MAYER-VIETORIS SEQUENCE
FOR
DIFFERENTIABLE/DIFFEOLOGICAL SPACES
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ABSTRACT. The idea of a space with smooth structure is a generalization of an idea of
a manifold. K. T. Chen introduced such a space as a differentiable space in his study
of a loop space to employ the idea of iterated path integrals [2, 3, 4, 5]. Following the
pattern established by Chen, J. M. Souriau [10] introduced his version of a space with
smooth structure, which is called a diffeological space. These notions are strong enough
to include all the topological spaces. However, if one tries to show de Rham theorem,
he must encounter a difficulty to obtain a partition of unity and thus the Mayer-Vietoris
exact sequence in general. In this paper, we introduce a new version of differential forms
to obtain a partition of unity, the Mayer-Vietoris exact sequence and a version of de Rham
theorem in general. In addition, if we restrict ourselves to consider only CW complexes,
we obtain de Rham theorem for a genuine de Rham complex, and hence the genuine de
Rham cohomology coincides with the ordinary cohomology for a CW complex.

In this paper, we deal with both differentiable and diffeological spaces. A differentiable
space is introduced by K. T. Chen [5] and a diffeological space is introduced by J. M.
Souriau [10]. Both of them are developed with an idea of a plot —a map from a domain.

Let n = 0. A non-void open set in R™ is called an open n-domain or simply an open
domain and a compact convex set with non-void interior in R" is called a convex n-domain
or simply a convexr domain. We reserve the word ‘smooth’ for ‘differentiable infinitely many
times’ in the ordinary sense. More precisely, a map from an open or convex domain A to
an euclidean space is smooth on A, if it is smooth on Int A in the ordinary sense and all
derivatives extend continuously and uniquely to A (see A. Kriegl and P. W. Michor [9]).

Let us explain more about the difficulty to obtain a partition of unity in the theory
of differentiable/diffeological spaces. Apparently, if one tries to show it, he must realize
that it is not easy to build-up the arguments because of the shortage of differential forms.
In fact, we don’t know how to manage it in general. So, in this paper, we include more
differential forms to make it easier, as is performed in Section 7. But, at the same time,
newly included differential forms should not be so many, because we have to show an
equivalence in some sense with the original differential forms, if the space is a manifold.
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1. DIFFERENTIABLE/DIFFEOLOGICAL SPACES
Let us recall a concrete site given by Chen [5] (see J. C. Baes and A. E. Hoffnung [1]).

Definition 1.1. Let Convex be the category of convex domains and smooth maps between
them. Then Convex is a concrete site with Chen’s coverage: a covering family on a convex

domain is an open covering by interiors of conver domains.

On the other hand, a concrete site given by Souriau [10] is as follows.

Definition 1.2. Let Open be the category of open domains and smooth maps between
them. Then Open is a concrete site with the usual coverage: a covering family on an open

domain is an open covering by open domains.

Let Set be the category of sets. A differentiable or diffeological space is as follows.

Definition 1.3 (Differentiable space). A differentiable space is a pair (X,Cx) of a set X
and a contravariant functor Cx : Convex — Set such that
(C0) For any A € Obj(Convex), Cx(A) C Homge (A, X).
(C1) For any x € X and any A € Obj(Convex), Cx(A) 3 ¢, the constant map.
(C2) Let A € Obj(Convex) with an open covering A = aLEJAIntA B., B, € Obj(Convex). If
P € Homgt (A, X) satisfies that P|g, € Cx(Ba)) for all o € A, then P € Cx(A).

(C3) For any A,B € Obj(Convex) and any f € Homcgypyex(B,A4), Cx(f) = f* :
Cx(A) — Cx(B) is given by f*(P) = Pof € Cx(A) for any P € Cx(A).

Definition 1.4 (Diffeological space). A diffeological space is a pair (X,Dx) of a set X
and a contravariant functor Dx : Open — Set such that
(D0) For any U € Obj(Open), Dx(U) C Map(U, X).
(D1) For any x € X and any U € Obj(Open), Dx(U) > ¢, the constant map.
(D2) Let U € Obj(Open) with an open covering U = aLEJAVa, Vo, € Obj(Open). If P €
Homge: (U, X)) satisfies that Ply, € Dx(Vy) for all « € A, then P € Dx(U).
(D3) For any U,V € Obj(Open) and any f € Homopen(V, U), Dx(f) = f*:Dx(V) —
Dx(U) is given by f*(P) = Pof € Dx (V) for any P € Dx(U).

From now on, £X : Domain — Set stands for either Cx : Convex — Set or Dx : Open —

Set to discuss about a differentiable space and a diffeological space simultaneously.

Definition 1.5. A subset O C X is open if, for any P € EX (£ =C or D), P71(0) is

open in Dom P. When any compact subset of X s closed, we say X is ‘weakly-separated’.
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Definition 1.6. Let (X,EX) and (Y, EY) be differentiable/diffeological spaces, € = C or D.
Amap f: X =Y is differentiable, if there exists a natural transformation of contravariant
functors E7 1 EX — EY such that E7(P) = foP. The set of differentiable maps between X
and Y is denoted by C(X,Y) or simply by C*(X,Y). If further, f is invertible with a

differentiable inverse map, f is said to be a diffeomorphism.

Let us summarize the minimum notions from [2, 3, 4, 5, 10, 1, 14, 7, 11, 6, 8] to build

up de Rham theory in the category of differentiable or diffeological spaces as follows.

Definition 1.7 (External algebra). Let T = Hom(R",R) = E%Rdxi, where {dx;}1<i<p
i=1 ==
is the dual basis to the standard basis {e;}1<i<n of R". We denote by N*(T) the exterior

(graded) algebra on {dx;}, where each dxz; is of dimension 1. In particular, we have
AN(TH) 2 AS(TF) 2R, AP(T7) =0 if p<0 and NP(T) = N"P(T*) for any p € Z.

The external algebra fits in with our categorical context as the following form.
Definition 1.8. A contravariant functor AP : Domain — Set is given as follows:
(1) NP(A) = Hompgmain (4, AP(T5)), for any convex n-domain A,

(2) For a smooth map f: B — A in Domain, AP(f)=f*: A\P(A) — AP(B) is defined,
foranyw="> aj, .. (x) de; N --Ndx;, € \P(A), as

11 < <ip
[flw) = > bj.j(y)dy, N---Ndy;,, yeV,
J1<-<Jp ( )
0 Liyy Ly

bj gy (Y) = D ail,--.,ip(f(y))'#>

5 ) 1< <lip (yju Y yjp)
Tyt Xy ) .
where g denotes the Jacobian determinant.

a(yjn R yjp)

Definition 1.9. A natural transformation d : AP — AP*! s given as follows: for any
domain A, d: N°(A) — NPTI(A) is defined, for any n = a(x) dxy A---ANdx;, € AP(A), as

dag, ... ;
dn =73 %(m) drNdxy N---Ndx;,.

Then the naturality is obtained using a strait-forward computation.

A differential form is given in this context as follows.

Definition 1.10. Let (X,EX) be a differentiable or diffeological space, & = C or D.

(general): A differential p-form on X is a natural transformation w : EX — AP given
by {wa : EX(A) = AP(A); A € Obj(Domain)} of contravariant functors EX, AP :
Domain — Set, in other words, w satisfies f*(wp(P)) = ffowp(P) = waof*(P) =
wa(Pof) for any map f : A — B in Domain and a plot P € £X(B). The set



4 IWASE AND IZUMIDA

of differential p-forms on X is denoted by AZ(X) or simply by AP(X). We also
denote A$(X) = @ AL(X) or by A*(X) = @ AP(X).

(with compact su;port): A differential p-;orm with compact support on X is a
natural transformation w =: EX — AP(—) with a compact subset K, C X such
that, for any A € Obj(Domain) and P € X, we have Suppwa(P) C P} K,).
The set of differential p-forms with compact support on X is denoted by A% (X)
or simply by AL(X). We also denote Ag (X) = E}?Agc (X) or A%(X) = ?AQ(X).

Example 1.11. We have A*({+}) = R and A} ({+}) = R.

Definition 1.12 (External derivative). The external derivative of a differential p-form w
on a differentiable/diffeological space X is a differential p+1-form dw given by (dw)s =
dowya for any A € Obj(Domain). If, further we assume w € A2(X), we clearly have dw €
AP (X)), Thus the external derivative induces endomorphisms of A*(X) and A*(X).

The categories of differentiable spaces and of diffeological spaces are denoted respectvely
by Differentiable and Diffeology, which are different from each other (see [11]). By [10], [5]

and [1], we know both of them are cartesian closed, complete and cocomplete.

Definition 1.13. Let f: (X,EX) — (Y,EY) be a differentiable map, € =C or D.
(1) We obtain a homomorphism f* : AP(Y) — AP(X): let w € AP(Y). Then
(ffw)a(P) = wa(foP) for any P € EX(A) and A € Obj(Domain).
(2) If a differentiable map f is proper, then we have f*(AP(Y)) C AP(X) by taking
K, = [THKL) for any w e AX(Y).

