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Dedicated to Professor Hirosi Toda on his 60th birthday 

ABSTRACT.The main goal of this paper is to construct a localization and com- 
pletion of Bousfield-Kan type as a continuous functor for a virtually nilpotent 
CW-complex. Then the localization and completion of an An-space is given 
to be an A,-homomorphism between An-spaces. For any general compact 
Lie group, this gives a continuous equivariant localization and completion for 
a virtually nilpotent G-CW-complex. More generally. we have a continuous 
localization with respect to a system of core rings for a virtually nilpotent D-
CW-complex for a polyhedral category D . 

The simplicia1 construction of Bousfield and Kan [2] automatically general- 
izes to the homology localization of a D-CW-complex [6] for a discrete category 
D ,  including the equivariant case for finite groups. But, this fails for general 

compact Lie groups. 
A. Elmendorf [8] constructs functorially an equivariant Eilenberg-Mac Lane 

space by using May's method and the iteration of a bar construction. Using this, 
May et al. [16, 171 show the existence of an equivariant localization and com- 
pletion using Theorems 3 and 4 of [8] for nilpotent G-CW-complexes, which 
is given with the Arithmetic Square Theorem for nilpotent G-spaces. On the 
other hand, T. Sumi [24] gives an equivariant localization of a 1-connected 

G-CW-complex with respect to a system of local rings by using the method of 
[20]. But, the functors are not continuous. 

In this paper, we construct a generalized Eilenberg-Mac Lane space R ( X )  by 
using the symmetric product [4]. Then by the methods of a triple (an algebra 
functor [I]) and a cosimplicial space, we construct a nilpotent tower, and a 
completion and a localization as continuous functors. Using this, we show the 
Arithmetic Square Theorem for a virtually nilpotent CW-complex (see Dror- 
Dwyer-Kan [ 5 ] ) .  

As the localization is continuous, the localization of an An-space (mapping) 
is an An-space (mapping) by the explicit definition of an An-space in Stasheff 

[22] and an An-mapping between An-spaces in [12, 131. 
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Also we have an equivariant Eilenberg-Mac Lane space by using the method 
of the generalized Bar construction in [8, 181 with respect to a system of core 
rings. This gives an equivariant localization and completion with the Arithmetic 
Square Theorem for a virtually nilpotent G-CW-complex in a slightly general 

situation in 54. 
In 5 1,  we study the properties of a homology functor R(X)  as a continuous 

functor. In $2, we prepare the notion of a cosimplicial space, and in 53, we 
define the continuous localization and completion. In 54, we discuss a D-CW-

complex version which includes the equivariant case. 
The author wishes to express his gratitude to Professor M. Kamata for his 

variable suggestions. 

Because the category of all topological spaces is a large category, we need to 
treat large categories. So, we adopt weaker definitions for a large topological 
category and a continuous functor between them. More precisely, we say that 
a large category is topological if the set of morphisms between any two objects 
is topological and the composition is continuous. Also we say that a functor 
between large topological categories is continuous if it induces a continuous 
mapping between their morphism spaces. 

We always assume, in this section, that a space X is a CW-complex with 
base point * and that a mapping preserves base points. Also we assume that 
a discrete abelian group R is a space with the neutral element 0 as the base 
point. We also denote by 0 the base point of R A X  . We define R(X)  to be the 
inductive limit of an identification space of the symmetric products Spn (R A X )  

in [4]. 

Definition 1.1. Let R,,(X) be the identification space of Uno(R byA x ) ~  
the coordinate transformation of symmetric groups En (of n letters) and the 

equivalence relations - : 

(r l  A x l  , . . . , r,, A x,,) - (rl A xl , ... , r,, Ax,, , 0) 

and 

( 5  AX1 ' ' . .  ' 5 - 1  A x , - l ' r J A x ,  rj+] AX, rj+2AXj+2, ... , Y,AX,) 

- (r l  A XI  - .- , rjPl A xi- , (r, + rj+])A x , rj+2A . . . , r,, A x ~ ) .  

Let R(X)  be the inductive limit of Rm(X)  . 

Remark 1.2. (1) G. Segal has constructed the above space R(x+) more gener- 
ally in [21] by what we call the Segal machinery. 

