
MAYER-VIETORIS SEQUENCE
FOR

DIFFERENTIABLE/DIFFEOLOGICAL SPACES

NORIO IWASE AND NOBUYUKI IZUMIDA

Abstract. The idea of a space with smooth structure is a generalization of an idea of
a manifold. K. T. Chen introduced such a space as a differentiable space in his study
of a loop space to employ the idea of iterated path integrals [2, 3, 4, 5]. Following the
pattern established by Chen, J. M. Souriau [10] introduced his version of a space with
smooth structure, which is called a diffeological space. These notions are strong enough
to include all the topological spaces. However, if one tries to show de Rham theorem,
he must encounter a difficulty to obtain a partition of unity and thus the Mayer-Vietoris
exact sequence in general. In this paper, we introduce a new version of differential forms
to obtain a partition of unity, the Mayer-Vietoris exact sequence and a version of de Rham
theorem in general. In addition, if we restrict ourselves to consider only CW complexes,
we obtain de Rham theorem for a genuine de Rham complex, and hence the genuine de
Rham cohomology coincides with the ordinary cohomology for a CW complex.

In this paper, we deal with both differentiable and diffeological spaces. A differentiable

space is introduced by K. T. Chen [5] and a diffeological space is introduced by J. M.

Souriau [10]. Both of them are developed with an idea of a plot – a map from a domain.

Let n ≧ 0. A non-void open set in Rn is called an open n-domain or simply an open

domain and a compact convex set with non-void interior in Rn is called a convex n-domain

or simply a convex domain. We reserve the word ‘smooth’ for ‘differentiable infinitely many

times’ in the ordinary sense. More precisely, a map from an open or convex domain A to

an euclidean space is smooth on A, if it is smooth on IntA in the ordinary sense and all

derivatives extend continuously and uniquely to A (see A. Kriegl and P. W. Michor [9]).

Let us explain more about the difficulty to obtain a partition of unity in the theory

of differentiable/diffeological spaces. Apparently, if one tries to show it, he must realize

that it is not easy to build-up the arguments because of the shortage of differential forms.

In fact, we don’t know how to manage it in general. So, in this paper, we include more

differential forms to make it easier, as is performed in Section 7. But, at the same time,

newly included differential forms should not be so many, because we have to show an

equivalence in some sense with the original differential forms, if the space is a manifold.
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1. Differentiable/diffeological spaces

Let us recall a concrete site given by Chen [5] (see J. C. Baes and A. E. Hoffnung [1]).

Definition 1.1. Let Convex be the category of convex domains and smooth maps between

them. Then Convex is a concrete site with Chen’s coverage: a covering family on a convex

domain is an open covering by interiors of convex domains.

On the other hand, a concrete site given by Souriau [10] is as follows.

Definition 1.2. Let Open be the category of open domains and smooth maps between

them. Then Open is a concrete site with the usual coverage: a covering family on an open

domain is an open covering by open domains.

Let Set be the category of sets. A differentiable or diffeological space is as follows.

Definition 1.3 (Differentiable space). A differentiable space is a pair (X, CX) of a set X

and a contravariant functor CX : Convex → Set such that

(C0) For any A ∈ Obj(Convex), CX(A) ⊂ HomSet(A,X).

(C1) For any x ∈ X and any A ∈ Obj(Convex), CX(A) ∋ cx the constant map.

(C2) Let A ∈ Obj(Convex) with an open covering A = ∪
α∈Λ

IntABα, Bα ∈ Obj(Convex). If

P ∈ HomSet(A,X) satisfies that P |Bα ∈ CX(Bα)) for all α ∈ Λ, then P ∈ CX(A).

(C3) For any A,B ∈ Obj(Convex) and any f ∈ HomConvex(B,A), CX(f) = f ∗ :

CX(A) → CX(B) is given by f ∗(P ) = P◦f ∈ CX(A) for any P ∈ CX(A).

Definition 1.4 (Diffeological space). A diffeological space is a pair (X,DX) of a set X

and a contravariant functor DX : Open → Set such that

(D0) For any U ∈ Obj(Open), DX(U) ⊂ Map(U,X).

(D1) For any x ∈ X and any U ∈ Obj(Open), DX(U) ∋ cx the constant map.

(D2) Let U ∈ Obj(Open) with an open covering U = ∪
α∈Λ

Vα, Vα ∈ Obj(Open). If P ∈
HomSet(U,X) satisfies that P |Vα ∈ DX(Vα) for all α ∈ Λ, then P ∈ DX(U).

(D3) For any U, V ∈ Obj(Open) and any f ∈ HomOpen(V, U), DX(f) = f ∗ : DX(V ) →
DX(U) is given by f ∗(P ) = P◦f ∈ DX(V ) for any P ∈ DX(U).

From now on, EX : Domain → Set stands for either CX : Convex → Set or DX : Open →
Set to discuss about a differentiable space and a diffeological space simultaneously.

Definition 1.5. A subset O ⊂ X is open if, for any P ∈ EX (E = C or D), P−1(O) is

open in DomP . When any compact subset of X is closed, we say X is ‘weakly-separated’.
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Definition 1.6. Let (X, EX) and (Y, EY ) be differentiable/diffeological spaces, E = C or D.

A map f : X → Y is differentiable, if there exists a natural transformation of contravariant

functors Ef : EX → EY such that Ef (P ) = f◦P . The set of differentiable maps between X

and Y is denoted by C∞
E (X,Y ) or simply by C∞(X,Y ). If further, f is invertible with a

differentiable inverse map, f is said to be a diffeomorphism.

Let us summarize the minimum notions from [2, 3, 4, 5, 10, 1, 14, 7, 11, 6, 8] to build

up de Rham theory in the category of differentiable or diffeological spaces as follows.

Definition 1.7 (External algebra). Let T ∗
n = Hom(Rn,R) =

n
⊕
i=1

R dxi, where {dxi}1≦i≦n
is the dual basis to the standard basis {ei}1≦i≦n of Rn. We denote by ∧∗(T ∗

n) the exterior

(graded) algebra on {dxi}, where each dxi is of dimension 1. In particular, we have

∧0(T ∗
n)

∼= ∧∗(T ∗
0 )

∼= R, ∧p(T ∗
n) = 0 if p<0 and ∧p(T ∗

n)
∼= ∧n−p(T ∗

n) for any p ∈ Z.

The external algebra fits in with our categorical context as the following form.

Definition 1.8. A contravariant functor ∧p : Domain → Set is given as follows:

(1) ∧p(A) = HomDomain(A,∧p(T ∗
n)), for any convex n-domain A,

(2) For a smooth map f : B → A in Domain, ∧p(f)=f ∗ : ∧p(A) → ∧p(B) is defined,

for any ω =
∑

i1<···<ip
ai1,··· ,ip(x) dxi1 ∧ · · · ∧ dxip ∈ ∧p(A), as

f ∗(ω) =
∑

j1<···<jp
bj1,···,jp(y)· d yj1 ∧ · · · ∧ d yjp , y ∈ V,

bj1,···,jp(y) =
∑

i1<···<ip
ai1,···,ip(f(y))·

∂(xi1 , · · ·, xip)
∂(yj1 , · · ·, yjp)

,

where
∂(xi1 , · · ·, xip)
∂(yj1 , · · ·, yjp)

denotes the Jacobian determinant.

Definition 1.9. A natural transformation d : ∧p → ∧p+1 is given as follows: for any

domain A, d : ∧p(A) → ∧p+1(A) is defined, for any η = a(x) dxi1∧ · · · ∧ dxip ∈ ∧p(A), as

d η =
∑
i

∂ ai1,··· ,ip
∂ xi

(x) dxi∧ dxi1∧ · · · ∧ dxip .

Then the naturality is obtained using a strait-forward computation.

A differential form is given in this context as follows.

Definition 1.10. Let (X, EX) be a differentiable or diffeological space, E = C or D.

(general): A differential p-form on X is a natural transformation ω : EX → ∧p given
by {ωA : EX(A) → ∧p(A) ; A ∈ Obj(Domain)} of contravariant functors EX , ∧p :

Domain → Set, in other words, ω satisfies f ∗(ωB(P )) = f ∗◦ωB(P ) = ωA◦f ∗(P ) =

ωA(P◦f) for any map f : A → B in Domain and a plot P ∈ EX(B). The set
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of differential p-forms on X is denoted by Ap
E(X) or simply by Ap(X). We also

denote A∗
E(X) = ⊕

p
Ap

E(X) or by A∗(X) = ⊕
p
Ap(X).

(with compact support): A differential p-form with compact support on X is a

natural transformation ω =: EX → ∧p(−) with a compact subset Kω ⊂ X such

that, for any A ∈ Obj(Domain) and P ∈ EX , we have SuppωA(P ) ⊂ P−1(Kω).

The set of differential p-forms with compact support on X is denoted by Ap
Ec(X)

or simply by Ap
c(X). We also denote A∗

Ec(X) = ⊕
p
Ap

Ec(X) or A∗
c (X) = ⊕

p
Ap
c(X).

Example 1.11. We have A∗({∗}) ∼= R and A∗
c ({∗}) ∼= R.

Definition 1.12 (External derivative). The external derivative of a differential p-form ω

on a differentiable/diffeological space X is a differential p+1-form dω given by (dω)A =

d ◦ωA for any A ∈ Obj(Domain). If, further we assume ω ∈ Ap
c(X), we clearly have dω ∈

Ap+1
c (X). Thus the external derivative induces endomorphisms of A∗(X) and A∗

c (X).

The categories of differentiable spaces and of diffeological spaces are denoted respectvely

by Differentiable and Diffeology, which are different from each other (see [11]). By [10], [5]

and [1], we know both of them are cartesian closed, complete and cocomplete.

Definition 1.13. Let f : (X, EX) → (Y, EY ) be a differentiable map, E = C or D.

(1) We obtain a homomorphism f ♯ : Ap(Y ) → Ap(X): let ω ∈ Ap(Y ). Then

(f ♯ω)A(P ) = ωA(f◦P ) for any P ∈ EX(A) and A ∈ Obj(Domain).

(2) If a differentiable map f is proper, then we have f ♯(Ap
c(Y )) ⊂ Ap

c(X) by taking

Kf♯ω = f−1(Kω) for any ω ∈ Ap
c(Y ).

Definition 1.14. For an inclusion j : U ↪→ X of an open set U into a weakly-separated

differentiable/diffeological space X, a homomorphism j♯ : Ap
c(U) → Ap

c(X) is defined as

follows: for any ω ∈ Ap
c(U), j♯ω ∈ Ap

c(X) is given, for n-domain B and Q ∈ EX(B), by{
(j♯ω)B(Q)|A = ωA(Q|A), if A is an open n-domain in Q−1(U),

(j♯ω)B(Q)|A = 0, if A is an open n-domain in B∖Q−1(Kω)

with Kj♯ω = Kω ⊂ U ⊂ X. Here, {Q−1(U), B∖Q−1(Kω)} is an open covering of B.

Remark 1.15. In Definition 1.14, the map j♯ induced from an inclusion j : U ↪→ X

satisfies that (j♯ω)B(j◦Q) = ωB(Q) for any B ∈ Obj(Domain) and Q ∈ EU(B).

Proposition 1.16. There is an isomorphism Φ : A0(X) ∼= C∞(X,R) such that Φ(ω)◦f =

Φ(f ♯(ω)) for any ω ∈ A0(X) and f ∈ C∞(Y,X).
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Proof : Firstly, we define a homomorphism Φ : A0(X) → HomSet(X,R) by Φ(ω)(x) =

ω{∗}(cx)(∗) ∈ R for any ω ∈ A0(X) and x ∈ X. By definition, Φ clearly is a homomorphism.