Definition 1.14. For an inclusion j : U — X of an open set U into a weakly-separated

differentiable/diffeological space X, a homomorphism j; : AL(U) — A2(X) is defined as
follows: for any w € A2(U), jyw € AP(X) is given, for n-domain B and Q € EX(B), by

(jaw)5(Q)|a = wa(Qla), if A is an open n-domain in Q1 (U),
(jsw)B(Q)|a =0, if A is an open n-domain in BNQ ' (K,)

with Kj,, = K, CU C X. Here, {Q7"(U), BNQ ' (Ky,)} is an open covering of B.

Remark 1.15. In Definition 1.14, the map j; induced from an inclusion j : U — X
satisfies that (jyw)p(joQ) = wp(Q) for any B € Obj(Domain) and Q € EY(B).

Proposition 1.16. There is an isomorphism ® : A°(X) = C*°(X,R) such that ®(w)of =
O(fH(w)) for any w € A°(X) and f € C=(Y, X).
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Proof: Firstly, we define a homomorphism @ : A°(X) — Homg (X, R) by ®(w)(z) =
wisy(cz)(x) € Rfor any w € A°(X) and z € X. By definition, ® clearly is a homomorphism.

Secondly, we show Im® C C*°(X,R). For any n-domain A and P € ¥ (A), we have
wa(P) : A — AY(TF) = R. Hence for any * € A, we have Pocg = ¢, € EX({+})
where = P(x) € X, and hence we have wa(P)(x) = wa(P)ocx(x) = wpxy(Pocg)(x) =
Wi (Co) (%) = @(w)(x) = ®(w)oP(x), * € A. Thus we have wy(P) = ®(w)oP for any
A € Obj(Domain) and P € £¥(A), and hence ®(w) : X — R is a differentiable map.
Moreover, for any differentiable map f: Y — X, we have ®(fw)(z) = (f*w) g (cs)(x) =
wisy (focr)(x) = wiwy(Cp@)) (x) = @(w)of(x), and hence we obtain @(fw) = P(w)of.

Thirdly, by the formula w4 (P) = ®(w)oP for any A € Obj(Domain) and P € £X(A), w
is completely determined by ®(w), and hence ® is a monomorphism.

Finally, for any differentiable map f : X — R, we have a 0-form w by ws(P) = foP
for any A € Obj(Domain) and P € £X(A), which also implies ®(w) = f. Thus ® is an

epimorphism, and it completes the proof of the proposition. O

Definition 1.17. Let X = (X, &) be a differentiable/diffeological space, € = C or D.
Z8(X
de Rham cohomology: H(X) = %,
where ZE(X) = Kerd N A%(X) and B%(X) = d(A%(X)).
Z

e.(X)
Bg

(X)

c

de Rham cohomology with compact support: Hf (X) =

where Zg (X) = Kerd N Ag (X) and Bg (X) = d(Az (X))

c

From now on, we often abbreviate as H?(X) = Hg(X), HY(X) = Hg (X) and so on.

Remark 1.18. We have Hg (M) = H}j(M) and Hg (M) = Hjj, (M) for a manifold M,
where we denote by Hip (M) (Hj, (M)) the de Rham cohomology (with compact support).
Proposition 1.19. Let (X,EX) and (Y,EY) be differentiable/diffeological spaces.
(1) For a differentiable map f : X — Y, the homomorphism f* : A*(Y) — A*(X)
induces a homomorphism f*: H*(Y) — H*(X).
(2) If a differentiable map f : X — Y is proper, then the homomorphism f* : A*(Y) —
A% (X) induces a homomorphism f* : HX(Y) — HX(X).
Theorem 1.20. The de Rham cohomologies determines contravariant functors Hp :
Differentiable — GradedAlgebra and H}, : Diffeology — GradedAlgebra.

Proposition 1.21. Let (X, EX) be a weakly-separated differentiable/diffeological space and
U an open set in X. Then the homomorphism j; : A%(U) — AX(X) induced from the
canonical inclusion j : U — X induces a homomorphism j, : HX(U) — H}(X).
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Theorem 1.22 ([5], [10]). If two differentiable maps fo, f1 : X — Y between differ-
entiable/diffeological spaces are homotopic in CX(X,Y), € = C or D, i.e., there is a
differentiable map f: I — C°(X,Y) such that f(t) = f;, t = 0,1, then we obtain

fo =1 Heg(Y) = He (X).

Theorem 1.23. By definition, we clearly have HE ([ [Xa) = [[HE(X,), € =C or D.

o

Example 1.24. For a differentiable/diffeological space ({+},E*) with E*(A) = {c«} for
any A € Obj(Domain), we have H°(X) = A%(X) =R and H?(X) = A?(X) =0 if p # 0.

2. MAYER-VIETORIS SEQUENCE FOR DIFFERENTIABLE SPACES

Definition 2.1 (partition of unity). Let (X,EX) be a differentiable/diffeological space and
U an open covering of X. A set of 0-forms p = {pY; U€U} is called a partition of unity
belonging to U, if, for any A € Obj(Domain) and P € EX(A), Supp pY(P) C P~Y(U) and

S p%(x) =1, © € A. If further there is a family {Gy; U €U} of closed sets in X such
Ueu

that, Supp pY(P) C P~YGy) for any A and P above, then we say that p is ‘normal’.

The above definition of a partition of unity using the notion of O-form first appeared in
Izumida [8] which was essentially the same as the one in Haraguchi [6] using the notion of
a differentiable function, since a differential 0-form is a differentiable function, if we adopt

the usual definition of O-form. We introduce a special kind of open coverings as follows.

Definition 2.2 (Nice covering). Let X be a differentiable space. An open covering U of
X is mice, if there is a partition of unity {p% : A — [ =1[0,1]; U €U} belonging to U, i.e.,
{pY} are differential 0-forms with Supp p4(P) = Cl(p4(P)~1(I~{0})) c P~YU), Ue U
satisfying > pA(P)(x) =1 for any x € A, where p5(P)(x) # 0 for finitely many U.

Ueu

Theorem 2.3 (see [6] or [8]). Let U = {Uy,Us} be a nice open covering of a dif-
ferentiable/diffeological space (X,EX) with a partition of unity {pV), p} belonging to
U. Then v, : Uy NUy — U, and 5, : U, — X, t = 1,2, induce homomorphisms
’(/)u : AP(X) — .Ap(Ul) D Ap(UQ) and qbu : .Ap(Ul) D .Ap(Ug) — .Ap(Ul N Ug) by wu(w)
= igw@igw and ¢F(m@ny) = jgm —jgng, and the following sequence is exact.
HY(X) — - — H(X) 5 HP(U)@HP(Us) 25 HP (U, N Uy)
— HPLU(X) 5 H L (U) @ HP T (Uy) S HP (U N UY) — -+

where Y* and ¢* are induced from V* and ¢°.
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Proof: Let Uy = Uy NU,y. We show that the following sequence is short exact.
b b
0 — AP(X) 55 A(U)) & AP(U) 25 AP(U,) — 0.

(exactness at AP(X)): Assume ¥(w) = 0, and so jiw = 0 for t =1,2. For any
A € Obj(Domain) and P € £X(A), we define P, : P~Y(U;) — U, t=1,2 by Py(z) =
P(x) for any @ € P~(U,), so that P|p-1(y,) = jioP, for t=1,2. Then, for any « €
A, there is an open subset Ag € Obj(Domain) of A such that x € Ag C P~1(U;) for
t=1or 2. In each case, we have wa(P)|ag, = wagy(Plag) = wag (Plp-1wy)lag) =
Wag (JioPilag) = (jfw)Aw(Pt\Aw) = 0, and hence wa(P)|a, = 0 for any z € A.
Thus ws(P) = 0 for any A and P, which implies that w = 0. Thus ¢ is monic.

(exactness at AP(U;) & AP(Us)): Assume ¢*(nM@n@) = 0, and so ity = iin®.
Then we construct w € AP(X) as follows. For any A € Obj(Domain) and P €
EX(A ) {P~1(U;); t=1,2} is an open covering of A, and for ¢t =0, 1,2 we obtain

P, : P~Y(U;) — U, given by Py(x) = P(x) for any & € P~(U;), so that Py|p-1(yy) =
itoPO for t =1,2. For any & € A, there is an open subset Az € Obj(Domain) of
A such that © € Ag € P7Y(U,) for t =1 or 2. Using it, we define wA(P)(:v) =

nA;,;(P|Aa:)< x) for any ¢ € A. In case when Ag C Ag=A1NA,, we have nA (P1|Aa:)

= 140 (10Po]ag) = (1) g (Polag) = (i0®) ag (Pl ag,) = n;;cmopoum) =

77’(45)8 (P2|ag ), and hence 77( ) (P1 lag) = 771(42:)1: (Pa|ag)- It implies that w is well-defined
and ¢! (w) = nWen®. The converse is clear and we obtain Ker ¢f = Im "

(exactness at AP(Up)): Assume x € AP(Up). Then we define k) € AP(U,), t=1,2

defined as follows. For any A; € Obj(Domain) and a plot P, : A, — U, we

define x4 (P)(z) by (1) 0% (P)(®)-ka,(B) () if ¢ € P71 (Us_;) and by 0 if

x & P, (Supp p%.'(P;)). Then we see that £ is well-defined differential p-form on

U, and i‘}/s(l)—igm(?) =k, and hence ¢*(kM@k?) = k. Thus ¢" is an epimorphism.