(2) R(X) may be regarded as the identification space of SP(R A X )  with the 

relation r, A x + r2 A x = (rl + r2)A x . 
To show the detailed properties about the functor R(  ) ,we need the precise 

description of R(X)  . We can say that R(X)  is an infinite sum of R 's indexed 
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by the set X - {*) . Actually, an element of R(X)  is described as the following 
form: 

(1.3) rixi = the class of (r,  A x ,  , . . . , r,, A x, , . . . ) . 
r : finite 

Also we define R(  f )  by 

i : finite i : finite 

Proposition 1.5. If ( X ,  A) is a CW-pair, then so is (R(X) , R(A)), and R(  ) is 

a continuous functor.  

Proof. Under the assumption that X is a CW-complex, we see that X" is a  

In-equivariant CW-complex. Let x(") be the subspace of all points whose orbit  

is I n / H for some subgroup H # {e) of I,,. Then we may assume (x", x'"))  

is a I,-equivariant CW-pair and also (A", A'"))  is a In-equivariant sub-CW-  

pair. We remark that the I,-equivariant CW-pair  

is relatively a In-covering of the pair (Rn (X)  , R n,(X)), where Y'"' denotes  

the union of subspaces Y' x {*) x yn-'-I . By the induction on n ,we have that  

(R(X), , R(X),-,) is a CW-pair and also that (R(A), , R(A),-,) is a sub-CW-  

pair. By Steenrod [23], R(X)  is hence a CW-complex with this weak topology.  

To complete the proof of this proposition, it is sufficient to show the following  

lemma.  

Lemma 1.6. The functor R(  ) induces a continuous mapping R :  Map* ( X  , Y)-Map*(R(X), R ( Y ) ) .   

Proof. It is sufficient to show that the adjoint mapping  

is continuous. The mapping is described as ad(R)(w, f )  = R( f ) ( w )  . Since 

the image of Rn(X)  x Map,(X , Y) is in R,(Y) ,we can consider the following 

commutative diagram: 

( R A X ) "  x ~ a p , ( ~ ,  Y) -( R A Y ) "  

where the upper mapping of the diagram is induced from the evaluation, the 

vertical mappings are the identification, and the lower mapping is the restriction 

of ad(R) . Then all the mappings with the lower one removed are continuous 

and the left mapping is an identification mapping. Therefore, the bottom map- 

ping must be continuous. On the other hand, the topology of R(X)  is the weak 
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topology filtered by the R, (X) 's. Therefore, ad(R) is continuous. This implies 

the lemma and completes the proof of Proposition 1.5. 

By the definition of R(X) ,we may make the following 

Remark 1.7. ( 1 )  no(R,,(X)) = {c:=,r,u, ; 0 # r E R ,  * # ai E n o ( X ) ,  k 5 

m) and, hence, no(R(X))=R o ( X; R) and Hom,(R(X) , R) = B'(x, R) . 
(2) If R = Z l m Z  or Z ,  then R(X) is homeomorphic with AG(X, 0 ;  m) 

or AG(X, 0) as in Dold-Thom [4], by the definition. 

(3) A homomorphism h :  R -+ R' induces a natural transformation h(X): 

R(X) R'(x) . 
(4) When R is a unit ring, R(X) is homeomorphic to R(x) = {w E R(x+) ; 

E ( W )  = 1 ) ,  where e is induced from the trivial mapping X + {*) (see [2]). 

But the latter space fails to have natural group structure without assuming the 

existence of a base point. 

In this section we further assume that the abelian group R is a ring with unit 

1 .  

Definition 2.1. The action 3i of R on SPn(RA X)  is defined by the formula 

By the definition, 3i induces a well-defined continuous mapping m:  R x 
R(X) -+ R ( X ) .  Then m is an action of R on R(X) and R(X) is a free 

R-module. Moreover, the action m induces a mapping m': R A R(X) -+ R(X) 

and hence a natural mapping p,: R(R(X))-+ R(X) given by 

On the other hand, the inclusion X = { 1) x X c R A X c SP(RA X) induces 

a natural mapping q, : X -+ R(X) defined by 

Hence we obtain the following 

Proposition 2.4. The functor R( ) together with the above two natural transfor-

mations p and rl is a triple or an algebra functor (seeAdams [I]). 

Remark. As in Remark 1.7(4), the above algebra functor R( ) is naturally 

equivalent to R( ) for a CW-complex with base point. 

Let us recall that a cosimplicial resolution is automatically obtained by an 

algebra functor (see [2]). Actually, R( ) induces the following cosimplicial 

space functor R' ( ) : 
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where R ~ () is the composition of k copies of R(  ) .  Then (R'(x))" is a 

space and the cosimplicial identities hold. 