Secondly, we show ImΦ ⊂ C∞(X,R). For any n-domain A and P ∈ EX(A), we have

ωA(P ) : A → ∧0(T ∗
n) = R. Hence for any x ∈ A, we have P◦cx = cx ∈ EX({∗})

where x = P (x) ∈ X, and hence we have ωA(P )(x) = ωA(P )◦cx(∗) = ω{∗}(P◦cx)(∗) =
ω{∗}(cx)(∗) = Φ(ω)(x) = Φ(ω)◦P (x), x ∈ A. Thus we have ωA(P ) = Φ(ω)◦P for any

A ∈ Obj(Domain) and P ∈ EX(A), and hence Φ(ω) : X → R is a differentiable map.

Moreover, for any differentiable map f : Y → X, we have Φ(f ♯ω)(x) = (f ♯ω){∗}(cx)(∗) =

ω{∗}(f◦cx)(∗) = ω{∗}(cf(x))(∗) = Φ(ω)◦f(x), and hence we obtain Φ(f ♯ω) = Φ(ω)◦f .
Thirdly, by the formula ωA(P ) = Φ(ω)◦P for any A ∈ Obj(Domain) and P ∈ EX(A), ω

is completely determined by Φ(ω), and hence Φ is a monomorphism.

Finally, for any differentiable map f : X → R, we have a 0-form ω by ωA(P ) = f◦P
for any A ∈ Obj(Domain) and P ∈ EX(A), which also implies Φ(ω) = f . Thus Φ is an

epimorphism, and it completes the proof of the proposition.

Definition 1.17. Let X = (X, E) be a differentiable/diffeological space, E = C or D.

de Rham cohomology: Hp
E(X) =

Zp
E(X)

Bp
E(X)

,

where Zp
E(X) = Ker d ∩ Ap

E(X) and Bp
E(X) = d (Ap

E(X)).

de Rham cohomology with compact support: Hp
Ec(X) =

Zp
Ec(X)

Bp
Ec(X)

,

where Zp
Ec(X) = Ker d ∩ Ap

Ec(X) and Bp
Ec(X) = d (Ap

Ec(X)).

From now on, we often abbreviate as Hp(X) = Hp
E(X), Hp

c (X) = Hp
Ec(X) and so on.

Remark 1.18. We have Hp
Ec(M) ∼= Hp

dR(M) and Hp
Ec(M) ∼= Hp

dRc
(M) for a manifold M ,

where we denote by Hp
dR(M) (Hp

dRc
(M)) the de Rham cohomology (with compact support).

Proposition 1.19. Let (X, EX) and (Y, EY ) be differentiable/diffeological spaces.

(1) For a differentiable map f : X → Y , the homomorphism f ♯ : A∗(Y ) → A∗(X)

induces a homomorphism f ∗ : H∗(Y ) → H∗(X).

(2) If a differentiable map f : X → Y is proper, then the homomorphism f ♯ : A∗
c (Y ) →

A∗
c (X) induces a homomorphism f ∗ : H∗

c (Y ) → H∗
c (X).

Theorem 1.20. The de Rham cohomologies determines contravariant functors H∗
C :

Differentiable → GradedAlgebra and H∗
D : Diffeology → GradedAlgebra.

Proposition 1.21. Let (X, EX) be a weakly-separated differentiable/diffeological space and

U an open set in X. Then the homomorphism j♯ : A∗
c (U) → A∗

c (X) induced from the

canonical inclusion j : U ↪→ X induces a homomorphism j∗ : H
∗
c (U) → H∗

c (X).



6 IWASE AND IZUMIDA

Theorem 1.22 ([5], [10]). If two differentiable maps f0, f1 : X → Y between differ-

entiable/diffeological spaces are homotopic in C∞
E (X,Y ), E = C or D, i.e., there is a

differentiable map f : I → C∞
E (X,Y ) such that f(t) = ft, t = 0, 1, then we obtain

f ∗
0 = f ∗

1 : H∗
E (Y ) → H∗

E (X).

Theorem 1.23. By definition, we clearly have H∗
E (
⨿
α

Xα) =
∏
α

H∗
E (Xα), E = C or D.

Example 1.24. For a differentiable/diffeological space ({∗}, E∗) with E∗(A) = {c∗} for

any A ∈ Obj(Domain), we have H0(X) = A0(X) = R and Hp(X) = Ap(X) = 0 if p ̸= 0.

2. Mayer-Vietoris sequence for differentiable spaces

Definition 2.1 (partition of unity). Let (X, EX) be a differentiable/diffeological space and

U an open covering of X. A set of 0-forms ρ = {ρU ; U ∈U} is called a partition of unity

belonging to U , if, for any A ∈ Obj(Domain) and P ∈ EX(A), Supp ρUA(P ) ⊂ P−1(U) and∑
U∈U

ρUA(x) = 1, x ∈ A. If further there is a family {GU ; U ∈U} of closed sets in X such

that, Supp ρUA(P ) ⊂ P−1(GU) for any A and P above, then we say that ρ is ‘normal’.

The above definition of a partition of unity using the notion of 0-form first appeared in

Izumida [8] which was essentially the same as the one in Haraguchi [6] using the notion of

a differentiable function, since a differential 0-form is a differentiable function, if we adopt

the usual definition of 0-form. We introduce a special kind of open coverings as follows.

Definition 2.2 (Nice covering). Let X be a differentiable space. An open covering U of

X is nice, if there is a partition of unity {ρUA : A→ I = [0, 1] ; U ∈U} belonging to U , i.e.,
{ρU} are differential 0-forms with Supp ρUA(P ) = Cl (ρUA(P )

−1(I∖{0})) ⊂ P−1(U), U ∈ U
satisfying

∑
U∈U

ρUA(P )(x) = 1 for any x∈A, where ρUA(P )(x) ̸= 0 for finitely many U .

Theorem 2.3 (see [6] or [8]). Let U = {U1, U2} be a nice open covering of a dif-

ferentiable/diffeological space (X, EX) with a partition of unity {ρ(1), ρ(2)} belonging to

U . Then it : U1 ∩ U2 ↪→ Ut and jt : Ut ↪→ X, t = 1, 2, induce homomorphisms

ψ♮ : Ap(X) → Ap(U1) ⊕ Ap(U2) and ϕ♮ : Ap(U1) ⊕ Ap(U2) → Ap(U1 ∩ U2) by ψ♮(ω)

= i♯1ω⊕i
♯
2ω and ϕ♮(η1⊕η2) = j♯1η1−j

♯
2η2, and the following sequence is exact.

H0(X) → · · · → Hp(X)
ψ∗
−→ Hp(U1)⊕Hp(U2)

ϕ∗−→ Hp(U1 ∩ U2)

→ Hp+1(X)
ψ∗
−→ Hp+1(U1)⊕Hp+1(U2)

ϕ∗−→ Hp+1(U1 ∩ U2) → · · · ,

where ψ∗ and ϕ∗ are induced from ψ♮ and ϕ♮.
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Proof : Let U0 = U1 ∩ U2. We show that the following sequence is short exact.

0 −→ Ap(X)
ψ♮

−→ Ap(U1)⊕Ap(U2)
ϕ♮−→ Ap(U0) −→ 0.

(exactness at Ap(X)): Assume ψ♮(ω) = 0, and so j♯tω = 0 for t = 1, 2. For any

A ∈ Obj(Domain) and P ∈ EX(A), we define Pt : P−1(Ut) → Ut, t=1, 2 by Pt(x) =

P (x) for any x ∈ P−1(Ut), so that P |P−1(Ut) = jt◦Pt for t=1, 2. Then, for any x ∈
A, there is an open subset Ax ∈ Obj(Domain) of A such that x ∈ Ax ⊂ P−1(Ut) for

t=1 or 2. In each case, we have ωA(P )|Ax = ωAx(P |Ax) = ωAx(P |P−1(Ut)|Ax) =
ωAx(jt◦Pt|Ax) = (j♯tω)Ax(Pt|Ax) = 0, and hence ωA(P )|Ax = 0 for any x ∈ A.

Thus ωA(P ) = 0 for any A and P , which implies that ω = 0. Thus ψ♮ is monic.

(exactness at Ap(U1)⊕Ap(U2)): Assume ϕ♮(η(1)⊕η(2)) = 0, and so i♯1η
(1) = i♯2η

(2).

Then we construct ω ∈ Ap(X) as follows. For any A ∈ Obj(Domain) and P ∈
EX(A), {P−1(Ut) ; t=1, 2} is an open covering of A, and for t=0, 1, 2 we obtain

Pt : P
−1(Ut) → Ut given by Pt(x) = P (x) for any x∈P−1(Ut), so that Pt|P−1(U0) =

it◦P0 for t= 1, 2. For any x ∈ A, there is an open subset Ax ∈ Obj(Domain) of

A such that x ∈ Ax ⊂ P−1(Ut) for t= 1 or 2. Using it, we define ωA(P )(x) =

η
(t)
Ax(P |Ax)(x) for any x ∈ A. In case when Ax⊂A0=A1∩A2, we have η

(1)
Ax(P1|Ax)

= η
(1)
Ax(i1◦P0|Ax) = (i♯1η

(1))Ax(P0|Ax) = (i♯2η
(2))Ax(P0|Ax) = η

(2)
Ax(i2◦P0|Ax) =

η
(2)
Ax(P2|Ax), and hence η

(1)
Ax(P1|Ax) = η

(2)
Ax(P2|Ax). It implies that ω is well-defined

and ψ♮(ω) = η(1)⊕η(2). The converse is clear and we obtain Kerϕ♮ = Imψ♮.

(exactness at Ap(U0)): Assume κ ∈ Ap(U0). Then we define κ(t) ∈ Ap(Ut), t=1, 2

defined as follows. For any At ∈ Obj(Domain) and a plot Pt : At → Ut, we

define κ
(t)
At
(Pt)(x) by (−1)t−1ρ3−tAt

(Pt)(x)·κAt(Pt)(x) if x ∈ P−1
t (U3−t) and by 0 if

x ̸∈ P−1
t (Supp ρ3−tAt

(Pt)). Then we see that κ(t) is well-defined differential p-form on

Ut and i
♯
1κ

(1)−i♯2κ(2) = κ, and hence ϕ♮(κ(1)⊕κ(2)) = κ. Thus ϕ♮ is an epimorphism.

Since ψ♮ and ϕ♮ are clearly cochain maps, we obtain the desired long exact sequence.

Let us turn our attention to the differential forms with compact support.

Theorem 2.4 (see [6] or [8]). Let (X, EX) be a weakly-separated differentiable/diffeological

space and U = {U1, U2} a nice open covering of X with a normal partition of unity

{ρ(1), ρ(2)} belonging to U . Then it : U1 ∩ U2 ↪→ Ut and jt : Ut ↪→ X, t = 1, 2, induce

homomorphisms ϕ♮ : Ap
c(U1 ∩ U2) → Ap

c(U1)⊕Ap
c(U2) and ψ♮ : Ap

c(U1)⊕Ap
c(U2) → Ap

c(X)

by ϕ♮(ω) = i1♯ω⊕i2♯ω and ψ♮(η1⊕η2) = j1♯η1−j2♯η2, and the following sequence is exact.

H0
c (U1 ∩ U2) → · · · → Hp

c (U1 ∩ U2),
ϕ∗−→ Hp

c (U1)⊕Hp
c (U2)

ψ∗−→ Hp
c (X)

→ Hp+1
c (U1 ∩ U2)

ϕ∗−→ Hp+1
c (U1)⊕Hp+1

c (U2)
ψ∗−→ Hp+1

c (X) → · · · ,



8 IWASE AND IZUMIDA

where ψ∗ and ϕ∗ are induced from ψ♮ and ϕ♮.

Proof : Let U0 = U1 ∩ U2. We show that the following sequence is short exact.

0 −→ Ap
c(U0)

ϕ♮−→ Ap
c(U1)⊕Ap

c(U2)
ψ♮−→ Ap

c(X) −→ 0.

(exactness at Ap
c(U0)): Assume ϕ♮(ω) = 0. Then i1♯(ω) = i2♯(ω) = 0. Since i1♯(ω)

is an extension of ω, we obtain ω = 0. Thus ϕ♮ is a monomorphism.