Since 9% and ¢* are clearly cochain maps, we obtain the desired long exact sequence. [

Let us turn our attention to the differential forms with compact support.

Theorem 2.4 (see [6] or [8]). Let (X, EYX) be a weakly-separated differentiable/diffeological

space and U = {Uy,Us} a nice open covering of X with a normal partition of unity

{pM, p@} belonging to U. Then i, : Uy NUy < U, and j, : U, — X, t = 1,2, induce

homomorphisms ¢, = AL(Uy N Usy) — A2(Up)®AL(Us) and v, : A2(Up)®AR(Us) — AP(X)

by ¢y(w) = i13wPiggw and Yy (mBn2) = Jig — jasnz, and the following sequence is exact.
HOU, N Uy) = -+ — HP(Uy N Uy), 25 HY(U)@HP(Uy) 25 HP(X)

— HPYYU, O Uy) 25 HPAY(U)@HPH (Uy) 25 HPFH(X) — -



8 IWASE AND IZUMIDA

where ¥, and ¢, are induced from 1y and ¢,.

Proof: Let Uy = Uy NU,y. We show that the following sequence is short exact.
0 — A2(Up) 25 AR(U7) @ A(U,) 55 AP(X) — 0.

(exactness at A?(U))): Assume ¢y(w) = 0. Then i15(w) = i93(w) = 0. Since i14(w)
is an extension of w, we obtain w = 0. Thus ¢, is a monomorphism.

(exactness at A2(U;) @ A2(Uy)): Assume ¢, (nM@n®) = 0. By definition, we
have ji3(nM) = joyy(n®@). For any A € Obj(Domain) and P € £¥(A), we have
Fi (M) 4(P) = jas(n®) a(P). So, for any B € Obj(Domain) and a plot Q : B — Uy,
g (110Q) = jing (j10i10Q) = j4ng (j20i20Q) = 0 (i20Q). So we define n® €
AP (Uy) by ng)(Q) = ng)(iloQ) = 77592) (i20@Q)). On the other hand, K, 0 = Ko by
definition, and hence we obtain Supp ng))(Q) = Supp ng)(iloQ) = Supp ng)(iQOQ)
C Q_l(Knu) N K,»). Then n® € Ar(U,) for K, = K,u N K,« is compact.

(exactness at A2(X)): Assume k € AP(X). For any A; € Obj(Domain) and a
plot P, : Ay — U;, we define mfﬁz(Pt)(az) by (—1)t_1p5§2(B)(m)-/ﬁAt(jtoPt)(m) if
x € P, (Up) and by 0 if ¢ Supp pgz(Pt). Then xk® is a well-defined differential
p-form on U; with compact support K, = K, NGy, in Uy and jix® —jix® = g,

and hence we have @Dh(m(l)@m(z)) = k. Thus 9y is an epimorphism.

Since ¢y and 1), are clearly cochain maps, we obtain the desired long exact sequence. O

3. CUBE CATEGORY

Definition 3.1. A concrete monoidal site O is defined as follows:
Object: Obj(0) ={0,1,2,---} =Ny, n=07:=0"N1L,
where O"={(t1,...,t,); 0<ty,--+ ,t, <1} and L=7"CR" is an integral lattice.
Morphism: Hompj is generated by the following sets of morphisms.
boundary: 05 : n — n+1, eef:{(), 1},1<i<n+1, n € Ny, given by
O(t) = (t1, ..., tim1, €, b1, oy ty) for t=(ty,---,1,) € O,
degeneracy: ¢; : n+l —n, 0<i<n, n € Ny given by
gi(t) = (t1, - tict, tiva, -y tag1), t=(t1,- -, toyr) € O7,

which satisfies the following relations.

, 0005 ifi<y £08i11 ifi <]
(1) oot =3 7 (2) ejosi=4
8:—}—108]6 ZfZZ] €i—10¢€; ZfZ >j
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O jog; ifi>j

, €i+100f  ifi> ]
(3) aj-osi:{ /J o ] (4) 8j0(9i€: 8foej,1 Zf’l<]
gi005, if1 <] d ifi=i
Clearly, we can extend and &; as smooth maps 9f : R™ — R™™ and ¢; : R"™! — R™. Let
0O : O — Convex be the covariant functor defined by O(n) = O, O(0%) = Of|g» : O" —
O and O(g;) = &i]gner : O — O™ and O(g;) = g4]gn : O — 0O",

Remark 3.2. There is a smooth relative homeomorphism m, : (0" 00") — (A", dA")
given by wu(t1, - tn) = (0,81, ..., Sn, 1), Sp = tge--- t,., where the standard n-simplex /A"
is regarded as A" = {(s0, ", Sns1) ER"; 0=59<51<+- <8, <811 = 1}

According to [1], there is a natural embedding ch : Diffeology — Differentiable. So, from
now on, we deal mainly with differentiable spaces, rather than diffeological spaces. We
denote & = £€¥od and Afy = APolJ, and a plot in &5 (n) = £*(O") is called an n-plot.

Let X = (X, &Y) be a differentiable space. Then we denote ¥, (X) = £X(0O") the set
of n-plots. Let I',(X) be the free abelian group generated by %, (X) and I'(X, R) =
Hom(T',(X); R), where R is a commutative ring with unit. Then I'*(X; R) is a cochain
complex and we obtain a smooth version of cubical singular cohomology H*(X, R) in
a canonical manner, which satisfies axioms of cohomology theories such as additivity,

dimension and homotopy axioms together with a Mayer-Vietoris exact sequence.

4. CUBICAL DE RHAM COHOMOLOGY
We introduce a version of a differential form by using & and AP

Definition 4.1 (cubical differential form). A cubical differential form on a differentiable
space X is a natural transformation w : 55 — NG of contravariant functors : O — Set.
We denote w = {w, ; n =0}, where w, : EX(O") — AP(O"). The set of cubical differential
forms on X is denoted by AL(X) and A (X) = © AL(X).

0 !

We denote by 0" : Ag(X) — AEL(X) the natural map induced from [J : O — Convex.

Theorem 4.2. The map 00 : Ap(X) — AL(X) is monic.
Proof: Assume that w € Ag(X) satisfies 0% (w) = 0: £ — AD.

By induction on n, we show wy = 0 for any convex n-domain A.

(n =0) In this case, we have A3(X) = AOQ(X) and Wpeints = 0.

(n>0) Let P: A— X be aplot of X, where A is a convex n-domain. For any element
u € Int A, there is a small simplex [0} C Int A such that Int [0 > w. Then there is a linear
diffeomorphism ¢ : 0" ~ . Hence Pog € Cg°(00", X) and we obtain
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0 = 0% (w)n(Pog) = won (Pog) = ¢ (wmy (Plog)) = ¢*(wal(P)|oy)-
Since ¢ is a diffeomorphism, we have ws(P)|g: = 0 for any w € Int A. Thus we obtain

wa(P) =0 on Int A. Since wy(P) is continuous, wa(P) = 0 on A. |

A differentiable map induces a homomorphism of cubical differential forms as follows:

Definition 4.3. Let f : X — Y be a differentiable map between differentiable spaces
X =(X,&%) and Y = (Y, EY).
(1) We obtain a homomorphism f*: AL(Y) — AL(X): let w € AL(Y). Then
(ffwn)(P) = wu(foP) for any P e &X(n), n>0.
(2) If a differentiable map f is proper, then we have f*(A% (Y)) C AR (X) by taking
K, = [THKL) for any w € Ap (Y). B h

Definition 4.4 (External derivative). Let X = (X,E&) be a differentiable space. The
external derivative d : A%(X) — AL (X) is defined as follows.

(dw)n(P) = d(w,(P)) for an n-plot P € Ex(n) = £(O").

Definition 4.5. Let X = (X, &) be a differentiable space.
. ZB(X)
Cubical de Rham cohomology: Hj(X) = ———,

o BD(X )

where Z5(X) = Kerd N AL(X) and BY(X) = d(AL(X)).

Z,(X)

=c

B (X)

=c

Cubical de Rham cohomology with compact support: H} (X) =
where Zf (X) = Kerd N A% (X) and BE (X) = d(Af (X)),

Example 4.6. Let X = (X,E¥) be a differentiable space with X = {x} one-point-set.
Then we have HE({+}) =R if p =0 and 0 otherwise.

Proposition 4.7. Let X = (X,EX) and Y = (Y, EY) be differentiable spaces.
(1) For a differentiable map f : X — Y, the homomorphism f*: A5(Y) — A5(X)
induces a homomorphism HY(Y) — HA(X).
(2) If a differentiable map f : X — Y is proper, then the homomorphism f* :
Af (Y) — Af (X)) induces a homomorphism f*: Hfy (Y) — Hf (X).

Theorem 4.8. By definition, we clearly have HA(][Xo) = [THA(Xa).

