s. Recall that $[\operatorname{ad}(s), a d(s)]= \pm a d\langle s, s\rangle$, where $a d\langle s, s\rangle$ denotes the adjoint of the Samelson product of s. Thus we obtain $a d<s, s\rangle=*$.

Conversely suppose that $a d<s, s\rangle=*$. For simplicity we write $\mu(x, y)=x \cdot y$. Then by the homotopy associativity of μ, we obtain the following homotopy.

$$
\begin{aligned}
h(x, y) \cdot h(\bar{x}, \bar{y}) & =(\Omega \pi(x) \cdot s(y)) \cdot(\Omega \pi(\bar{x}) \cdot s(\bar{y})) \\
& \simeq(\Omega \pi(x) \cdot(s(y) \cdot \Omega \pi(\bar{x}))) \cdot s(\bar{y})
\end{aligned}
$$

The image of $\Omega \pi_{*}$ is contained in the center as is seen in (i), and so we obtain

$$
s(y) \cdot \Omega \pi(\bar{x}) \simeq \Omega \pi(\bar{x}) \cdot s(y)
$$

Then from the homotopy commutativity, it follows that

$$
\begin{align*}
h(x, y) \cdot h(\bar{x}, \bar{y}) & \simeq(\Omega \pi(x) \cdot(\Omega \pi(\bar{x}) \cdot s(y))) \cdot s(\bar{y}) \tag{A.8}\\
& \simeq(\Omega \pi(x) \cdot \Omega \pi(\bar{x})) \cdot(s(y) \cdot s(\bar{y})) .
\end{align*}
$$

Recalling that the loop map $\Omega \pi$ is an H-map, one has

$$
\Omega \pi(x) \cdot \Omega \pi(\bar{x}) \simeq \Omega \pi(x \cdot \bar{x})
$$

where we use the same symbol \cdot to denote the loop multiplications of ΩB and ΩE. Let us recall that ΩE is homotopy abelian by (i), so that

$$
\Omega \pi(x \cdot \bar{x}) \simeq \Omega \pi(\bar{x} \cdot x)
$$

Thus we obtain

$$
\Omega \pi(x) \cdot \Omega \pi(\bar{x}) \simeq \Omega \pi(\bar{x}) \cdot \Omega \pi(x) .
$$

From the hypothesis $\langle s, s\rangle=*$, it follows that $s(y) \cdot s(\bar{y}) \cdot s(y)^{-1} \cdot s(\bar{y})^{-1} \simeq *$. Hence it follows that

$$
s(y) \cdot s(\bar{y}) \simeq s(\bar{y}) \cdot s(y) .
$$

Summing up we get

$$
\begin{aligned}
h(x, y) \cdot h(\bar{x}, \bar{y}) & \simeq(\Omega \pi(x) \cdot \Omega \pi(\bar{x})) \cdot(s(y) \cdot s(\bar{y})) \\
& \simeq h(\bar{x}, \bar{y}) \cdot h(x, y),
\end{aligned}
$$

that is,

$$
\mu \circ(h \times h) \simeq \mu \circ T \circ(h \times h) .
$$

Since h is a homotopy equivalence in (A.4), it then follows that

$$
\mu \simeq \mu \circ T
$$

that is, ΩB is homotopy abelian. Thus B is a GW space.
(iv) Let $s: F \rightarrow \Omega B$ be an H-map which is a right inverse of q. Then the H-deviation $H D(s)$ of s satisfies $H D(s) \simeq *$, where the H-deviation $H D(s): F \wedge F \rightarrow \Omega B$ is given by

$$
H D(s)(x \wedge y)=s(x) \cdot s(y) \cdot s(x+y)^{-1}
$$

where + denotes the multiplication of F. It follows that

$$
H D(s)(y \wedge x)=s(y) \cdot s(x) \cdot s(y+x)^{-1}
$$

Since F is homotopy abelian, we have $s(x+y) \simeq s(y+x)$. Thus we have

$$
\begin{aligned}
H D(s)(x \wedge y) \cdot H D(s)(y \wedge x)^{-1} & \simeq s(x) \cdot s(y) \cdot s(x+y)^{-1} \cdot s(y+x) \cdot s(x)^{-1} \cdot s(y)^{-1} \\
& \simeq s(x) \cdot s(y) \cdot s(x)^{-1} \cdot s(y)^{-1} \\
& =<s, s>(x \wedge y) .
\end{aligned}
$$

This implies that $\langle s, s\rangle \simeq *$, and hence B is a GW space by (iii). Further, by (A.8) we have

$$
\begin{aligned}
\mu \circ(h \times h)((x, y),(\bar{x}, \bar{y}) & \simeq h(x, y) \cdot h(\bar{x}, \bar{y}) \\
& \simeq(\Omega \pi(x) \cdot \Omega \pi(\bar{x})) \cdot(s(y) \cdot s(\bar{y}))
\end{aligned}
$$

which by using the H-structure of maps s and $\Omega \pi$, changes up to homotopy as follows:

$$
\begin{aligned}
& \simeq \Omega \pi(x \cdot \bar{x}) \cdot s(y+\bar{y}) \\
& =h(x \cdot \bar{x}, y+\bar{y}) .
\end{aligned}
$$