(exactness at Ap
c(U1)⊕Ap

c(U2)): Assume ψ♮(η
(1)⊕η(2)) = 0. By definition, we

have j1♯(η
(1)) = j2♯(η

(2)). For any A ∈ Obj(Domain) and P ∈ EX(A), we have

j1♯(η
(1))A(P ) = j2♯(η

(2))A(P ). So, for any B ∈ Obj(Domain) and a plot Q : B → U0,

η
(1)
B (i1◦Q) = j♯1η

(1)
B (j1◦i1◦Q) = j♯2η

(2)
B (j2◦i2◦Q) = η

(2)
B (i2◦Q). So we define η(0) ∈

Ap(U0) by η
(0)
B (Q) = η

(1)
B (i1◦Q) = η

(2)
B (i2◦Q). On the other hand, Kjt♯η(t)

= Kη(t) by

definition, and hence we obtain Supp η
(0)
B (Q) = Supp η

(1)
B (i1◦Q) = Supp η

(2)
B (i2◦Q)

⊂ Q−1(Kη(1) ∩Kη(2)). Then η
(0) ∈ Ap

c(U0) for Kη(0) = Kη(1) ∩Kη(2) is compact.

(exactness at Ap
c(X)): Assume κ ∈ Ap

c(X). For any At ∈ Obj(Domain) and a

plot Pt : At → Ut, we define κ
(t)
At
(Pt)(x) by (−1)t−1ρ

(t)
At
(Pt)(x)·κAt(jt◦Pt)(x) if

x ∈ P−1
t (U0) and by 0 if x ̸∈ Supp ρ

(t)
At
(Pt). Then κ(t) is a well-defined differential

p-form on Ut with compact support Kκ(t) = Kκ ∩GUt in Ut and j
♯
1κ

(1)−j♯2κ(2) = κ,

and hence we have ψ♮(κ
(1)⊕κ(2)) = κ. Thus ψ♮ is an epimorphism.

Since ϕ♮ and ψ♮ are clearly cochain maps, we obtain the desired long exact sequence.

3. Cube Category

Definition 3.1. A concrete monoidal site □ is defined as follows:

Object: Obj(□) = {0, 1, 2, · · · } ≈ N0, n = □n
L := □n ∩ L,

where □n={(t1, . . . , tn) ; 0≤ t1, · · · , tn≤1} and L=Zn⊂Rn is an integral lattice.

Morphism: Hom□ is generated by the following sets of morphisms.

boundary: ∂ϵi : n→ n+1, ϵ∈ İ={0, 1}, 1≤ i≤n+1, n ∈ N0, given by

∂ϵi (t) = (t1, . . . , ti−1, ϵ, ti+1, . . . , tn) for t = (t1, · · ·, tn) ∈ □n,

degeneracy: εi : n+1 → n, 0≤ i≤n, n ∈ N0 given by

εi(t) = (t1, · · ·, ti−1, ti+1, · · ·, tn+1), t = (t1, · · ·, tn+1) ∈ □n,

which satisfies the following relations.

(1) ∂ϵ
′

j ◦∂ϵi =

{
∂ϵi◦∂ϵ

′
j−1 if i<j

∂ϵi+1◦∂ϵ
′
j if i≥j

(2) εj◦εi =

{
εi◦εj+1 if i ≤ j

εi−1◦εj if i > j
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(3) ∂ϵ
′

j ◦εi =

{
εi+1◦∂ϵ

′
j if i ≥ j

εi◦∂ϵ
′
j+1 if i < j

(4) εj◦∂ϵi =


∂ϵi−1◦εj if i > j

∂ϵi◦εj−1 if i < j

id if i = j

Clearly, we can extend and εi as smooth maps ∂ϵi : Rn → Rn+1 and εi : Rn+1 → Rn. Let

□ : □ → Convex be the covariant functor defined by □(n) = □n, □(∂ϵi ) = ∂ϵi |□n : □n →
□n+1 and □(εi) = εi|□n+1 : □n+1 → □n and □(εi) = εi|□n+1 : □n+1 → □n.

Remark 3.2. There is a smooth relative homeomorphism πn : (□n, ∂□n) → (△n, ∂△n)

given by πn(t1, · · ·, tn) = (0, s1, . . . , sn, 1), sk = tk· · · · ·tn, where the standard n-simplex △n

is regarded as △n = {(s0, · · ·, sn+1) ∈ Rn ; 0 = s0≤s1≤· · ·≤sn≤sn+1 = 1}.

According to [1], there is a natural embedding ch : Diffeology → Differentiable. So, from

now on, we deal mainly with differentiable spaces, rather than diffeological spaces. We

denote EX□ = EX◦□ and ∧p□ = ∧p◦□, and a plot in EX□ (n) = EX(□n) is called an n-plot.

Let X = (X, EX) be a differentiable space. Then we denote Σn(X) = EX(□n) the set

of n-plots. Let Γn(X) be the free abelian group generated by Σn(X) and Γn(X,R) =

Hom(Γn(X);R), where R is a commutative ring with unit. Then Γ∗(X;R) is a cochain

complex and we obtain a smooth version of cubical singular cohomology H∗(X,R) in

a canonical manner, which satisfies axioms of cohomology theories such as additivity,

dimension and homotopy axioms together with a Mayer-Vietoris exact sequence.

4. cubical de Rham cohomology

We introduce a version of a differential form by using EX□ and ∧p□.

Definition 4.1 (cubical differential form). A cubical differential form on a differentiable

space X is a natural transformation ω : EX□ → ∧p□ of contravariant functors : □ → Set.

We denote ω = {ωn ; n≧0}, where ωn : EX(□n) → ∧p(□n). The set of cubical differential

forms on X is denoted by Ap
□(X) and A∗

□(X) = ⊕
p
Ap

□(X).

We denote by □∗ : Ap
C(X) → Ap

□(X) the natural map induced from □ : □ → Convex.

Theorem 4.2. The map □∗ : Ap
C(X) → Ap

□(X) is monic.

Proof : Assume that ω ∈ Ap
C(X) satisfies □∗(ω) = 0 : EX□ → ∧p□.

By induction on n, we show ωA = 0 for any convex n-domain A.

(n = 0) In this case, we have A0
C(X) = A0

□(X) and ωpoints = 0.

(n > 0) Let P : A→ X be a plot of X, where A is a convex n-domain. For any element

u ∈ IntA, there is a small simplex □n
u ⊂ IntA such that Int□n

u ∋ u. Then there is a linear

diffeomorphism ϕ : □n ≈ □n
u. Hence P◦ϕ ∈ C∞

C (□n, X) and we obtain
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0 = □∗(ω)n(P◦ϕ) = ω□n(P◦ϕ) = ϕ∗(ω□n
u
(P |□n

u
)) = ϕ∗(ωA(P )|□n

u
).

Since ϕ is a diffeomorphism, we have ωA(P )|□n
u
= 0 for any u ∈ IntA. Thus we obtain

ωA(P ) = 0 on IntA. Since ωA(P ) is continuous, ωA(P ) = 0 on A.

A differentiable map induces a homomorphism of cubical differential forms as follows:

Definition 4.3. Let f : X → Y be a differentiable map between differentiable spaces

X = (X, EX) and Y = (Y, EY ).

(1) We obtain a homomorphism f ♯ : Ap
□(Y ) → Ap

□(X): let ω ∈ Ap
□(Y ). Then

(f ♯ωn)(P ) = ωn(f◦P ) for any P ∈ EX□ (n), n ≥ 0.

(2) If a differentiable map f is proper, then we have f ♯(Ap
□c
(Y )) ⊂ Ap

□c
(X) by taking

Kf♯ω = f−1(Kω) for any ω ∈ Ap
□c
(Y ).

Definition 4.4 (External derivative). Let X = (X, E) be a differentiable space. The

external derivative d : Ap
□(X) → Ap+1

□ (X) is defined as follows.

(dω)n(P ) = d (ωn(P )) for an n-plot P ∈ E□(n) = E(□n).

Definition 4.5. Let X = (X, E) be a differentiable space.

Cubical de Rham cohomology: Hp
□(X) =

Zp
□(X)

Bp
□(X)

,

where Zp
□(X) = Ker d ∩ Ap

□(X) and Bp
□(X) = d (Ap

□(X)).

Cubical de Rham cohomology with compact support: Hp
□c
(X) =

Zp
□c
(X)

Bp
□c
(X)

,

where Zp
□c
(X) = Ker d ∩ Ap

□c
(X) and Bp

□c
(X) = d (Ap

□c
(X)).

Example 4.6. Let X = (X, EX) be a differentiable space with X = {∗} one-point-set.

Then we have Hp
□({∗}) = R if p = 0 and 0 otherwise.

Proposition 4.7. Let X = (X, EX) and Y = (Y, EY ) be differentiable spaces.

(1) For a differentiable map f : X → Y , the homomorphism f ♯ : A∗
□(Y ) → A∗

□(X)

induces a homomorphism H∗
□(Y ) → H∗

□(X).

(2) If a differentiable map f : X → Y is proper, then the homomorphism f ♯ :

A∗
□c
(Y ) → A∗

□c
(X) induces a homomorphism f ∗ : H∗

□c
(Y ) → H∗

□c
(X).

Theorem 4.8. By definition, we clearly have H∗
□(
⨿
α

Xα) =
∏
α

H∗
□(Xα).

Theorem 4.9. H∗
□ is a contravariant functor from Differentiable to GradedAlgebra.
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5. Homotopy invariance of cubical de Rham cohomology

Let f0, f1 : X → Y be homotopic differentiable maps between differentiable spaces

X = (X, EX) and Y = (Y, EY ). Then there is a plot f : I → C∞
C (X,Y ) with f(t) = ft

for t = 0, 1. In particular, for any n-plot P : □n → X, f ·P : □n+1 = I×□n f ·P−−→ Y is an

n+1-plot. Then, we obtain a homomorphism Df : Ap
□(Y ) → Ap−1

□ (X) as follows: for any

cubical differential p-form ω : EY□ → ∧p□ on Y , a p−1-form Df (ω) : EX□ → ∧p−1
□ on X is

defined by the following formula.

Df (ω)n(P ) =

∫
I

ωn+1(f ·P ) : □n → ∧p−1(T ∗
n),[∫

I

ωn+1(f ·P )
]
(x) =

∑
i2,··· ,ip

∫ 1

0

ai2,··· ,ip(t,x) d t· dxi2 ∧ · · · ∧ dxip ,

where we assume ωn+1(f ·P ) =
∑

i2,··· ,ip
ai2,··· ,ip(t,x) d t∧ dxi2 ∧ · · · ∧ dxip +

∑
i1,··· ,ip

bi1,··· ,ip(t,x)

dxi1 ∧ · · · ∧ dxip , (t,x) ∈ I×□n = □n+1 and T ∗
n+1 = R d t⊕

n
⊕
i=1

R dxi.

Lemma 5.1. For any ω, we obtain dD(ω)n +D(dω)n = f ♯1ωn − f ♯0ωn. Thus, if dω = 0,

then f ♯0ω is cohomologous to f ♯1ω.

Proof : First, let ωn+1(f ·P ) =
∑

i2,··· ,ip
ai2,··· ,ip(t,x) d t ∧ dxi2 ∧ · · · ∧ dxip +

∑
i1,··· ,ip

bi1,··· ,ip(t,x)

dxi1 ∧ · · · ∧ dxip . Let int : □n → I×□n be the inclusion defined by int(x) = (t,x) for t =

0, 1. Since (f ·P )◦int = ft◦P for t = 0, 1, we have (f ♯tωn)(P ) = ωn(ft◦P ) = ωn((f ·P )◦int)
= in∗t ωn+1(f ·P ) =

∑
i1,··· ,ip

bi1,··· ,ip(t,x) dxi1 ∧ · · · ∧ dxip for t = 0, 1, x ∈ □n.