[0}

Theorem 4.9. HJ is a contravariant functor from Differentiable to GradedAlgebra.
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5. HOMOTOPY INVARIANCE OF CUBICAL DE RHAM COHOMOLOGY

Let fo,f1 : X — Y be homotopic differentiable maps between differentiable spaces
X = (X,&X) and Y = (Y,&Y). Then there is a plot f : [ — C*(X,Y) with f(t) = f;
for t = 0,1. In particular, for any n-plot P : (0" — X, f-P : "™ = Ix(" TPy is an
n+1-plot. Then, we obtain a homomorphism Dy : A%(Y) — AL ' (X) as follows: for any
cubical differential p-form w : &5 — Af on Y, a p—1-form Dy(w) : £ — /\IE1 on X is
defined by the following formula.

Dy@a(P) = [waa(7P): 0" > W),

1
1

[ / wM(fP)} @ =5 [ ag.i(ta)dt-deg A Aday,
i27...7i

I pJ0
where we assume w11 (f-P) = Z ai27...7ip (t, ) dt Ndwyy A---Ndxg, + Y by, (T, x)
iz 15 sip
daxy, N Ndx,,, (t,x) € IxO" = D"H and T, = Rdt® €B R dx;.
Lemma 5.1. For any w, we obtain dD(w), + D(dw), = flw, — flw,. Thus, if dw =0,

then fgw s cohomologous to ffw

Proof: First, let wy 1 (f-P) = 3 @i, (t, @) dt ANdaiy Ao+ AN da;, + Z biy i, (L, )
1o e 4 11, 1;0

dri A---Ndx;,. Let in, : (1" —» IxO" be the inclusion defined by in¢(x) = (t,x) for t =
0,1. Since (f-P)oin; = f,oP for t = 0,1, we have (ffw,)(P) = wp(froP) = wy((f-P)oiny)
=i} Wos1 (f-P) = > biyy, (B, ) day A--- ANda, for t =0,1, z € O

da;
Second, by definition, we have dw,1(f-P) =) Z %2—
i 12, 'p X

b,
daiy+ Y a—’t(t ) dtAdx, A Adzg,+Y Z

1 01,0 ,lp i

dag,,
and hence we obtain D(dw),(P) = —>_ > a@—x
T gy yip J I i
b, ..
R
Third, we have Ds(w),(P) = Z iy, iy (t, ) dt-dxiy N -+ A dx;, and hence we

12, pI

0 al2

(t,x) de;NdtNdziy AN

“p (t, 33) dlL’l/\dCL’Zl AR '/\dlEZ‘p,

i1, ip

(t,x) dt-dz; Ndxg, N---Ndx;, +

(t x)dt-dw, N---Ndw,,, (t,x) € IxO".

obtain dD¢(w),(P) = > Z

119, ,ip J T

Hence [d D;(w)o(P) + Dy(dw),(P)] (z) = ZZ ’ a

2 by, (L) day A ANdag, — 30 b“’...7 ,(0,2) do;, A--- ANdw;,, £ € O". Thus we

— 22 (¢ ) dt- da A da, A Adag, (t ) € IxO™

(t :1:) dt- da:“ A dxip =

obtain dDf(w),(P)+ Ds(dw)u(P) = (fiw,)(P) — (fiw,)(P), which implies the lemma. O
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It immediately implies the following theorem.

Theorem 5.2. If two differentiable maps fo, f1 : X — Y between differentiable spaces

are homotopic in CF(X,Y), then they induce the same homomorphism

fo = fi - Hy(Y) = H5(X).

6. HUREWICZ HOMOMORPHISM

First, we give a definition of paths and fundamental groupoid of a differentiable space.

Definition 6.1. In this paper, a path from a € X to b € X in a differentiable space X
means a differentiable map ¢ : I — X such that £(0) = a and (1) = b. We denote by

mo(X) the set of path-connected components of X, as usual.

Definition 6.2. Let Cat be the category of all small categories. The fundamental groupoid
functor m; : Differentiable — Cat is as follows:

(1) For a differentiable space X, the small category w,(X) is defined by Obj(m,(X)) =
X and Homll(X)(xo, x1) 1s the set of homotopy classes of all differentiable maps
C: I — X with £(0) = zo and (1) = 1 for any xo,z1 € X.

(2) For a differentitable map f :Y — X, the functor f. : m,(Y) — 7,(X) is defined
by fo=1f:Y > X and £(0) = [fof] for any [(] € m,(¥V).

Definition 6.3. The functor R : Differentiable — Cat is defined as follows:

(1) For a differentiable space X, the small category R(X) is defined by Obj(R(X)) = X
and HomB(X)(xo,xl) =R for any xqg,x1 € X, and the composition is given by
addition of real numbers.

(2) For a differentitable map f :Y — X, the functor f, : R(Y) — R(X) is defined by
fi=fY—=>X and f,=id:R —R.

Definition 6.4. The Hurewicz homomorphism p : Z5(X) — Hom(z, (X),R(X)) (the set
of functors) is defined for any w € ZL(X) by p(w)(x) = = for any x € Obj(r (X)) = X

and p(w)([¢]) = /wl(ﬁ) for any [{] € Homﬂl(X), which is natural, in other words, the
| ™

diagram below is commutative for any differentiable map f :Y — X between differentiable

spaces.
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Z4(X) —"— Hom(m, (X),R(X))

{ Hom( fx,id)
(Y)

zZL — . Hom(x,(Y),R(Y))

(well-defined) Let €y ~ €y with ly(¢) = x. € X, t=0,1 and e = 0,1. Then there is a 2-plot

(02— X such that l(e,s) = L(s) and {(t,€) = x, for e = 0,1. Hence we have (ods = (.,

€ = 0,1 and (ods = ¢, = cy,0e1. Let wy(l) = alt,s)dt + b(t,s)ds € N(C?). Then

we have wy(ly) = wy(lodS) = OFwy(f) = ble,s) ds, € = 0,1. Similarly, 0 = twy(cy,) =

w(Cp.081) = wy(lods) = 85 wy(f) = al(t, ) dt which implies a(t,€) = 0, ¢ = 0,1. On the

other hand by Green’s formula, we obtain that/ (wa(D)|gm2) = / dw =0, since w is a
a2 o2

closed form. Then it follows that / (wz(g)|{1}xl) — / (Wz(g)’{o}xl) =0, and hence
{1}xI {0}xTI

/wl(fl) = /wl(&)), and p is well-defined. The additivity of p is clear by definition.
I I

(naturality) Let f 1Y — X be a differentiable map. Then f induces both f* : ZL(X) —
Z5(Y) and f, : m,(Y) = m,(X). The latter homomorphism induces

Hom(f.,id) : Hom(m, (X), R(X)) — Hom(r, (¥), R(Y)).
Then, for any w € ZL(X) and [{] € m,(X), it follows that
p(f*(w)([]) = /I(fﬁwl)(ﬁ) = /le(fof) = p(w)([fol]) = p(w)of.(1€])
and hence we have po f* = Hom( f,,id)op which implies the naturality of p.

Definition 6.5. For any differentiable space X, we define a groupoid X in which the set of
objects is equal to X = Obj(x(X)), and the set of morphisms is obtained from Homﬂl(X)

by identifying all the morphisms which have starting and ending objects in common.

Then there clearly is a natural projection pr : 7,(X) — X inducing a monomorphism
pr* : Hom(X,R(X)) — Hom(z, (X),R(X)).

Definition 6.6. We denote the cokernel of pr* by Hom(m,(X),R).

If w = d¢ for some ¢ € AL(X), then, for any path £ from z to x1, we have p(w)([(]) =

p(do)([f]) = /Id(@)(g) = lor(O®)]iZo = ¢1(0)(1) — ¢1(¢)(0), by the fundamental the-
orem of calculus.  Hence ¢;(€)(e) = ¢:1(€)(9i(x)) = 97 (¢:1(0))(x) = dpxy(Lod)(x) =
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by (L(€))(x) = dxy(ca)(x) is depending only on z. the starting and ending objects of
[{] € m(X). Thus the functor p(w) : (X ) — R(X) induces a functor ¢(w) : X — R(X)
such that p(w) = ®(w)opr, in other words, p(B4(X)) is in the image of pr*. Thus p induces
a homomorphism p, : H(X) — Hom(z, (X), R).

Theorem 6.7. p, : H5(X) — Hom(z,(X),R) is a monomorphism.

Proof: Assume that p.([w]) = 0. Then we have p(w) € Impr*. Thus there is a functor
®(w) : X — R such that p(w) = ®(w)opr. Let {zy; o € mo(X)} be a complete set of
representatives of mo(X). For any P € £(00"), a map F(P) : 0" — R is given by

F(P)(x) = / wi(l) + / Vpton(T"), 2= P(0).

I I
where £, is a path from z,, a = [z] € my(X), to x in X and v is a path from 0 to =

in 00" Then F(P) : 0" — A% is well-defined smooth map by the equality /wl(ﬁx) =
I
p(w)([lz]) = ®(w)(pr([¢z])) which is not depending on the choice of /,,, and hence it gives a

O-form F : £(0") — A%(") so that d F' = w. Thus [w] = 0 and p, is a monomorphism. [

7. PARTITION OF UNITY

Let X be a differentiable space. In this section, we assume that there are subsets
A, B C X such that U = {Int A, Int B} gives an open covering of X.

Definition 7.1. A pair (p?, p?) of differentiable 0-forms p and p® is called a partition of
unity belonging to an open covering U of X, if, for any plot P : 0" — X, Supp ,02(13) C
P~H(Int A), Supp pZ(P) C P~*(Int B) and pj(P)+ pE(P) =1 on O".