This implies that h is an H-map and hence ΩB is H-equivalent to $\Omega E \times F$.
QED.
Corollary A.9. (i) The standard lens space $L(m)=S^{3} /(Z / m Z)$ is a $G W$ space for all $m \geq 1$.
(ii) $C P^{3}=S^{7} / T^{1}$ is a $G W$ space.

Proof. (i) Put $F=Z / m Z, E=S^{3}$ and $B=L(m)$. They satisfy the conditions of Theorem A.7. So it suffices to show that $s: F \rightarrow \Omega E$ is an H-map. The H-deviation of s is in the set $[F \wedge F, \Omega E] \cong\left[F * F, E \cong\left[\vee_{\alpha} S_{\alpha}^{1}, S^{3}\right] \cong \oplus_{\alpha} \pi_{1}\left(S^{3}\right)=0\right.$. Hence $H D(s) \simeq *$, that is, s is an H-map. From (iv) of Theorem A.7, it follows that $B=L(m)$ is a GW space.
(ii) Put $F=T^{1}, E=S^{7}$ and $B=C P^{3}$. They satisfy the conditions of Theorem A.7, since $C P^{3}$ is a Whitehead space and $\Sigma \Omega C P^{3}$ has the homotopy type of a wedge sum of spheres. The H-deviation of $s: F \rightarrow \Omega G$ is in the set $[F \wedge F, \Omega E] \cong \pi_{3}\left(S^{7}\right)=0$, whence s is an H-map. From (iv) of Theorem A.7, it follows that $B=C P^{3}$ is a GW space. QED.

Remark. If we put $F=T^{1}, E=S^{3}$ and $B=S^{2}$, they also satisfy the conditions of Theorem A.7, but a splitting $s: F \rightarrow \Omega B$ cannot be an H-map. In fact, its H-deviation is the adjoint of the Hopf map $\eta: S^{3} \rightarrow S^{2}$, and S^{2} is not a GW space.

References

[A] J. F. Adams, On the non-existence of elements of the Hopf invariant one, Ann. of Math. 72 (1960), 20-104.
[B-T] W. Browder and E. Thomas, On the projective plane of an H-space, Ill. J. Math. 7 (1963), 492-502.
[H-R] P. Hilton and J. Roitberg, On principal S^{3} bundles over spheres, Ann. of Math. 90 (1969), 91-107.
[He] Y. Hemmi, On the cohomology of finite H-spaces, preprint.
[Hu] J. R. Hubbuck, Generalized cohomology operations and H-spaces of low rank, Trans. of A. M. S. 141 (1969), 335-360.
[I] N. Iwase, H-spaces with generating subspaces, Proc. Roy. Soc. of Edinburgh (A) 111A (1989), 199-211.
[K] H. Kachi, Homotopy commutativity of the loop space of a finite CW-complex, Hiroshima Math. J. (1989) (to appear).
[M] C. A. McGibbon, Higher forms of homotopy commutativity and finite loop spaces, Math. Z. 201 (1989), 363-374.
[O] N. Oda, Pairings and copairings in the category of topological spaces, preprint.
[S-S] F. Sigrist and U. Suter, Eine anwendug der K-theorie in der Theorie der H-Räume, Comment. Math. Helv. 47 (1972), 36-52.
[S] J. D. Stasheff, On homotopy abelian H-spaces, Proc. Cambridge Phil. Soc. 57 (1971), 734-745.
[Th1] E. Thomas, Steenrod squares and H-spaces I, Ann. of Math. 77 (1963), 306-317; II, Ann. of Math. 81 (1965), 473-495.
[Th2] \qquad , On the mod 2 cohomology of certain H-spaces, Comment. Math. Helv. 37 (1962), 132-140.
[Th3] \qquad On functional cup products and the transgression operator, Arch. der Math. 12 (1961), 435-444.
[To] H. Toda, "Composition methods in homotopy groups of spheres," Ann. of Math. Studies 49, Princeton University Press, Princeton, 1962.
[Z] A. Zabrodsky, The classifications of simply connected H-spaces with three cells I, Math. Scand. $\mathbf{3 0}$ (1972), 193-210.

Keywords. Generalized Whitehead product, homotopy abelian H-space, sphere bundle over sphere.

Department of Mathematics, Okayama University, Okayama 700, Japan
MSRI, 1000 Centennial Drive, Berkeley CA94720, USA; Department of Mathematics, Okayama University, Okayama 700, Japan