Second, by definition, we have dωn+1(f ·P ) =
∑
i

∑
i2,··· ,ip

∂ ai2,··· ,ip
∂ xi

(t,x) dxi∧d t∧dxi2∧· · ·∧

dxip+
∑

i1,··· ,ip

∂ bi1,··· ,ip
∂ t

(t,x) d t∧dxi1∧· · ·∧dxip+
∑
i

∑
i1,··· ,ip

∂ bi1,··· ,ip
∂ xi

(t,x) dxi∧dxi1∧· · ·∧dxip ,

and hence we obtain D(dω)n(P ) = −
∑
i

∑
i2,··· ,ip

∫
I

∂ ai2,··· ,ip
∂ xi

(t,x) d t· dxi∧dxi2 ∧· · ·∧dxip +∑
i1,··· ,ip

∫
I

∂ bi1,··· ,ip
∂ t

(t,x) d t· dxi1 ∧ · · · ∧ dxip , (t,x) ∈ I×□n.

Third, we have Df (ω)n(P ) =
∑

i2,··· ,ip

∫
I

ai2,··· ,ip(t,x) d t· dxi2 ∧ · · · ∧ dxip , and hence we

obtain dDf (ω)n(P ) =
∑
i

∑
i2,··· ,ip

∫
I

∂ ai2,··· ,ip
∂ xi

(t,x) d t· dxi ∧ dxi2 ∧ · · · ∧ dxip , (t,x) ∈ I×□n.

Hence [dDf (ω)n(P ) +Df (dω)n(P )] (x) =
∑

i1,··· ,ip

∫
I

∂ bi1,··· ,ip
∂ t

(t,x) d t· dxi1 ∧ · · · ∧ dxip =∑
i1,··· ,ip

bi1,··· ,ip(1,x) dxi1 ∧ · · · ∧ dxip −
∑

i1,··· ,ip
bi1,··· ,ip(0,x) dxi1 ∧ · · · ∧ dxip , x ∈ □n. Thus we

obtain dDf (ω)n(P )+Df (dω)n(P ) = (f ♯1ωn)(P )− (f ♯0ωn)(P ), which implies the lemma.
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It immediately implies the following theorem.

Theorem 5.2. If two differentiable maps f0, f1 : X → Y between differentiable spaces

are homotopic in C∞
C (X,Y ), then they induce the same homomorphism

f ∗
0 = f ∗

1 : H∗
□(Y ) → H∗

□(X).

6. Hurewicz homomorphism

First, we give a definition of paths and fundamental groupoid of a differentiable space.

Definition 6.1. In this paper, a path from a ∈ X to b ∈ X in a differentiable space X

means a differentiable map ℓ : I → X such that ℓ(0) = a and ℓ(1) = b. We denote by

π0(X) the set of path-connected components of X, as usual.

Definition 6.2. Let Cat be the category of all small categories. The fundamental groupoid

functor π1 : Differentiable → Cat is as follows:

(1) For a differentiable space X, the small category π1(X) is defined by Obj(π1(X)) =

X and Homπ1(X)(x0, x1) is the set of homotopy classes of all differentiable maps

ℓ : I → X with ℓ(0) = x0 and ℓ(1) = x1 for any x0, x1 ∈ X.

(2) For a differentitable map f : Y → X, the functor f∗ : π1(Y ) → π1(X) is defined

by f∗ = f : Y → X and f∗([ℓ]) = [f◦ℓ] for any [ℓ] ∈ π1(Y ).

Definition 6.3. The functor R : Differentiable → Cat is defined as follows:

(1) For a differentiable space X, the small category R(X) is defined by Obj(R(X)) = X

and HomR(X)(x0, x1) = R for any x0, x1 ∈ X, and the composition is given by

addition of real numbers.

(2) For a differentitable map f : Y → X, the functor f∗ : R(Y ) → R(X) is defined by

f∗ = f : Y → X and f∗ = id : R → R.

Definition 6.4. The Hurewicz homomorphism ρ : Z1
□(X) → Hom(π1(X),R(X)) (the set

of functors) is defined for any ω ∈ Z1
□(X) by ρ(ω)(x) = x for any x ∈ Obj(π1(X)) = X

and ρ(ω)([ℓ]) =

∫
I

ω1(ℓ) for any [ℓ] ∈ Homπ1(X), which is natural, in other words, the

diagram below is commutative for any differentiable map f : Y → X between differentiable

spaces.
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Z1
□(X) Hom(π1(X),R(X))

Z1
□(Y ) Hom(π1(Y ),R(Y ))

w

ρ

u

f∗

u

Hom(f∗,id)

w

ρ

(well-defined) Let ℓ0 ∼ ℓ1 with ℓt(ϵ) = xϵ ∈ X, t = 0, 1 and ϵ = 0, 1. Then there is a 2-plot

ℓ̂ : □2 → X such that ℓ̂(ϵ, s) = ℓϵ(s) and ℓ̂(t, ϵ) = xϵ for ϵ = 0, 1. Hence we have ℓ̂◦∂ϵ1 = ℓϵ,

ϵ = 0, 1 and ℓ̂◦∂ϵ2 = cxϵ = cxϵ◦ε1. Let ω2(ℓ̂) = a(t, s) d t + b(t, s) d s ∈ ∧1(□2). Then

we have ω2(ℓϵ) = ω2(ℓ̂◦∂ϵ1) = ∂ϵ∗1 ω2(ℓ̂) = b(ϵ, s) d s, ϵ = 0, 1. Similarly, 0 = ε∗1ω∗(cxϵ) =

ω2(cxϵ◦ε1) = ω2(ℓ̂◦∂ϵ2) = ∂ϵ∗2 ω2(ℓ̂) = a(t, ϵ) d t which implies a(t, ϵ) = 0, ϵ = 0, 1. On the

other hand by Green’s formula, we obtain that

∫
∂ □2

(ω2(ℓ̂)|∂ □2) =

∫
□2

dω = 0, since ω is a

closed form. Then it follows that

∫
{1}×I

(ω2(ℓ̂)|{1}×I) −
∫
{0}×I

(ω2(ℓ̂)|{0}×I) = 0, and hence∫
I

ω1(ℓ1) =

∫
I

ω1(ℓ0), and ρ is well-defined. The additivity of ρ is clear by definition.

(naturality) Let f : Y → X be a differentiable map. Then f induces both f ∗ : Z1
□(X) →

Z1
□(Y ) and f∗ : π1(Y ) → π1(X). The latter homomorphism induces

Hom(f∗, id) : Hom(π1(X),R(X)) → Hom(π1(Y ),R(Y )).

Then, for any ω ∈ Z1
□(X) and [ℓ] ∈ π1(X), it follows that

ρ(f ∗(ω))([ℓ]) =

∫
I

(f ♯ω1)(ℓ) =

∫
I

ω1(f◦ℓ) = ρ(ω)([f◦ℓ]) = ρ(ω)◦f∗([ℓ])

and hence we have ρ◦f ∗ = Hom(f∗, id)◦ρ which implies the naturality of ρ.

Definition 6.5. For any differentiable space X, we define a groupoid X in which the set of

objects is equal to X = Obj(π1(X)), and the set of morphisms is obtained from Homπ1(X)

by identifying all the morphisms which have starting and ending objects in common.

Then there clearly is a natural projection pr : π1(X) → X inducing a monomorphism

pr∗ : Hom(X,R(X)) ↪→ Hom(π1(X),R(X)).

Definition 6.6. We denote the cokernel of pr∗ by Hom(π1(X),R).

If ω = dϕ for some ϕ ∈ A0
□(X), then, for any path ℓ from x0 to x1, we have ρ(ω)([ℓ]) =

ρ(dϕ)([ℓ]) =

∫
I

d(ϕI)(ℓ) = [ϕI(ℓ)(t)]
t=1
t=0 = ϕI(ℓ)(1) − ϕI(ℓ)(0), by the fundamental the-

orem of calculus. Hence ϕI(ℓ)(ϵ) = ϕI(ℓ)(∂
ϵ
1(∗)) = ∂ϵ∗1 (ϕI(ℓ))(∗) = ϕ{∗}(ℓ◦∂ϵ1)(∗) =
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ϕ{∗}(ℓ(ϵ))(∗) = ϕ{∗}(cxϵ)(∗) is depending only on xϵ the starting and ending objects of

[ℓ] ∈ π1(X). Thus the functor ρ(ω) : π1(X) → R(X) induces a functor Φ(ω) : X → R(X)

such that ρ(ω) = Φ(ω)◦pr, in other words, ρ(B1
□(X)) is in the image of pr∗. Thus ρ induces

a homomorphism ρ∗ : H
∗
□(X) → Hom(π1(X),R).

Theorem 6.7. ρ∗ : H
1
□(X) → Hom(π1(X),R) is a monomorphism.

Proof : Assume that ρ∗([ω]) = 0. Then we have ρ(ω) ∈ Impr∗. Thus there is a functor

Φ(ω) : X → R such that ρ(ω) = Φ(ω)◦pr. Let {xα ; α ∈ π0(X)} be a complete set of

representatives of π0(X). For any P ∈ E(□n), a map F (P ) : □n → R is given by

F (P )(x) =

∫
I

ω1(ℓx) +

∫
I

γ∗xωn(□n), x=P (0),

where ℓx is a path from xα, α = [x] ∈ π0(X), to x in X and γ is a path from 0 to x

in □n. Then F (P ) : □n → ∧0 is well-defined smooth map by the equality

∫
I

ω1(ℓx) =

ρ(ω)([ℓx]) = Φ(ω)(pr([ℓx])) which is not depending on the choice of ℓx, and hence it gives a

0-form F : E(□n) → ∧0(□n) so that dF = ω. Thus [ω] = 0 and ρ∗ is a monomorphism.

7. Partition of unity

Let X be a differentiable space. In this section, we assume that there are subsets

A,B ⊂ X such that U = {IntA, IntB} gives an open covering of X.

Definition 7.1. A pair (ρA, ρB) of differentiable 0-forms ρA and ρB is called a partition of

unity belonging to an open covering U of X, if, for any plot P : □n → X, Supp ρAn (P ) ⊂
P−1(IntA), Supp ρBn (P ) ⊂ P−1(IntB) and ρAn (P ) + ρBn (P ) = 1 on □n.

To obtain a well-defined smooth function by extending or gluing smooth functions on

cubic sets, we use a fixed smooth stabilizer function λ̂ : R → I (see [7]) which satisfies

(1) λ̂(−t) = 0, λ̂(1+t) = 1, t ≥ 0 and (2) λ̂ is strictly increasing on I = [0, 1].

Using λ̂, we define a smooth function λa,b : I → I, for any a, b ∈ R with a<b, by

λa,b(t) = λ̂( t−a−ϵ
b−a−2ϵ

)

for a small ϵ>0 enough to satisfy b−a
2
>ϵ>0.

Using it, we show the existence of a partition of unity as follows.

Theorem 7.2. Let X be a differentiable space with an open covering {IntA, IntB}, A,B ⊂
X. Then there exists a partition of unity ρ = {ρA, ρB} belonging to {IntA, IntB}. If the

underlying topology on X is normal, ρ can be chosen as normal, in other words, there are
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closed sets GA, GB in X such that X∖IntB ⊂ GA ⊂ IntA, X∖IntA ⊂ GB ⊂ IntB and

Supp ρAn (P ) ⊂ P−1(GA) and Supp ρBn (P ) ⊂ P−1(GB) for all n≥0 and P ∈ EX(□n).

The above theorem implies the exactness of Mayer-Vietoris exact sequence as follows.

Corollary 7.3. Let X be a differentiable space with an open covering U = {IntA, IntB},
A,B ⊂ X. Then we have the following long exact sequence.

· · · → Hq
□(X) → Hq

□(A)⊕H
q
□(B) → Hq

□(A ∩B)

→ Hq+1
□ (X) → Hq+1

□ (A)⊕Hq+1
□ (B) → Hq+1

□ (A ∩B) · · ·

Proof of Theorem 7.2. If X is normal, there is a continuous function ρ : X → I with

X∖IntB ⊂ ρ−1(0) and X∖IntA ⊂ ρ−1(1). Otherwise, we define a function ρ : X → I by

ρ(x) =


1, x ∈ IntA∖ IntB,

1/2, x ∈ IntA ∩ IntB,

0 x ∈ IntB ∖ IntA.