To obtain a well-defined smooth function by extending or gluing smooth functions on

cubic sets, we use a fixed smooth stabilizer function A : R — I (see [7]) which satisfies
(1) A(—=t) =0, \A+t) =1,t >0 and (2) X is strictly increasing on I = [0, 1],
Using 5\, we define a smooth function A\, : [ — I, for any a,b € R with a <b, by

)\a,b(t) = S\(t—a_—f)

b—a—2e¢
for a small € >0 enough to satisfy I’_Ta >e>0.

Using it, we show the existence of a partition of unity as follows.

Theorem 7.2. Let X be a differentiable space with an open covering {Int A, Int B}, A, B C
X. Then there exists a partition of unity p = {p?, pP} belonging to {Int A, Int B}. If the

underlying topology on X is normal, p can be chosen as normal, in other words, there are
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closed sets G, Gg in X such that X~\Int B C G4 C Int A, X~\Int A C Gg C Int B and
Supp pi (P) € P7HG4) and Supp p5(P) C P~H(Gp) for alln>0 and P € £X(O").

The above theorem implies the exactness of Mayer-Vietoris exact sequence as follows.

Corollary 7.3. Let X be a differentiable space with an open covering U = {Int A, Int B},
A, B C X. Then we have the following long exact sequence.
o= HE(X) — HE(A)OHL(B) — HE(AN B)
— HEY(X) —» HY' (A)oHL ™ (B) — HE (AN DB) -
Proof of Theorem 7.2. 1f X is normal, there is a continuous function p : X — [ with

X~\Int B C p~1(0) and X~Int A C p~'(1). Otherwise, we define a function p: X — I by
1, r €Int AN Int B,
p(z) =41/2, xe€Int Anlnt B,
0 x € Int B\ Int A.

Let G4 = p*([0,2]) € X~p (1) CInt A and G = p~!([3,1]) € X~p *(0) C Int B.
Then Int G4 UInt G D p7([0,2)) U p7'((5,1]) = p([0,2) U (3,1]) = X. Thus it is
sufficient to construct a partition of unity {p#, p?} belonging to U = {Int G 4, Int Gz}: by
induction on n, we construct functions p(P), pf(P) : O" — I for any n-plot P : 0" — X

with conditions (1) through (4) below for F' = A, B and ¢ = 0, 1.
(1) a) pj(Pogi) = pp_y(Pogs, 1<i<nd1, b) pi (Podf) = pp(P)ods, 1<i<n,
(2) pa(P)+pE(P)=1:0"=R, (3) Supppl(P)cC P H(IntGp) C O,
(4) pr(P)od; ™ = pp(P)od} and pp(P)od! = pr(P)od? for all 0<t<a for sufficiently
small a >0, where 0! is defined by ! (t1,...,tn_1) = (t1,. ., tic1, b tint, ooy tno1).
(n = 0) For any plot P : 0% = {s} — X, we define pf(P) = p(P(x)) and pZ(P) =
1 — p4 (P), which satisfy (2) and (3), though (1) and (4) are empty conditions in this case.
(n > 0) We may assume a plot P : 0" — X is non-degenerate by (1) a).

Firstly, P~'U = {P~!(Int A), P~'(Int B)} is an open covering of (J* C R", and hence
we have a partition of unity {p?, »®} belonging to P~/ on ™.
Secondly, by the induction hypothesis, there is a small a >0 for the condition (4). Let
U, be the a-neighbourhood of 900". For F' = A, B, we define pJ'(P) : U, — R by
pE(P)od;* = pk | (Podf), 0<t<a, 1<i<n, €=0,1,

where we denote e£t = e+(—1)°, and then we obtain Supp p} (P) C P~'(Int Gp) N U, if

we choose a>0 small enough.
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By =

Thirdly, since two open sets U, and Int [J” form an open covering of [1", we also have a
partition of unity (g, 1) belonging to {U,, Int (0"} given by 19 = (A1_41)" and ¢, = 1)y
so that we have Supp ¢y C U, and Supp ¢, C Int 0", Then, for F = A, B, ¥3|u,-p} (P) is
defined on U, with value 0 on U,~Supp ¥s. Hence by filling 0 outside Supp 19, we obtain
a smooth map @/J/ap\g : 0" — R on entire (0", as the O-extension of ¢s|y,-pp (P) : Uy — R.

Finally, let pf(P) = z%p\g + Yo" for F = A, B. Then Supp pf(P) C Supp@b/ap\g u
Supp(vo-”) C (Suppts N Suppph) U (Supptps N Supp ™) € (U, N P (Int Gp)) U
(Int O™ N P~} (Int Gr)) = P~} (Int Gr). By definition, we also have

PR (P) 4+ pB(P) = dopi + Vapl + oo™ +1he-0® =g + 0o =1 on 0O,
which implies that (7 (P), pJ(P)) gives a partition of unity belonging to the open covering

{P~'(Int A), P~'(Int B)} of O". By definition, (pa (P), p5(P)) satisfies the conditions (1)
through (4), and it completes the induction step. The latter part is clear. O

xxxxxxxxxxxxxxxxx

8. EXCISION THEOREM

Let X = (X,E¥) be a differentiable space and U an open covering of X. We denote
EU ={P e &X;ImP CU for some U € U}. Then we regard EY as a functor Y :
Convex — Set which is given by £Y4(C) = {P € €Y, Dom P = C} for C' € Obj(Convex)
and EY(f) = EX(f)|euc) : EY(C) — EY(C") for a smooth map f : ¢ — C in Convex.
When U = {X}, we have X = £X. We also denote Y = E¥od : [0 — Set.

Definition 8.1. A natural transformation w : SQ“ — /\pg is called a cubical differencial
p-form w.r.t. an open covering U of X. AE(L{) denotes the set of all cubical differential
p-form w.r.t. an open covering U of X. For example, AL({X}) = AL(X).

We introduce a notion of a g-cubic set in R™ using induction on ¢ > —1 up to n.
(¢g=—1): The empty set () is a —1-cubic set in R™.

(n>¢>0): (1) if o C Lisa (g—1)-cubic set in R™ and b¢ L, where L is a hyperplane
of dimension ¢—1 in R", then oxb = {tx+(1—t)b; x €0, t€l} is a g-cubic set

in R™ with faces 7 and 7xb, where 7 is a face of o, including () and (xb = b.
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(2) if o C R7Ix{0}xR"" is a (¢g—1)-cubic set in R™ with ¢>1, then the product

/
n—i

set oxI ={(x;—1,t, 2, _;); (®i—1,0,x),_,) €0, t€l} is a g-cubic set in R" with

faces 7x{0}, 7x{1} and 7xI, where 7 is a face of o, including (.

We denote by C'(n)? the set of g-cubic sets in R™ and C(n) = {0} U qL>JOC(n)q, n > 0. We
denote 7 < o if 7 € C(n) is a face of o € C'(n) and denote do = Yo We fix a relative
diffeomorphism ¢, : (0% 007) — (o,00) for each g-cubic set ¢ in R™, ¢ >0.

A subset K C C(n) is called a cubical complex if it satisfies the following conditions.

(H0eK, (2 1t7<oc&koeK = 7K,
B)r,0e Kk = tNoeK & tNo<7t & TNo <o.

For any cubical complex K C C'(n), we denote K9 = {oc € K ; 0 is a g-cubic set}, n>0
and |K| = Uchr. For any cubical complexes K and L, a map f : |L| — |K| in Convex
is called ‘polyhedral’ w.r.t. L and K, if f(o) € K for any o € L. If a cubical complex
K CC(n) satisfies |K| = O", we call K a ‘cubical subdivision’ of an n-cube OJ".

Definition 8.2. We define a category SubDivy, as follows:
Object: Obj(SubDivy) = {(K, P) € C(n)x&EX(O"); |K|=0", Voex Pl, €EY, n>
0},
Morphism: SubDivy((L,Q), (K, P)) = {f : |L| C |K| polyhedral; Q= P|}.
Let SubDivy = SubDivx,. Then there is an embedding Lé’D : SubDivy; < SubDivy.

Theorem 8.3. There is a functor Sdj; : SubDivx — SubDivy, such that Sdj; ou¥, = id.
Proof: We construct a functor Sdy, : SubDivx — SubDivy satisfying Sdy, ot4y, = 14p.

Firstly, for (K, P) € O(SubDivx), K C C(n) is a cubical subdivision of |K| = 0" =
Dom P. Let Kp(U) = {0 € K ; Jyeyy P(0) CU} < K. We define Sdy, (K, P) = (Sd4(K), P)
by induction on dimension of a cubic set in K.

SAL(K)? = K'U{b,; 0 € K~NKpU)},
SAU(I) = Kp(U)T U {pwby; p € SE(D0)1, 0 € K~KpU)},
where do denotes the subcomplex {7 € K; 7<o} of K.

Secondly, for any map f : (L,Q) — (K, P), we have L C K and Q= P||z;. Then by
definition, we have Sdy, (L) C Sdy(K), and hence the inclusion f : |Sdy(L)| = |L| C |K| =
|Sdy(K)| is again polyhedral. Thus we obtain Sdy(f) = f : Sdy(L, Q) — Sdy(K, P).

Thirdly, we give a distance of subcomplexes K and Kp(U) defined as follows:

4(K) =Min{d(r,z) |t Cc P7Y(U) Fx, U €U & 7 is maximal in Kp(U)},
d%(K) =Max{d(r,z) | TNo #0, x € 0 € K & 7 is maximal in Kp(U)},
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where d(7, ) denotes the distance in (0" of 7 and @, and hence %4 (K) > 0. We can easily
see that dy(SdA(K)) < —7 dy(K) and hence that, for sufficiently large 7>0, the r-times
iteration of Sd% satisfies d%((Sd%)"(K)) < e%(K). Thus Sdj, (K, P) € SubDiv.

Finally, when (K, P) € SubDivy, we have Sd%(K, P) = (K, P) by definition, and hence

Sd;, the sufficiently many times iteration of Sdy; on each (K, P) is a desired functor. O

Definition 8.4. A functor Tdy : SubDivy — SubDivx given by Tdy (K, P) = (Td%(K), P)
for (K, P) € Obj(SubDivx) is defined as follows: we denote P= Popr, : O"xI — X which
is a plot in EX ("), Then a cubical subdivision Td%(K) of 0" is defined as follows:

TdA(K)? = K% {0} USd%(K)°x{1},
Td4(K)? = KO {0} USd4(K)Ix{1} U Kp(U)ItxI
U {px(bs,1); p € TdE(00)? !, 0 € KNKp(U)}.
Also for a map f : (L,Q) — (K, P), we have L C K and Q = P|). Then by definition,

we have Tdy (L) CTdy(K), and hence the inclusion fxid : |Tdy(L)| = |L|xI C |K|xI =
|Tdy (K)| is again polyhedral. Thus we obtain Tdy(f) = f: Tdy(L,Q) — Tdy(K, P).

Definition 8.5. For any cubical differential p-form w € APQ(U), we have a cubical differ-
ential p-form & € AL(U) defined by 0y (P) = (A*)*wy(P) for any P € EY, X = Xo1. In

addition, if w is a differential p-form with compact support, then so is w.

Lemma 8.6. There is a homomorphism Dy : A5(U) — A5(U) such that dDy(w), +
Dy(dw)n = @y — wy and Dy (A% (U)) C AE:I(Z/{) for any p>0.

Proof: Let H : I xI — I be a smooth homotopy between id : I — [ and A : I — I, which
gives rise to a smooth homotopy H, : 0" = Ix" — O" of id : 0" — O™ and \" :
(" — 0", n>0. Then we have H,oing = id and H,oin; = A", where in; : (1" — I x["
is given by in;(«) = (t,). For any cubical differential p-form w : £ — Afj, a cubical
(p—1)-form Dy(w) : EY — AZ is defined on a plot P € EY, by the following formula.

Dy(w),(P) = /I H*w,(P) : O" — AP7H(TH),

1
[ / H*wn(P)} @ =5 [ ano(t,x)dt-deg A A day,
I |

i2,ip JO
where we assume H*w,(P) = Y @iy q,(t, ) dt Ndziy Ao~ Ndxg, + > by, (t, )
iz s sip iy
dag, A+ Adag s IO — AN TS ), (t @) € IxOM and T, = Rdi® & Rda;.
i=1
First, let in, : O™ — Ix[O" be the inclusion defined by in,(x) = (¢,x) for ¢t = 0, 1.

By Hoing = id, we have w,(P) = id"w,(P) = ingH*w,(P) = > b4y, i, (0, ) dag; A
i12sip
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-+ Adz;,. On the other hand by Hoin; = A", we have (A")*w,(P) = injH"w,(P) =
> by, (Lx)dry A---Adx;, for any & € 0",

da;
Second, by definition, we have d H*w,(P) =Y > Tlia ity

i i2,~~~,ip 0 i

L(t,x) de NdtAdxi, A A

dxi,+ é’t 2 (¢, @) dtAdz;, A - Adxg,+37 Z 8 2 (¢ ) das Adxg, A ANda,
i1, ,0p T 11, Z;
0a;,
and hence we obtain Dy/(dw), /H* dw, (P Z Z aa—g[;(t x)dt- dz; \
b, ...

dxiy N+ N dw;, + Z / “(t,x) dt-day, N--- N daxy,, (t,x) € IxO™

Third, we have Du(w)ﬂ(P) = Z ip(t,x) dt-dxi, A--- A dx;,, and hence we

ip 1
8@22

obtain d Dy(w),(P)=> >

i gy yip J I 8

Db, ..
Hence [d Dy/(w)n(P) + Dy(dw),(P) Z / L(t,x) dt-da;, N---Ndx;, =

(t x)dt-de; Ndzy, N---Ndw,,, (t,x) € IxO"

> by, (Lix)dog A Ndwg, — b“,..ﬂp( , ) d$“ “Ndx;,, z € 0" Thus we

obtain d Dy(w)(P) + Dy(dw)(P) = w(P) —w(P). By the above construction of Dy, it is
clear to see Dy (Af (U)) C A”Qj(u ), and it completes the proof of the lemma. O
Remark 8.7. We have b;, ... ;,(1,®) = b;, ... 5, (0, X" ()N (24,)- - - - N(x,) for1<ip<...<
iy <n and x = (v1,...,2,) € O, since (\")*w,(P) = inj H w,(P).

Let w € A5(X) and P € £X(0"). Then a cubical complex K = {o; 0 <"} derives
cubical subdivisions K, = (Sd%)"(K) and K, = (Sd%)*(K) where K, = K, for sufficiently
large 7>0. We define w” € AL(U), r>0, as follows: for any o € K,

W (P)tago = @8 (Plo) |mto

oo
where d),(f)(P|(,)|1nta Wy (P|,00,)0A 0p Into % t0" X e 2% Ap- Then

by definition, w,(f)( P)|mto can be smoothly extended to do, and hence w) )(P) (O = AL

is well-defined and we obtain w() € AZ(X).

Lemma 8.8. There is a homomorphzsm D D AS(X) — AL(X) such that dDg)(w) +
D (dw) = wr D) — W™ and DY (Ap (U)) C AL 1( U) for p>0.

Proof: For any w € A’i( ), we define DY )(w) e AL(X) as follows: let P e £X(0O0").

We have a cubical complex K = {o; 0 <"} which derives cubical subdivisions K, =

(Sd%)"(K) of O" and K, = Td%(K,) of IxO" so that ingf/(\} = K, and intK, = K.

Now we define a smooth function W(P) : IxO" — AP(T)y, ) as follows: for any o € IA(TTLH,

O(P)|mto = Wy (Popry|o) o+ IxO" — /\p<T:+1)
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—1 n+1

N - A
where &), (Popry|o)|mte = Wnt1(Popryleo¢,)oA o ! : Int o % Ot R g O

Wn41(Popryops) - ~
———— > AP. Then by definition, & (Popry|,)|mts can be smoothly extended to o

and we obtain a smooth function @W(P) : [ xO" — /\1;*+1
First, a cubical (p—1)-form D(T (w) € AL '(X) is defined as follows: for any cubical
differential p-form w : & — A{} on a plot P € &7,

DY) (@)a(P) = / B(P): 0" — AT,

JEGICER: o (t.) db g A A s,

12, 50p J 0

where W(P) = Y iy (t, ) dEANdTfy Ao - ANday, + Y0 by (Bx) dog Ao -ANda,

01,0 77;P

IxO" — AP YTr ), (L x) € IO and Ty, = Rdt® & R dx;. Then, since ingf(r =K,
i=1
and 1n1K K, 11, we easily see that w(r)(P) =infW(P)= > biy..s,(0,2)day A-e A

dz;, and w TP =it G(P) = ¥ biy, iy (L) dag, A+ AN d, .

Second, by definition, we have cjc\u(P) = dw(P) =) >, —Z”(t,w) dx; N\ dt A

Obi, ...i
dxiy N+ Ndwy, + Z #(t,m) dt Adxy A Ndxi, +32 Z (t x)dx; A\
- _ L 9 ; »
dzi, A--- A daxy,, and hence DY (dw),(P) = dw(P) == 3 %(t,w) dt -
T g ip J I i
b, ..
dri Ndxiy N Ndzg, + > = (t x)dt-drg, N---Ndw,,, (t,x) € IxO".

i1, yip J T a

Third, we have Dg)(w)Q(P) = Z Qiy,... 3, (t, @) dt- dxiy A --- A dx;,, and hence we
iz ip J I

obtain d D) (w),(P) = 3 > T(t x) dt-de; Nday, A---Adx,, (tx) € TxO.
T 49, ip J T z

b, ..
Hence |d D (w),(P) + DY (dw), (P) Z / =L (t,@) dt- dag, A Ndwg,
= > b (Lx)de, A Ndxy, — Z b“,...ﬁp(O,a:) d:v“ A dx;,, x € ". Thus
i1, i i1, sip

we obtain dDg) (w)(P) + Dg)(dw)(P) = Wt (P) — w(P). By the above construction
of D). it is clear to see that DS)(AE U)) c AL U). O

Theorem 8.9. The restriction res : A5(X) — A5(U) induces an isomorphism of cubical
de Rham cohomologies res* : HY(X) — HAU). In addition, res induces a map res :
A5 (X) — A5 (U) which further induces an isomorphism res* : Hfy (X)) — Hp (U).
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Proof: For any w € AL(U), we define w* € A}(X) as follows: let P € £X(0"). Then
we obtain a cubical complex K = {o; 0 <[O"} which derives a cubical subdivision K, =
(Sd%)*(K). We define cubical differential p-forms w* € AB(U) as follows: for any o € K,,

wz(P)hntU = @:(P|U)|Into'7

o " wn (Pods
where @*(P|y)|mto = Wa(Ploody)oA 0p, ! : Int o % Tt A It 2% Ap - Then

by definition, wy, (P)[mi» can be uniquely extended to do and we obtain wy, (P) : " — AL
so that w* € AL (X) whose restriction to Af(U) equals, by definition, to & with a (p—1)-
form Dy(w) € Agl(u) satisfying d Dy(w) = @ — w if dw = 0, by Lemma 8.6. If dw = 0,
then dw* = 0, and hence dw* = 0. Thus the restriction res : A%(X) — A5(U) induces an
epimorphism res* : H(X) — H(U) of cubical de Rham cohomologies.