Let GA = ρ−1([0, 2
3
]) ⊂ X∖ρ−1(1) ⊂ IntA and GB = ρ−1([1

3
, 1]) ⊂ X∖ρ−1(0) ⊂ IntB.

Then IntGA ∪ IntGB ⊃ ρ−1([0, 2
3
)) ∪ ρ−1((1

3
, 1]) = ρ−1([0, 2

3
) ∪ (1

3
, 1]) = X. Thus it is

sufficient to construct a partition of unity {ρA, ρB} belonging to U = {IntGA, IntGB}: by
induction on n, we construct functions ρAn (P ), ρ

B
n (P ) : □n → I for any n-plot P : □n → X,

with conditions (1) through (4) below for F = A,B and ϵ = 0, 1.

(1) a) ρFn (P◦εi) = ρFn−1(P )◦εi, 1≤ i≤n+1, b) ρFn−1(P◦∂ϵi ) = ρFn (P )◦∂ϵi , 1≤ i≤n,

(2) ρAn (P ) + ρBn (P ) = 1 : □n → R, (3) Supp ρFn (P ) ⊂ P−1(IntGF ) ⊂ □n,

(4) ρF (P )◦∂1−ti = ρF (P )◦∂1i and ρF (P )◦∂ti = ρF (P )◦∂0i for all 0≤ t≤a for sufficiently

small a>0, where ∂ti is defined by ∂ti(t1, . . . , tn−1) = (t1, . . . , ti−1, t, ti+1, . . . , tn−1).

(n = 0) For any plot P : □0 = {∗} → X, we define ρAn (P ) = ρ(P (∗)) and ρBn (P ) =

1−ρAn (P ), which satisfy (2) and (3), though (1) and (4) are empty conditions in this case.

(n > 0) We may assume a plot P : □n → X is non-degenerate by (1) a).

Firstly, P−1U = {P−1(IntA), P−1(IntB)} is an open covering of □n ⊂ Rn, and hence

we have a partition of unity {φA, φB} belonging to P−1U on □n.

Secondly, by the induction hypothesis, there is a small a>0 for the condition (4). Let

Ua be the a-neighbourhood of ∂□n. For F = A,B, we define ρ̂Fn (P ) : Ua → R by

ρ̂Fn (P )◦∂ ϵ±ti = ρFn−1(P◦∂ϵi ), 0≤ t<a, 1≤ i≤n, ϵ=0, 1,

where we denote ϵ±t = ϵ+(−1)ϵt, and then we obtain Supp ρ̂Fn (P ) ⊂ P−1(IntGF )∩Ua, if
we choose a>0 small enough.
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Thirdly, since two open sets Ua and Int□n form an open covering of □n, we also have a

partition of unity (ψ∂, ψ◦) belonging to {Ua, Int□n} given by ψ∂ = (λ1−a,1)
n and ψ◦ = 1−ψ∂

so that we have Suppψ∂ ⊂ Ua and Suppψ◦ ⊂ Int□n. Then, for F = A,B, ψ∂|Ua·ρ̂Fn (P ) is
defined on Ua with value 0 on Ua∖Suppψ∂. Hence by filling 0 outside Suppψ∂, we obtain

a smooth map ψ̂∂ρFn : □n → R on entire □n, as the 0-extension of ψ∂|Ua ·ρ̂Fn (P ) : Ua → R.
Finally, let ρFn (P ) = ψ̂∂ρFn + ψ◦·φF for F = A,B. Then Supp ρFn (P ) ⊂ Supp ψ̂∂ρFn ∪

Supp(ψ◦·φF ) ⊂ (Suppψ∂ ∩ Supp ρ̂Fn ) ∪ (Suppψ◦ ∩ SuppφF ) ⊂ (Ua ∩ P−1(IntGF )) ∪
(Int□n ∩ P−1(IntGF )) = P−1(IntGF ). By definition, we also have

ρAn (P ) + ρBn (P ) = ψ̂∂ρAn + ψ̂∂ρBn + ψ◦·φA + ψ◦·φB = ψ∂ + ψ◦ = 1 on □n,

which implies that (ρAn (P ), ρ
B
n (P )) gives a partition of unity belonging to the open covering

{P−1(IntA), P−1(IntB)} of □n. By definition, (ρAn (P ), ρ
B
n (P )) satisfies the conditions (1)

through (4), and it completes the induction step. The latter part is clear.

8. Excision theorem

Let X = (X, EX) be a differentiable space and U an open covering of X. We denote

E U = {P ∈ EX ; ImP ⊂ U for some U ∈ U}. Then we regard E U as a functor E U :

Convex → Set which is given by E U(C) = {P ∈ E U , DomP = C} for C ∈ Obj(Convex)

and E U(f) = EX(f)|E U (C) : E U(C) → E U(C ′) for a smooth map f : C ′ → C in Convex.

When U = {X}, we have E{X} = EX . We also denote E U
□ = E U◦□ : □ → Set.

Definition 8.1. A natural transformation ω : E U
□ → ∧p□ is called a cubical differencial

p-form w.r.t. an open covering U of X. Ap
□(U) denotes the set of all cubical differential

p-form w.r.t. an open covering U of X. For example, Ap
□({X}) = Ap

□(X).

We introduce a notion of a q-cubic set in Rn using induction on q ≥ −1 up to n.

(q=−1): The empty set ∅ is a −1-cubic set in Rn.

(n≥q≥0): (1) if σ ⊂ L is a (q−1)-cubic set in Rn and b ̸∈L, where L is a hyperplane

of dimension q−1 in Rn, then σ∗b = {tx+(1−t)b ; x∈σ, t∈I} is a q-cubic set

in Rn with faces τ and τ∗b, where τ is a face of σ, including ∅ and ∅∗b = b.
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(2) if σ ⊂ Ri−1×{0}×Rn−i is a (q−1)-cubic set in Rn with q≥1, then the product

set σ×I = {(xi−1, t,x
′
n−i) ; (xi−1, 0,x

′
n−i)∈σ, t∈I} is a q-cubic set in Rn with

faces τ×{0}, τ×{1} and τ×I, where τ is a face of σ, including ∅.

We denote by C(n)q the set of q-cubic sets in Rn and C(n) = {∅} ∪ ∪
q≥0
C(n)q, n ≥ 0. We

denote τ < σ if τ ∈ C(n) is a face of σ ∈ C(n) and denote ∂σ = ∪
τ<σ

σ. We fix a relative

diffeomorphism ϕσ : (□q, ∂□q) ↠ (σ, ∂σ) for each q-cubic set σ in Rn, q≥0.

A subset K ⊂ C(n) is called a cubical complex if it satisfies the following conditions.

(1) ∅ ∈ K, (2) τ < σ & σ ∈ K =⇒ τ ∈ K,

(3) τ, σ ∈ K =⇒ τ ∩ σ ∈ K & τ ∩ σ < τ & τ ∩ σ < σ.

For any cubical complex K⊂C(n), we denote Kq = {σ∈K ; σ is a q-cubic set}, n≥ 0

and |K| = ∪
σ∈K

σ. For any cubical complexes K and L, a map f : |L| → |K| in Convex

is called ‘polyhedral’ w.r.t. L and K, if f(σ) ∈ K for any σ ∈ L. If a cubical complex

K⊂C(n) satisfies |K| = □n, we call K a ‘cubical subdivision’ of an n-cube □n.

Definition 8.2. We define a category SubDivU as follows:

Object: Obj(SubDivU) = {(K,P ) ∈ C(n)×EX(□n) ; |K|=□n, ∀σ∈K P |σ ∈E U , n≥

0},
Morphism: SubDivU((L,Q), (K,P )) = {f : |L| ⊂ |K| polyhedral ; Q=P ||L|}.

Let SubDivX = SubDiv{X}. Then there is an embedding ιUSD : SubDivU ↪→ SubDivX .

Theorem 8.3. There is a functor Sd∗
U : SubDivX ↠ SubDivU such that Sd∗

U ◦ιUSD = id.

Proof : We construct a functor SdU : SubDivX → SubDivX satisfying SdU ◦ιUSD = ιUSD.

Firstly, for (K,P ) ∈ O(SubDivX), K ⊂ C(n) is a cubical subdivision of |K| = □n =

DomP . LetKP (U) = {σ∈K ; ∃U∈U P (σ)⊂U} < K. We define SdU(K,P ) = (SdU
P (K), P )

by induction on dimension of a cubic set in K.

SdU
P (K)0 = K0 ∪ {bσ ; σ ∈ K∖KP (U)},

SdU
P (K)q = KP (U)q ∪ {ρ∗bσ ; ρ ∈ SdU

P (∂σ)
q−1, σ ∈ K∖KP (U)},

where ∂σ denotes the subcomplex {τ ∈ K ; τ <σ} of K.

Secondly, for any map f : (L,Q) → (K,P ), we have L⊂K and Q= P ||L|. Then by

definition, we have SdU(L)⊂SdU(K), and hence the inclusion f : |SdU(L)| = |L| ⊂ |K| =
|SdU(K)| is again polyhedral. Thus we obtain SdU(f) = f : SdU(L,Q) → SdU(K,P ).

Thirdly, we give a distance of subcomplexes K and KP (U) defined as follows:

εUP (K) = Min {d(τ,x) τ ⊂ P−1(U) ̸∋ x, U ∈ U & τ is maximal in KP (U)} ,

d U
P (K) = Max {d (τ,x) τ ∩ σ ̸= ∅, x ∈ σ ∈ K & τ is maximal in KP (U)} ,
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where d(τ,x) denotes the distance in □n of τ and x, and hence εUP (K) > 0. We can easily

see that d U(Sd
U
P (K)) ≤ n

n+1
d U(K) and hence that, for sufficiently large r>0, the r-times

iteration of SdU
P satisfies d U

P ((Sd
U
P )

r(K)) < εUP (K). Thus SdrU(K,P ) ∈ SubDivU .

Finally, when (K,P ) ∈ SubDivU , we have SdU
P (K,P ) = (K,P ) by definition, and hence

Sd∗
U the sufficiently many times iteration of SdU on each (K,P ) is a desired functor.

Definition 8.4. A functor TdU : SubDivX → SubDivX given by TdU(K,P ) = (TdU
P (K), P̂ )

for (K,P ) ∈ Obj(SubDivX) is defined as follows: we denote P̂ = P◦pr1 : □n×I → X which

is a plot in EX(□n+1). Then a cubical subdivision TdU
P (K) of □n+1 is defined as follows:

TdU
P (K)0 = K0×{0} ∪ SdU

P (K)0×{1},

TdU
P (K)q = Kq×{0} ∪ SdU

P (K)q×{1} ∪KP (U)q−1×I
∪ {ρ∗(bσ, 1) ; ρ ∈ TdU

P (∂σ)
q−1, σ ∈ K∖KP (U)}.

Also for a map f : (L,Q) → (K,P ), we have L⊂K and Q=P ||L|. Then by definition,

we have TdU(L)⊂TdU(K), and hence the inclusion f× id : |TdU(L)| = |L|×I ⊂ |K|×I =

|TdU(K)| is again polyhedral. Thus we obtain TdU(f) = f : TdU(L,Q) → TdU(K,P ).

Definition 8.5. For any cubical differential p-form ω ∈ Ap
□(U), we have a cubical differ-

ential p-form ω̃ ∈ Ap
□(U) defined by ω̃n(P ) = (λn)∗ωn(P ) for any P ∈ E U

n , λ = λ0,1. In

addition, if ω is a differential p-form with compact support, then so is ω̃.

Lemma 8.6. There is a homomorphism DU : A∗
□(U) → A∗

□(U) such that dDU(ω)n +

DU(dω)n = ω̃n − ωn and DU(Ap
□c
(U)) ⊂ Ap−1

□c
(U) for any p≥0.

Proof : Let H : I×I → I be a smooth homotopy between id : I → I and λ : I → I, which

gives rise to a smooth homotopy Hn : □n+1 = I×□n → □n of id : □n → □n and λn :

□n → □n, n≥ 0. Then we have Hn◦in0 = id and Hn◦in1 = λn, where int : □n ↪→ I×□n

is given by int(x) = (t,x). For any cubical differential p-form ω : E U
□ → ∧p□, a cubical

(p−1)-form DU(ω) : E U
□ → ∧p−1

□ is defined on a plot P ∈ E U
□ , by the following formula.

DU(ω)n(P ) =

∫
I

H∗ωn(P ) : □n → ∧p−1(T ∗
n),[∫

I

H∗ωn(P )
]
(x) =

∑
i2,··· ,ip

∫ 1

0

ai2,··· ,ip(t,x) d t· dxi2 ∧ · · · ∧ dxip ,

where we assume H∗ωn(P ) =
∑

i2,··· ,ip
ai2,··· ,ip(t,x) d t ∧ dxi2 ∧ · · · ∧ dxip +

∑
i1,··· ,ip

bi1,··· ,ip(t,x)

dxi1 ∧ · · · ∧ dxip : I×□n → ∧p−1(T ∗
n+1), (t,x) ∈ I×□n and T ∗

n+1 = R d t⊕
n
⊕
i=1

R dxi.

First, let int : □n → I×□n be the inclusion defined by int(x) = (t,x) for t = 0, 1.

By H◦in0 = id, we have ωn(P ) = id∗ ωn(P ) = in∗
0H

∗ωn(P ) =
∑

i1,··· ,ip
bi1,··· ,ip(0,x) dxi1 ∧
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· · · ∧ dxip . On the other hand by H◦in1 = λn, we have (λn)∗ωn(P ) = in∗
1H

∗ωn(P ) =∑
i1,··· ,ip

bi1,··· ,ip(1,x) dxi1 ∧ · · · ∧ dxip for any x ∈ □n.

Second, by definition, we have dH∗ωn(P ) =
∑
i

∑
i2,··· ,ip

∂ ai2,··· ,ip
∂ xi

(t,x) dxi∧d t∧dxi2∧· · ·∧

dxip+
∑

i1,··· ,ip

∂ bi1,··· ,ip
∂ t

(t,x) d t∧dxi1∧· · ·∧dxip+
∑
i

∑
i1,··· ,ip

∂ bi1,··· ,ip
∂ xi

(t,x) dxi∧dxi1∧· · ·∧dxip ,

and hence we obtain DU(dω)n(P ) =

∫
I

H∗ dωn(P ) = −
∑
i

∑
i2,··· ,ip

∫
I

∂ ai2,··· ,ip
∂ xi

(t,x) d t· dxi∧

dxi2 ∧ · · · ∧ dxip +
∑

i1,··· ,ip

∫
I

∂ bi1,··· ,ip
∂ t

(t,x) d t· dxi1 ∧ · · · ∧ dxip , (t,x) ∈ I×□n.

Third, we have DU(ω)n(P ) =
∑

i2,··· ,ip

∫
I

ai2,··· ,ip(t,x) d t· dxi2 ∧ · · · ∧ dxip , and hence we

obtain dDU(ω)n(P ) =
∑
i

∑
i2,··· ,ip

∫
I

∂ ai2,··· ,ip
∂ xi

(t,x) d t· dxi ∧ dxi2 ∧ · · · ∧ dxip , (t,x) ∈ I×□n.

Hence [dDU(ω)n(P ) +DU(dω)n(P )] (x) =
∑

i1,··· ,ip

∫
I

∂ bi1,··· ,ip
∂ t

(t,x) d t· dxi1 ∧· · ·∧dxip =∑
i1,··· ,ip

bi1,··· ,ip(1,x) dxi1 ∧ · · · ∧ dxip −
∑

i1,··· ,ip
bi1,··· ,ip(0,x) dxi1 ∧ · · · ∧ dxip , x ∈ □n. Thus we

obtain dDU(ω)(P ) +DU(dω)(P ) = ω̃(P )− ω(P ). By the above construction of DU , it is

clear to see DU(Ap
□c
(U)) ⊂ Ap−1

□c
(U), and it completes the proof of the lemma.

Remark 8.7. We have bi1,··· ,ip(1,x) = bi1,··· ,ip(0, λ
n(x))λ′(xi1)· · · · ·λ′(xip) for 1≤ i1<. . .<

ip ≤ n and x = (x1, . . . , xn) ∈ □n, since (λn)∗ωn(P ) = in∗
1H

∗ωn(P ).

Let ω ∈ A∗
□(X) and P ∈ EX(□n). Then a cubical complex K = {σ ; σ <□n} derives

cubical subdivisions Kr = (SdU
P )

r(K) and K∗ = (SdU
P )

∗(K) where K∗ = Kr for sufficiently

large r≥0. We define ω(r) ∈ Ap
□(U), r≥0, as follows: for any σ ∈ Kr,

ω
(r)
n (P )|Intσ = ω̂

(r)
σ (P |σ)|Intσ,

where ω̂
(r)
σ (P |σ)|Intσ = ωn(P |σ◦ϕσ)◦λn◦ϕ−1

σ : Intσ
ϕ−1
σ≈ Int□n λn→ Int□n ωn(P◦ϕσ)−−−−−→ ∧p. Then

by definition, ω
(r)
n (P )|Intσ can be smoothly extended to ∂σ, and hence ω

(r)
n (P ) : □n → ∧pT ∗

n

is well-defined and we obtain ω(r) ∈ Ap
□(X).

Lemma 8.8. There is a homomorphism D
(r)
U : A∗

□(X) → A∗
□(X) such that dD

(r)
U (ω) +

D
(r)
U (dω) = ω(r+1) − ω(r) and D

(r)
U (Ap

□c
(U)) ⊂ Ap−1

□c
(U) for p≥0.

Proof : For any ω ∈ Ap
□(U), we define D

(r)
U (ω) ∈ Ap

□(X) as follows: let P ∈ EX(□n).

We have a cubical complex K = {σ ; σ < □n} which derives cubical subdivisions Kr =

(SdU
P )

r(K) of □n and K̂r = TdU
P (Kr) of I×□n so that in∗

0K̂r = Kr and in∗
1K̂r = Kr+1.

Now we define a smooth function ω̂(P ) : I×□n → ∧p(T ∗
n+1) as follows: for any σ ∈ K̂n+1

r ,

ω̂(P )|Intσ = ω̂′
σ(P◦pr2|σ)|Intσ : I×□n −→ ∧p(T ∗

n+1),
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where ω̂′
σ(P◦pr2|σ)|Intσ = ωn+1(P◦pr2|σ◦ϕσ)◦λn+1◦ϕ−1

σ : Intσ
ϕ−1
σ≈ Int□n+1 λn+1

≈ Int□n+1

ωn+1(P◦pr2◦ϕσ)−−−−−−−−−→ ∧p. Then by definition, ω̂′
σ(P◦pr2|σ)|Intσ can be smoothly extended to σ

and we obtain a smooth function ω̂(P ) : I×□n → ∧pT ∗
n+1

.

First, a cubical (p−1)-form D
(r)
U (ω) ∈ Ap−1

□ (X) is defined as follows: for any cubical

differential p-form ω : EX□ → ∧p□ on a plot P ∈ EX□ ,

D
(r)
U (ω)n(P ) =

∫
I

ω̂(P ) : □n → ∧p−1(T ∗
n),[∫

I

ω̂(P )

]
(x) =

∑
i2,··· ,ip

∫ 1

0

ai2,··· ,ip(t,x) d t· dxi2 ∧ · · · ∧ dxip ,

where ω̂(P ) =
∑

i2,··· ,ip
ai2,··· ,ip(t,x) d t∧dxi2 ∧· · ·∧dxip +

∑
i1,··· ,ip

bi1,··· ,ip(t,x) dxi1 ∧· · ·∧dxip :

I×□n → ∧p−1(T ∗
n+1), (t,x) ∈ I×□n and T ∗

n+1 = R d t⊕
n
⊕
i=1

R dxi. Then, since in
∗
0K̂r = Kr

and in∗
1K̂r = Kr+1, we easily see that ω

(r)
n (P ) = in∗

0 ω̂(P ) =
∑

i1,··· ,ip
bi1,··· ,ip(0,x) dxi1 ∧ · · · ∧

dxip and ω
(r+1)
n (P ) = in∗

1 ω̂(P ) =
∑

i1,··· ,ip
bi1,··· ,ip(1,x) dxi1 ∧ · · · ∧ dxip .

Second, by definition, we have d̂ω(P ) = d ω̂(P ) =
∑
i

∑
i2,··· ,ip

∂ ai2,··· ,ip
∂ xi

(t,x) dxi ∧ d t ∧

dxi2 ∧ · · · ∧ dxip +
∑

i1,··· ,ip

∂ bi1,··· ,ip
∂ t

(t,x) d t ∧ dxi1 ∧ · · · ∧ dxip +
∑
i

∑
i1,··· ,ip

∂ bi1,··· ,ip
∂ xi

(t,x) dxi ∧

dxi1 ∧ · · · ∧ dxip , and hence D
(r)
U (dω)n(P ) =

∫
I

d̂ω(P ) = −
∑
i

∑
i2,··· ,ip

∫
I

∂ ai2,··· ,ip
∂ xi

(t,x) d t ·

dxi ∧ dxi2 ∧ · · · ∧ dxip +
∑

i1,··· ,ip

∫
I

∂ bi1,··· ,ip
∂ t

(t,x) d t· dxi1 ∧ · · · ∧ dxip , (t,x) ∈ I×□n.

Third, we have D
(r)
U (ω)n(P ) =

∑
i2,··· ,ip

∫
I

ai2,··· ,ip(t,x) d t· dxi2 ∧ · · · ∧ dxip , and hence we

obtain dD
(r)
U (ω)n(P ) =

∑
i

∑
i2,··· ,ip

∫
I

∂ ai2,··· ,ip
∂ xi

(t,x) d t· dxi∧dxi2 ∧· · ·∧dxip , (t,x) ∈ I×□n.

Hence
[
dD

(r)
U (ω)n(P ) +D

(r)
U (dω)n(P )

]
(x) =

∑
i1,··· ,ip

∫
I

∂ bi1,··· ,ip
∂ t

(t,x) d t· dxi1∧· · ·∧dxip

=
∑

i1,··· ,ip
bi1,··· ,ip(1,x) dxi1 ∧ · · · ∧ dxip −

∑
i1,··· ,ip

bi1,··· ,ip(0,x) dxi1 ∧ · · · ∧ dxip , x ∈ □n. Thus

we obtain dD
(r)
U (ω)(P ) +D

(r)
U (dω)(P ) = ω(r+1)(P )− ω(r)(P ). By the above construction

of D
(r)
U , it is clear to see that D

(r)
U (Ap

□c
(U)) ⊂ Ap−1

□c
(U).

Theorem 8.9. The restriction res : A∗
□(X) → A∗

□(U) induces an isomorphism of cubical

de Rham cohomologies res∗ : H∗
□(X) → H∗

□(U). In addition, res induces a map res :

A∗
□c
(X) → A∗

□c
(U) which further induces an isomorphism res∗ : H∗

□c
(X) → H∗

□c
(U).
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Proof : For any ω ∈ Ap
□(U), we define ω∗ ∈ Ap

□(X) as follows: let P ∈ EX(□n). Then

we obtain a cubical complex K = {σ ; σ<□n} which derives a cubical subdivision K∗ =

(SdU
P )

∗(K). We define cubical differential p-forms ω∗ ∈ Ap
□(U) as follows: for any σ ∈ K∗,

ω∗n(P )|Intσ = ω̂∗σ(P |σ)|Intσ,

where ω̂∗σ(P |σ)|Intσ = ωn(P |σ◦ϕσ)◦λn◦ϕ−1
σ : Intσ

ϕ−1
σ≈ Int□n λn

≈ Int□n ωn(P◦ϕσ)−−−−−→ ∧p. Then

by definition, ω∗n(P )|Intσ can be uniquely extended to ∂σ and we obtain ω∗n(P ) : □n → ∧pT ∗
n

so that ω∗ ∈ Ap
□(X) whose restriction to Ap

□(U) equals, by definition, to ω̃ with a (p−1)-

form DU(ω) ∈ Ap−1
□ (U) satisfying dDU(ω) = ω̃ − ω if dω = 0, by Lemma 8.6. If dω = 0,

then d ω̂∗ = 0, and hence dω∗ = 0. Thus the restriction res : A∗
□(X) → A∗

□(U) induces an
epimorphism res∗ : H∗

□(X) → H∗
□(U) of cubical de Rham cohomologies.