So we are left to show that res* : H5(X) — Hj(U) is a monomorphism: let w €
AP(X). Then we obtain a cubical differential p-forms w(” € ALU) and w* € AL(U)
so that w™ = w* for sufficiently large 7 > 0. By Lemma 8.8, there is a (p—1)-form
Dg) (w) € Aﬁ_l(X) such that dDg) (w) = W) — ) if dw = 0. If we assume res*([w]) =

0, then we may assume res(w) = 0 and dw = 0, and so we obtain w* = 0 and w =
N

d{z Dg) (w) — D{X}(w)} for sufficiently large N >0, in other words, w is an exact form
r=0

and cohomologous to zero. Thus res* : HY(X) — H}(U) is an monomorphism. O

9. MAYER-VIETORIS SEQUENCE AND THEOREM OF DE RHAM

Theorem 9.1. Let U = {Uy,Us} be any open covering of a differentiable space X. The
canonical inclusions i, : Uy NUy <= Uy and j, : Uy — X, t = 1,2, induce ¢ : AU) —
AB(Uy) & AL(Us) and ¢° @ AL(UL) & AL(Us) — AR(UL N Us) by ¥ (w) = djwdisw and
" (m®n2) = jfm — jgng. Then we obtain the following long exact sequence.

HY(X) = -~ — HE(X) 5 HE(U)@HE(Us) S HA(U, N U,)
— B (X) s B (U)@HE (Us) s HE (UL NT) = -+
where ¥* and ¢* are induced from ¥* and ¢°.
Proof: Since H(X) = H}(U) by Theorem 8.9, we are left to show long exact sequence
0 — AU) 55 AR (1)) & A (Uy) 25 AB(Ug) — 0, U= Uy U,
(exactness at A" (U)): Assume ¢*(w) = 0, and so jiw =0 for t = 1,2. Then for
any P: 0" — X, P € 85, we have either Im P C U; or Im P C U,. Therefore, we

may assume either P € £ or P € &', In each case, we have w,(P) = 0, which

implies that w = 0. Thus 1 is monic.
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(exactness at A% (U;) @ A%(Uy)): Assume ¢f(nM@n®) = 0, and so iy = isn®.
Then we can construct a differential p-form w € A% (U) as follows: for any P €
EY, we have Im P C U, for either t = 1 or 2. Using this ¢, we define w,(P) =

p(P). f ImP C U, and Im P C Us, then we have Im P C U; N Us, and hence

P (P) = P (P), since ifn™ = in®. It implies that w is well-defined and that

Vi (w) = nMW@n?. The converse is clear and we have Ker ¢f = Im ¢".

(exactness at A% (Up)): Assume x € AL (Up). We define ) € AL(U;), t = 1,2
as follows: for any P, € cﬁgt, we define «{(P,)(z) by (—1)t*1pg_t)(m)-liﬂ(Pt)(az)
if x € P (Us—) and by 0 if & ¢ Supp p, . Hence &) is well-defined satisfying

kM — 4@ = k. and we obtain k = ¢*(kKV@k®). Thus ¢ is an epimorphism.

Since % and ¢° are clearly cochain maps, we obtain the desired long exact sequence. O

Now let us turn our attention to the differential forms with compact support. Let

X = (X, &%) be a weakly-separated differentiable space.

Definition 9.2. Let U be an open set in X, F C U a closed set in X and U an open
covering of U. We denote by Apgc (U; F) the set of allw € Apgc (U) satisfying Supp w,(P) C
P~YF) for any P € £(T"). For example, any w € Aty (U) is in AR (U F) if FD K,
We denote by Hpy (U3 F) the cohomology of A% (Us F) a differential subalgebra of A7 (U).

Definition 9.3. Let U and V' be open sets and FFCU and G CV be closed sets in X so
that (U, F) C (V,G), and j : (U, F) — (V,G) be the canonical inclusion. Let U and V be
open coverings of U and V', respectively, satisfying FOW =0 for any W € V~U. Then a
homomorphism jy : Apy (U F)) — Af (V3 G) is defined as follows: for any w € Afy (U; F),
jaw € Ap (Vi G) is given, for Q € EV(@m), by
(Jpw)m(Q) = wn(Q), if ImQ C W for some Wel,
{(jﬁw)m(Q) =0, if Im@Q C W for some W € VU

with Kj,, = K, C F C G. In particular, for any w € AEC(Z/{), we have w € Apgc U; K,),
and so we obtain jyw € Al (jilU; Ko) C Al (jil), jilo =UU{V K} |

Remark 9.4. In Definition 9.3, the map jy induced from j : (U, F) — (V,G) satisfies
that (jsw)m(joQ) = wm(Q) for any m>0 and Q € EX(O™).

Proposition 9.5. Let X = (X,E¥) be a weakly-separated differentiable space and U and
V' open in X. Then the correspondence Afy (U) 3 w — jyw € A% (jzUs,) induced from the
canonical inclusion j : U = V induces a homomorphism j. : Hfy (U) — Hp (V), since

there is a canonical isomorphism Hp) (jyU,) = Hpy (V) by Theorem 8.9.



MAYER-VIETORIS SEQUENCE FOR DIFFERENTIABLE/DIFFEOLOGICAL SPACES 23

Proof: Let w,n € Af (U). Then K = K, U K, is compact in U and hence in X. Let
U={UV~K}, Which is a finer open covering of U, and U,,, and hence both isomorphisms
Hy (V) — Hpy (U) and HY (V) — HE (Uy) defined in Theorem 8.9 go through the
isomorphism Hpy (V) — Hp (U). Thus the homomorphisms Hf (U) — Hp (U,) and
Hy (U) — Hp (Uy) are also isomorphisms. By definition, ji(w+n) = ji(w) + jz(n) in
A5 (W), and hence ,([w-+n]) = ju((w]) + 7.([n]) in Ha (X) for any [w], [1] € Hy (U). ©

Theorem 9.6. Let U = {U,,Us} be an open covering of a weakly-separated differentiable
space X with a normal partition of unity {p™), p®} belonging to U, i.e., there are closed
subsets {G1,Gs2} such that Gy C U and Suppp(ﬂt)(P) C P™YGy) for any P € £(O"),
t = 1,2. Then we have G1 U Gy = X. Let Gy = Gi NGy C Uy = UlﬂUg The
canonical inclusions iy : Uy N Uy < Uy and j; : Uy — X, t = 1,2, induce ¢, : (Ug)
HE (Uh) @ HE (Uz) and . : HE (Ur) ® HE (Uz) — HE (X) by ¢u([w]) = irfw ]@@2*[ | and
Uu([m]®[n2]) = Jrc[m] — jox[m2]. Then we obtain the following long exact sequence.

HY (Ug) = -+ — HE (Uo) = HE (U)®HE, (Us) * HE (X)

Ly HEP (Uo) 2 HE (U)@HE™ (Us) 25 HEPH(X) — -+

Proof: For any closed subsets G D G; in Uy, there is a following short exact sequence.
0 — AL (Uo; Gy) 5 AL Uy Gr) © A (Us; Gy) 55 AL (U X) — 0,
where G/ G, ﬂG’Q, Z/{O {Uo} th {Uo, Ut\Gg_t}, t= 1, 2 and Z/{3 = {Uo, Ul\GIQ, UQ\

G}, which are open coverings of Uy, U; and X, respectively.

(exactness at A7 (Up; Gp)): Assume ¢y(w) = 0. Then iy(w) = ip(w) = 0. Since
i14(w) is an extension of w, we obtain w = 0. Thus ¢, is a monomorphism.

(exactness at A7 (Us; G) & Af (Us; Gy)): Assume Py (nMan®) = 0. Then we
have ji3(n®M) = joyy(n®). For any plot P : O" —> X we obtain ji;(n™M),(P) =
J2:(n?)u(P). So, for any plot Q : 0" — Uy, ny(i10Q) = Jmm)(hoth)
Jgnﬁn)(yzowoC)) = 2 (i20Q). Then, we define n® € APQ(UO) by 7 (Q) = 1w (i10Q)

= nm (zgoQ) On the other hand, K, ® = K, by definition, and hence we obtain

Supp 7 (Q) = Supp ni’ (i10Q) = Supp s (i20Q) € Q@ (K, N Kye).