So we are left to show that res∗ : H∗
□(X) → H∗

□(U) is a monomorphism: let ω ∈
Ap

□(X). Then we obtain a cubical differential p-forms ω(r) ∈ Ap
□(U) and ω∗ ∈ Ap

□(U)
so that ω(r) = ω∗ for sufficiently large r ≥ 0. By Lemma 8.8, there is a (p−1)-form

D
(r)
U (ω) ∈ Ap−1

□ (X) such that dD
(r)
U (ω) = ω(r+1)−ω(r) if dω = 0. If we assume res∗([ω]) =

0, then we may assume res(ω) = 0 and dω = 0, and so we obtain ω∗ = 0 and ω =

d

{
N∑
r=0

D
(r)
U (ω)−D{X}(ω)

}
for sufficiently large N≥0, in other words, ω is an exact form

and cohomologous to zero. Thus res∗ : H∗
□(X) → H∗

□(U) is an monomorphism.

9. Mayer-Vietoris sequence and Theorem of de Rham

Theorem 9.1. Let U = {U1, U2} be any open covering of a differentiable space X. The

canonical inclusions it : U1 ∩ U2 ↪→ Ut and jt : Ut ↪→ X, t = 1, 2, induce ψ♮ : Ap
□(U) →

Ap
□(U1) ⊕ Ap

□(U2) and ϕ♮ : Ap
□(U1) ⊕ Ap

□(U2) → Ap
□(U1 ∩ U2) by ψ♮(ω) = i♯1ω⊕i

♯
2ω and

ϕ♮(η1⊕η2) = j♯1η1 − j♯2η2. Then we obtain the following long exact sequence.

H0
□(X) → · · · → Hp

□(X)
ψ∗
−→ Hp

□(U1)⊕Hp
□(U2)

ϕ∗−→ Hp
□(U1 ∩ U2)

→ Hp+1
□ (X)

ψ∗
−→ Hp+1

□ (U1)⊕Hp+1
□ (U2)

ϕ∗−→ Hp+1
□ (U1 ∩ U2) → · · · ,

where ψ∗ and ϕ∗ are induced from ψ♮ and ϕ♮.

Proof : Since H∗
□(X) = H∗

□(U) by Theorem 8.9, we are left to show long exact sequence

0 −→ Ap
□(U)

ψ♮

−→ Ap
□(U1)⊕Ap

□(U2)
ϕ♮−→ Ap

□(U0) −→ 0, U0 = U1 ∩ U2.

(exactness at Ap
□(U)): Assume ψ♮(ω) = 0, and so j♯tω = 0 for t = 1, 2. Then for

any P : □n → X, P ∈ E U
□ , we have either ImP ⊂ U1 or ImP ⊂ U2. Therefore, we

may assume either P ∈ EU0
□ or P ∈ EU1

□ . In each case, we have ωn(P ) = 0, which

implies that ω = 0. Thus ψ♮ is monic.
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(exactness at Ap
□(U1)⊕Ap

□(U2)): Assume ϕ♮(η(1)⊕η(2)) = 0, and so i♯1η
(1) = i♯2η

(2).

Then we can construct a differential p-form ω ∈ Ap
□(U) as follows: for any P ∈

E U
□ , we have ImP ⊂ Ut for either t = 1 or 2. Using this t, we define ωn(P ) =

η
(t)
n (P ). If ImP ⊂ U1 and ImP ⊂ U2, then we have ImP ⊂ U1 ∩ U2, and hence

η
(1)
n (P ) = η

(2)
n (P ), since i♯1η

(1) = i♯2η
(2). It implies that ω is well-defined and that

ψ♮(ω) = η(1)⊕η(2). The converse is clear and we have Kerϕ♮ = Imψ♮.

(exactness at Ap
□(U0)): Assume κ ∈ Ap

□(U0). We define κ(t) ∈ Ap
□(Ut), t = 1, 2

as follows: for any Pt ∈ EUt
□ , we define κ

(t)
n (Pt)(x) by (−1)t−1ρ

(3−t)
Pt

(x)·κn(Pt)(x)
if x ∈ P−1

t (U3−t) and by 0 if x ̸∈ Supp ρ3−tPt
. Hence κ(t) is well-defined satisfying

i♯1κ
(1) − i♯2κ

(2) = κ, and we obtain κ = ϕ♮(κ(1)⊕κ(2)). Thus ϕ♮ is an epimorphism.

Since ψ♮ and ϕ♮ are clearly cochain maps, we obtain the desired long exact sequence.

Now let us turn our attention to the differential forms with compact support. Let

X = (X, EX) be a weakly-separated differentiable space.

Definition 9.2. Let U be an open set in X, F ⊂ U a closed set in X and U an open

covering of U . We denote by Ap
□c
(U ;F ) the set of all ω ∈ Ap

□c
(U) satisfying Suppωn(P ) ⊂

P−1(F ) for any P ∈ E(□n). For example, any ω ∈ Ap
□c
(U) is in Ap

□c
(U ;F ) if F ⊃Kω.

We denote by H∗
□c
(U ;F ) the cohomology of A∗

□c
(U ;F ) a differential subalgebra of A∗

□c
(U).

Definition 9.3. Let U and V be open sets and F ⊂U and G⊂V be closed sets in X so

that (U, F ) ⊂ (V,G), and j : (U, F ) ↪→ (V,G) be the canonical inclusion. Let U and V be

open coverings of U and V , respectively, satisfying F ∩W = ∅ for any W ∈ V∖U . Then a

homomorphism j♯ : Ap
□c
(U ;F ) → Ap

□c
(V ;G) is defined as follows: for any ω ∈ Ap

□c
(U ;F ),

j♯ω ∈ Ap
□c
(V ;G) is given, for Q ∈ EV(□m), by{

(j♯ω)m(Q) = ωm(Q), if ImQ ⊂ W for some W ∈ U ,

(j♯ω)m(Q) = 0, if ImQ ⊂ W for some W ∈ V∖U
with Kj♯ω = Kω ⊂ F ⊂ G. In particular, for any ω ∈ Ap

□c
(U), we have ω ∈ Ap

□c
(U ;Kω),

and so we obtain j♯ω ∈ Ap
□c
(j♯ Uω;Kω) ⊂ Ap

□c
(j♯ Uω), j♯ Uω = U ∪ {V ∖Kω}.

Remark 9.4. In Definition 9.3, the map j♯ induced from j : (U, F ) ↪→ (V,G) satisfies

that (j♯ω)m(j◦Q) = ωm(Q) for any m≥0 and Q ∈ EU(□m).

Proposition 9.5. Let X = (X, EX) be a weakly-separated differentiable space and U and

V open in X. Then the correspondence A∗
□c
(U) ∋ ω 7→ j♯ω ∈ A∗

□c
(j♯ Uω) induced from the

canonical inclusion j : U ↪→ V induces a homomorphism j∗ : H∗
□c
(U) → H∗

□c
(V ), since

there is a canonical isomorphism H∗
□c
(j♯ Uω) ∼= H∗

□c
(V ) by Theorem 8.9.
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Proof : Let ω, η ∈ A∗
□c
(U). Then K = Kω ∪ Kη is compact in U and hence in X. Let

U = {U, V ∖K}, which is a finer open covering of Uω and Uη, and hence both isomorphisms

H∗
□c
(V ) → H∗

□c
(Uω) and H∗

□c
(V ) → H∗

□c
(Uη) defined in Theorem 8.9 go through the

isomorphism H∗
□c
(V ) → H∗

□c
(U). Thus the homomorphisms H∗

□c
(U) → H∗

□c
(Uω) and

H∗
□c
(U) → H∗

□c
(Uη) are also isomorphisms. By definition, j♯(ω+η) = j♯(ω) + j♯(η) in

A∗
□c
(U), and hence j∗([ω+η]) = j∗([ω]) + j∗([η]) in H

∗
□c
(X) for any [ω], [η] ∈ H∗

□c
(U).

Theorem 9.6. Let U = {U1, U2} be an open covering of a weakly-separated differentiable

space X with a normal partition of unity {ρ(1), ρ(2)} belonging to U , i.e., there are closed

subsets {G1, G2} such that Gt ⊂ Ut and Supp ρ
(t)
n (P ) ⊂ P−1(Gt) for any P ∈ E(□n),

t = 1, 2. Then we have G1 ∪ G2 = X. Let G0 = G1 ∩ G2 ⊂ U0 = U1 ∩ U2. The

canonical inclusions it : U1 ∩ U2 ↪→ Ut and jt : Ut ↪→ X, t = 1, 2, induce ϕ∗ : Hp
□c
(U0) →

Hp
□c
(U1)⊕Hp

□c
(U2) and ψ∗ : H

p
□c
(U1)⊕Hp

□c
(U2) → Hp

□c
(X) by ϕ∗([ω]) = i1∗[ω]⊕i2∗[ω] and

ψ∗([η1]⊕[η2]) = j1∗[η1]− j2∗[η2]. Then we obtain the following long exact sequence.

H0
□c
(U0) → · · · → Hp

□c
(U0)

ϕ∗−→ Hp
□c
(U1)⊕Hp

□c
(U2)

ψ∗−→ Hp
□c
(X)

d∗−→ Hp+1
□c

(U0)
ϕ∗−→ Hp+1

□c
(U1)⊕Hp+1

□c
(U2)

ψ∗−→ Hp+1
□c

(X) → · · · .

Proof : For any closed subsets G′
t ⊃ Gt in Ut, there is a following short exact sequence.

0 −→ Ap
□c
(U0;G

′
0)

ϕ♮−→ Ap
□c
(U1;G

′
1)⊕Ap

□c
(U2;G

′
2)

ψ♮−→ Ap
□c
(U3;X) −→ 0,

where G′
0 = G′

1∩G′
2, U0 = {U0}, Ut = {U0, Ut∖G′

3−t}, t = 1, 2 and U3 = {U0, U1∖G′
2, U2∖

G′
1}, which are open coverings of U0, Ut and X, respectively.

(exactness at Ap
□c
(U0;G

′
0)): Assume ϕ♮(ω) = 0. Then i1♯(ω) = i2♯(ω) = 0. Since

i1♯(ω) is an extension of ω, we obtain ω = 0. Thus ϕ♮ is a monomorphism.

(exactness at Ap
□c
(U1;G

′
1)⊕Ap

□c
(U2;G

′
2)): Assume ψ♮(η

(1)⊕η(2)) = 0. Then we

have j1♯(η
(1)) = j2♯(η

(2)). For any plot P : □n → X, we obtain j1♯(η
(1))n(P ) =

j2♯(η
(2))n(P ). So, for any plot Q : □m → U0, η

(1)
B (i1◦Q) = j♯1η

(1)
m (j1◦i1◦Q) =

j♯2η
(2)
m (j2◦i2◦Q) = η

(2)
m (i2◦Q). Then, we define η(0) ∈ Ap

□(U0) by η
(0)
m (Q) = η

(1)
m (i1◦Q)

= η
(2)
m (i2◦Q). On the other hand, Kjt♯η(t)

= Kη(t) by definition, and hence we obtain

Supp η
(0)
m (Q) = Supp η

(1)
m (i1◦Q) = Supp η

(2)
m (i2◦Q) ⊂ Q−1(Kη(1) ∩Kη(2)).