Then we have n(®) € AY, ( 0), for K, ) = K, 1)K, is compact in Uy, which satis-

fies ¢, (n'?) = (n, 77(2)). Thus (7](1), n®) is in the image of ¢,. The other direction

is clear by definition and it implies the exactness at Af (U; G) @ Af (Us; GY).
(exactness at Afy (Us; X))z Assume & € AR (Us; X). For any plot B, : O™ — U,

we define k! (Pt)( ) by (=1)1pl) (P) (@) fn, (jio Py) () if & € P, (Up) and by 0
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if @ ¢ Supp pg(Pt). Then ") is a differential p-form on U, and £ € AY (U;)

for K, = K, NGy C G} is compact in U;. Then we have ¢, (kM @r?) = &, and

hence « is in the image of v,. Thus 1), is an epimorphism.

Since ¢y and 1), are clearly cochain maps, we obtain the following long exact sequence.
HY, (Uo; Gy) — -+ — HY, (Uo; Gy) 2 HE (Uy; G)&HE (Us; Gy) > HE (Uy)
Ly HE U Gy) 2 HEP (U G HE U G) > HES (Us) — -+

So we can define connecting homomorphism d. : HE (X) = HE (Us) LIN HP (Uy; Gy) —
HELI(UO) where the latter map is induced from the natural inclusion APQH(LIO;G{)) C

Apil(uo) = .Apil(Uo), which fits in with the following commutative ladder.

HY, (U Go) 55 HE, (Uy; G@HE, (Un; Gy) 2 HE (Us) - HE (Uy; Gy

Hp (Uo) Hp (U)eHE (Us) Hp (Us) Hﬁjl(uo)
>~ | res* Pres* = | res™ ‘
P Vs dy
HE, (Up) HE (Uy)®HE (Us) Hp (X) HEFH(Uy)

Using these diagrams, we show the desired exactness as follows.

(exactness at HP, (Up)): Assume ¢, ([w]) = 0. Let G, = G, U K,,, t = 0,1,2. Then
W] € Hp (Uo; Gp) satistying ¢,([w]) is zero in Hp (U)®HE (Us). Hence there
is cWao® ¢ Afy (U)®AE (Us) such that doW@ do® = ¢,(w). Then we may
expand G} as G, = Gy UK, U K_ ), t = 1,2 and G, = G N G, so that we obtain
¢,([w]) = 0, and hence [w] € Im d, in Hﬁjl(l/{o; Gy). Thus [w] is in the image of d..

(exactness at HE (Uy) ® HE (Us)): Assume ¢, ([fV]@[n®)]) = 0. Let G} = Gy U
Ko, t=1,2 and Gj = G} N G, so that [nW]a[n?] e Hp (U G)@HE (Us; Gy)
and ¢, ([nW]@[n®]) = 0 in HE (Us) = HE (X). Then we obtain [pM]a[n®] €
Im ¢, in HE (U GY) @ HE (Us; G3), and hence [nW]@[n®)] is in the image of ..

(exactness at Hpf) (X)): Assume d.([]) = 0. Then there is o € A7 (Up) such that
dy(k) = do in Apil(Uo). Let G, = Gy U K,, t = 0,1,2. Then we may assume

o € AL (Up; Gy) satistying dy(k) = do in Apgtl(uo;G{)), and hence [k] € Im, in
HE (Us). Thus [] is in the image of 1),.

The other directions are clear by definition, and it completes the proof of the theorem. O
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Let Topology be the category of topological spaces and continuous maps. Then there
are natural embeddings Topology < Differentiable and Topology < Diffeology.

Let X = (X,{X™; n>-1}) be a topological CW complex embedded in the category
Diffeology or Differentiable with the set of n-balls { BT} indexed by j € J,. Then we have
open sets U = X™ XD and V = X™ (jg}n{Oj}) in X, where 0; € B! denotes
the element corresponding to 0 € B™ = {x € R"; ||| < 1} the origin of R".

A ball B} = B" (if we disregard the indexing) has a nice open covering given by
{Int B}, By~{0}} with a partition of unity {pgj),pgj)} as follows: pgj) = l—pgj) and
pgj)(w) = M|z|) for small @ > 0. Thus & = {U,V} is a nice open covering of X
with a normal partition of unity {p¥,p"} in which p¥ is a zero-extension of p{)’s on the
union of balls and p¥ = 1—pY. Then U is smoothly homotopy equivalent to discrete
points each of which is 0; € Bf for some j € J,, and V' is smoothly homotopy equivalent to
X1 By comparing Mayer-Vietoris sequences associated to I in Theorem 2.3 with that
in Theorem 9.1 for X = X™ we obtain the following result using Remark 1.18 together

with so-called five lemma, by using standard homological methods inductively on n.

Theorem 9.7. For a CW complex X, there are natural isomorphisms
Hp(X) = H(X) = HE(X) = HY(X,R) = Hom(H,(X), R),
p
for any q >0, and hence we have Hp(X) = Hj(X) = HL(X) = Hom(m (X),R).

Conjecture 9.8. For a CW complex X, there are natural isomorphisms
H%C(X> = HgC(X> = Hﬁc(X), for any g > 0.

It would be possible to determine Hj(X) and Hf (X) by using standard methods in
algebraic topology even if X is not a topological CW complex, while we do not know how
to determine H;(X), HF (X)), Hp (X) nor HE (X), if we do not find out any appropriate

nice open covering (with a normal partition of unity) on X.

10. APPLICATION TO THE LOOP SPACE OF A FINITE CW COMPLEX

Let X be a CW complex. Then by Theorem 9.7, de Rham cohomology H},,(X) =
H{ (X)) is isomorphic with the rational cohomology H*(X;R). Let us assume further that
X is a 1-connected finite CW complex whose cell structure gives its homology decomposi-
tion. Then by Toda [12, 13|, we may assume that X is a standard CW complex equipped
with a infinite-dimensional CW complex w(X) such that the inclusion w(X) < Q(X) is a
homotopy equivalence. Thus we also have an isomorphism H})p(w(X)) = H*(Q(X); R).

On the other hand, following Chen’s arguments, we can observe de Rham complex

as follows: there is a homology connection (w,d) on A},5(X) together with a transport
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T. Then we have a holonomy homomorphism O : C,(2(X))®R — R{(X1, ..., X;,)) the
completion by augmentation ideal of tensor algebra on X;’s which are corresponding to
the module generators of H*(X;R) = H},(X). Then we can see that © induces an
isomorphism of de Rham cohomology and the rational cohomology of Q(X).

APPENDIX A. SMOOTH CW COMPLEX

A smooth CW complex X = (X, {X™},>_,) is a differentiable or diffeological space
built up from X1 = @) by inductively attaching n-balls {B}}jes, by C> maps from their
boundary spheres {S;"l}je 7. to n—1-skeleton X1 to obtain n-skeleton X n >0,
where the smooth structures of balls and spheres are given by their manifold structures.
Thus a plot in X is a map P : A — X with an open covering { A, }qeca of A such that,
for any o, P(Ag) is in X"~V or B? for some j €.J, and P4, is a plot of X"~V or B,
respectively. Then as the colimit of {X (™}, X exists in Differentiable or Diffeology.

For a given CW complex, we can deform attaching maps of n-balls from their boundary

spheres {S;L_l}jejn to n—1-skeleton X~ to be C'* maps, and obtain the following.

Theorem A.1. A CW complex is homotopy equivalent to a smooth C'W complex as topo-

logical spaces. Thus we may assume that any CW complex is smooth up to homotopy.

Let X = (X, {X™}) be a smooth CW complex in either Differentiable or Diffeology with
the set of n-balls { B} ; j € J,}. Then for any plot P: A — X (") there is an open covering
{Aa} of A, such that P(A,) is in either X"~V or BP for some j € J,, and P, = P|4, is
a plot of X1 or B?, respectively. Let U = X™ XD and V = X" (jg]n{Oj}),

IE
where 0; € B} denotes the element corresponding to 0 € B".
Case (Im P, ¢ X" V): P7YU) =0, and P;1(V) = A,.
Case (Im P, C B}): P;'(U) = P;'(Int B}), and P;'(V) = P;Y(B} ~ {0;}).
In each case, P,'(U) and P;'(V) are open in A, and hence in A, which implies that
P~Y(U) and P~*(V) are open in A for any plot P. Thus U and V are open sets in X .
Similarly to the case when X is a topological CW complex, U = {U,V'} is a nice open

covering of X ™ with a normal partition of unity {pV, p"'}, since X is a smooth function.

Then, similar arguments for a topological CW complex lead us to the following result.

Theorem A.2. For a smooth CW complex X, there are natural isomorphisms
Hp(X) = Hi(X) = Hi(X) = H(X,R) = Hom(H,(X),R),
p
for any q >0, and hence we have Hp(X) = Hy(X) = HL(X) = Hom(m (X),R).
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Conjecture A.3. For a smooth CW complex X, there are natural isomorphisms
Hp, (X) = He (X) = HE (X), for any ¢ > 0.
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