Then we have η(0) ∈ Ap
□c
(U0), forKη(0) = Kη(1)∩Kη(2) is compact in U0, which satis-

fies ϕ♮(η
(0)) = (η(1), η(2)). Thus (η(1), η(2)) is in the image of ϕ♮. The other direction

is clear by definition and it implies the exactness at Ap
□c
(U1;G

′
1)⊕Ap

□c
(U2;G

′
2).

(exactness at Ap
□c
(U3;X)): Assume κ ∈ Ap

□c
(U3;X). For any plot Pt : □nt → Ut,

we define κ
(t)
nt (Pt)(x) by (−1)t−1ρ

(t)
nt (Pt)(x)·κnt(jt◦Pt)(x) if x ∈ P−1

t (U0) and by 0
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if x ̸∈ Supp ρ
(t)
nt (Pt). Then κ(t) is a differential p-form on Ut and κ(t) ∈ Ap

□c
(Ut)

for Kκ(t) = Kκ ∩ Gt ⊂ G′
t is compact in Ut. Then we have ψ♮(κ

(1)⊕κ(2)) = κ, and

hence κ is in the image of ψ♮. Thus ψ♮ is an epimorphism.

Since ϕ♮ and ψ♮ are clearly cochain maps, we obtain the following long exact sequence.

H0
□c
(U0;G

′
0) → · · · → Hp

□c
(U0;G

′
0)

ϕ∗−→ Hp
□c
(U1;G

′
1)⊕H

p
□c
(U2;G

′
2)

ψ∗−→ Hp
□□c

(U3)

d∗−→ Hp+1
□c

(U0;G
′
0)

ϕ∗−→ Hp+1
□c

(U1;G
′
1)⊕H

p+1
□c

(U2;G
′
2)

ψ∗−→ Hp+1
□□c

(U3) → · · · .

So we can define connecting homomorphism d ∗ : H
p
□c
(X)

res∗∼= Hp
□c
(U3)

d∗−→ Hp+1
c (U0;G

′
0) →

Hp+1
□c

(U0) where the latter map is induced from the natural inclusion Ap+1
□c

(U0;G
′
0) ⊂

Ap+1
□c

(U0) = Ap+1
□c

(U0), which fits in with the following commutative ladder.

Hp
□c
(U0;G

′
0) Hp

□c
(U1;G

′
1)⊕H

p
□c
(U2;G

′
2) Hp

□c
(U3) Hp+1

□c
(U0;G

′
0)

Hp
□c
(U0) Hp

□c
(U1)⊕Hp

□c
(U2) Hp

□c
(U3) Hp+1

□c
(U0)

Hp
□c
(U0) Hp

□c
(U1)⊕Hp

□c
(U2) Hp

□c
(X) Hp+1

□c
(U0)

u

w

ϕ∗

u

w

ψ∗
w

d∗

u

w

ϕ∗

u

∼= res∗ ⊕ res∗

w

ψ∗

u

∼= res∗

w

d∗

Using these diagrams, we show the desired exactness as follows.

(exactness at Hp
□c
(U0)): Assume ϕ∗([ω]) = 0. Let G′

t = Gt ∪Kω, t = 0, 1, 2. Then

[ω] ∈ Hp
□c
(U0;G

′
0) satisfying ϕ∗([ω]) is zero in Hp

□c
(U1)⊕Hp

□c
(U2). Hence there

is σ(1)⊕σ(2) ∈ Ap
□c
(U1)⊕Ap

□c
(U2) such that dσ(1)⊕ dσ(2) = ϕ♮(ω). Then we may

expand G′
t as G

′
t = Gt ∪Kω ∪Kσ(t) , t = 1, 2 and G′

0 = G′
1 ∩G′

2, so that we obtain

ϕ∗([ω]) = 0, and hence [ω] ∈ Im d∗ in H
p+1
□c

(U0;G
′
0). Thus [ω] is in the image of d ∗.

(exactness at Hp
□c
(U1)⊕Hp

□c
(U2)): Assume ψ∗([η

(1)]⊕[η(2)]) = 0. Let G′
t = Gt ∪

Kη(t) , t = 1, 2 and G′
0 = G′

1 ∩ G′
2, so that [η(1)]⊕[η(2)] ∈ Hp

□c
(U1;G

′
1)⊕H

p
□c
(U2;G

′
2)

and ψ∗([η
(1)]⊕[η(2)]) = 0 in Hp

□c
(U3) ∼= Hp

□c
(X). Then we obtain [η(1)]⊕[η(2)] ∈

Imϕ∗ in Hp
□c
(U1;G

′
1)⊕Hp

□c
(U2;G

′
2), and hence [η(1)]⊕[η(2)] is in the image of ϕ∗.

(exactness at Hp
□c
(X)): Assume d ∗([κ]) = 0. Then there is σ ∈ Ap

□c
(U0) such that

d ♮(κ) = dσ in Ap+1
□c

(U0). Let G′
t = Gt ∪ Kσ, t = 0, 1, 2. Then we may assume

σ ∈ Ap
□c
(U0;G

′
0) satisfying d ♮(κ) = dσ in Ap+1

□c
(U0;G

′
0), and hence [κ] ∈ Imψ∗ in

Hp
□c
(U3). Thus [κ] is in the image of ψ∗.

The other directions are clear by definition, and it completes the proof of the theorem.
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Let Topology be the category of topological spaces and continuous maps. Then there

are natural embeddings Topology ↪→ Differentiable and Topology ↪→ Diffeology.

Let X = (X, {X(n) ; n≥−1}) be a topological CW complex embedded in the category

Diffeology or Differentiable with the set of n-balls {Bn
j } indexed by j ∈Jn. Then we have

open sets U = X(n) ∖X(n−1) and V = X(n) ∖ ( ∪
j∈Jn

{0j}) in X(n), where 0j ∈ Bn
j denotes

the element corresponding to 0 ∈ Bn = {x ∈ Rn ; ∥x∥ ≤ 1} the origin of Rn.

A ball Bn
j = Bn (if we disregard the indexing) has a nice open covering given by

{IntBn
j , B

n
j ∖{0}} with a partition of unity {ρ(j)1 , ρ

(j)
2 } as follows: ρ

(j)
1 = 1−ρ(j)2 and

ρ
(j)
2 (x) = λ(∥x∥) for small a > 0. Thus U = {U, V } is a nice open covering of X(n)

with a normal partition of unity {ρU , ρV } in which ρU is a zero-extension of ρ
(j)
1 ’s on the

union of balls and ρV = 1−ρU . Then U is smoothly homotopy equivalent to discrete

points each of which is 0j ∈ Bn
j for some j∈Jn and V is smoothly homotopy equivalent to

X(n−1). By comparing Mayer-Vietoris sequences associated to U in Theorem 2.3 with that

in Theorem 9.1 for X = X(n), we obtain the following result using Remark 1.18 together

with so-called five lemma, by using standard homological methods inductively on n.

Theorem 9.7. For a CW complex X, there are natural isomorphisms

Hq
D(X) ∼= Hq

C(X) ∼= Hq
□(X) ∼= Hq(X,R) ∼= Hom(Hq(X),R),

for any q ≥ 0, and hence we have H1
D(X) ∼= H1

C(X) ∼= H1
□(X)

ρ∼= Hom(π1(X),R).

Conjecture 9.8. For a CW complex X, there are natural isomorphisms

Hq
Dc
(X) ∼= Hq

Cc(X) ∼= Hq
□c
(X), for any q ≥ 0.

It would be possible to determine H∗
□(X) and H∗

□c
(X) by using standard methods in

algebraic topology even if X is not a topological CW complex, while we do not know how

to determine H∗
D(X), H∗

C (X), H∗
Dc
(X) nor H∗

Cc(X), if we do not find out any appropriate

nice open covering (with a normal partition of unity) on X.

10. Application to the loop space of a finite CW complex

Let X be a CW complex. Then by Theorem 9.7, de Rham cohomology H∗
DR(X) =

H∗
C(X) is isomorphic with the rational cohomology H∗(X;R). Let us assume further that

X is a 1-connected finite CW complex whose cell structure gives its homology decomposi-

tion. Then by Toda [12, 13], we may assume that X is a standard CW complex equipped

with a infinite-dimensional CW complex ω(X) such that the inclusion ω(X) ↪→ Ω(X) is a

homotopy equivalence. Thus we also have an isomorphism H∗
DR(ω(X)) ∼= H∗(Ω(X);R).

On the other hand, following Chen’s arguments, we can observe de Rham complex

as follows: there is a homology connection (ω, δ) on A∗
DR(X) together with a transport
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T . Then we have a holonomy homomorphism Θ : C∗(Ω(X))⊗R → R⟨⟨X1, ..., Xm⟩⟩ the

completion by augmentation ideal of tensor algebra on Xi’s which are corresponding to

the module generators of H̄∗(X;R) ∼= H̄∗
DR(X). Then we can see that Θ induces an

isomorphism of de Rham cohomology and the rational cohomology of Ω(X).

Appendix A. Smooth CW complex

A smooth CW complex X = (X, {X(n)}n≥−1) is a differentiable or diffeological space

built up from X(−1) = ∅ by inductively attaching n-balls {Bn
j }j∈Jn by C∞ maps from their

boundary spheres {Sn−1
j }j∈Jn to n−1-skeleton X(n−1) to obtain n-skeleton X(n), n ≥ 0,

where the smooth structures of balls and spheres are given by their manifold structures.

Thus a plot in X(n) is a map P : A → X with an open covering {Aα}α∈Λ of A such that,

for any α, P (Aα) is in X
(n−1) or Bn

j for some j ∈ Jn and P |Aα is a plot of X(n−1) or Bn
j ,

respectively. Then as the colimit of {X(n)}, X exists in Differentiable or Diffeology.

For a given CW complex, we can deform attaching maps of n-balls from their boundary

spheres {Sn−1
j }j∈Jn to n−1-skeleton X(n−1) to be C∞ maps, and obtain the following.

Theorem A.1. A CW complex is homotopy equivalent to a smooth CW complex as topo-

logical spaces. Thus we may assume that any CW complex is smooth up to homotopy.

Let X = (X, {X(n)}) be a smooth CW complex in either Differentiable or Diffeology with

the set of n-balls {Bn
j ; j∈Jn}. Then for any plot P : A→ X(n), there is an open covering

{Aα} of A, such that P (Aα) is in either X(n−1) or Bn
j for some j ∈ Jn and Pα = P |Aα is

a plot of X(n−1) or Bn
j , respectively. Let U = X(n) ∖X(n−1) and V = X(n) ∖ ( ∪

j∈Jn
{0j}),

where 0j ∈ Bn
j denotes the element corresponding to 0 ∈ Bn.

Case (ImPα ⊂ X(n−1)): P−1
α (U) = ∅, and P−1

α (V ) = Aα.

Case (ImPα ⊂ Bn
j ): P

−1
α (U) = P−1

α (IntBn
j ), and P

−1
α (V ) = P−1

α (Bn
j ∖ {0j}).

In each case, P−1
α (U) and P−1

α (V ) are open in Aα and hence in A, which implies that

P−1(U) and P−1(V ) are open in A for any plot P . Thus U and V are open sets in X(n).

Similarly to the case when X is a topological CW complex, U = {U, V } is a nice open

covering of X(n) with a normal partition of unity {ρU , ρV }, since λ is a smooth function.

Then, similar arguments for a topological CW complex lead us to the following result.

Theorem A.2. For a smooth CW complex X, there are natural isomorphisms

Hq
D(X) ∼= Hq

C(X) ∼= Hq
□(X) ∼= Hq(X,R) ∼= Hom(Hq(X),R),

for any q ≥ 0, and hence we have H1
D(X) ∼= H1

C(X) ∼= H1
□(X)

ρ∼= Hom(π1(X),R).
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Conjecture A.3. For a smooth CW complex X, there are natural isomorphisms

Hq
Dc
(X) ∼= Hq

Cc(X) ∼= Hq
□c
(X), for any q ≥ 0.
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