Therefore, the triple ( { ( ~ ' ( x ) ) "  , n 2 0) , {dl:  (R'(x))"-' + ( ~ ' ( x ) ) " ,  

0 5 i 5 n)  , {sJ: (R'(x))"+' - (R'(x))" , 0 < j < n)) is a cosimplicial space. 

We define as in [ 1 11 the R-completion RW(X) and the R-nilpotent tower 

{RS(X)) for X by the total spaces t o t ( ~ ' ( X ) )  and { t o t , ( ~ ' ( x ) ) ) ,  s 2 0 ,  of 

R' (x), respectively: 

with the sequences of the constant mappings as the base points. 

If X is a good CW-complex, i.e., H,(X , R) EH,(RW(X),  R)  , and {Rs(X)) 

is an R-nilpotent tower for X in [2], then Rm(X)  is an R-completion of X .  

This will be seen in 93. 

Remark. R,(X) is weakly equivalent to the realization of t o t , ( ~ ' ( S i n g ( ~ ) ) ) ,  

where Sing means the functor taking the singular simplicia1 set of a space X . 

In this section, we study the homotopy properties of R(  ) and define a con- 

tinuous localization of a CW-complex. First, we show 

Proposition 3.1. If ( X ,  A) is a CW-pair, then R(q) :  R(X)  -+ R(X/A) is a j b e r  

bundle with jiber R(A) , where q :  X -X/A is the contraction. 

Proof. It is sufficient to show the existence of the local cross-section on the 

neighborhood of the neutral element 0 .  By the assumption, there is a defor- 

mation of the identity h :  [0, 11 x X - X such that the restriction of h to 

[O, I] x A is pr, and ad (h ) ( l )  sends a neighborhood of A into A .  So we get 

a homotopy h, = ad((RA ) ad(h)):  [0,  11 x R A X - R A X . We construct a 

sequence of mappings h,: [0 ,  11 x R,(X) -R,(X) by induction. 

From the observations in Proposition 1.5, it follows that the pair (R" x 

X" , R" x (XY1u x(")) u R ' ~ '  x x") is a En-equivariant CW-complex, where 

XY1 is the union of subspaces X' x A x x"-' , and hence has an equivariant 

homotopy extension property. Hence we can take a En-equivariant deformation 
-
h, : [0, 11 x R" x Xn  + R,(X) of the canonical projection whose restrictions 

to [0 ,  11 x R" x x(") and to [0 ,  11 x R" x X' x A x x"-' are the compositions 

of h,-I and of (id x h,- , )  with the appropriate identifications to R,- , (X)  

and to (R A A) x R, ,- , (X),  given in Proposition 1.5, and ad (xn) ( l )  sends an 
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equivariant neighborhood of An into R, (A) . Thus we obtain a deformation h, 

of the identity of R,(X) whose restrictions to R,-, (X) and to [0, 11x R,(A) 

are h,-, and the projection to R,(A) respectively, and ad(h,)(l) sends a 

neighborhood of R,(A) into R,(A) where the restriction to Rn-, (X) is that 

of Rn-,(A) for h,-, . 
Therefore, the sequence {h,) gives a deformation h' : [O, 11 x R(X) -

R(X) such that ad(hf)(t)is an R(A)-modulemapping for all t E [O, 11 where 

restriction of h' to [0 , 11x R(A) is prRi,, ,and ad(ht)(l)sends a neighborhood 

of R(A) into R(A) . Hence the mapping S: R(X/A) -R(X) defined by 

(3.2) S([w]) = w - h'(1 , w) for w E R(X) 

gives a continuous local cross-section, which is easily verified by using the similar 

procedure given in Lemma 1.6. 

Corollary 3.3. Let X be a CW-complex with base point and X+ = X LI {p) . 

Then R(x+) r R x R ( X )  In particular, ~ , ( R ( x + ) )5 nq(R(X))for q > 0 ,  

and ~ , ( R ( x + ) )rR $ n,(R(X)) . 

Proof. Take the canonical inclusion SO = {*I+rX+ and the projection X+ -+ 

X , which induces a fiber bundle R(x+) - R(X) with the fiber R(s') r R . 
On the other hand, there is a splitting X+ - SO of the inclusion. Therefore 

the bundle has a splitting and there is a homeomorphism R(x+) rR x R(X) . 
This-implies the corollary. CI 

Hence we obtain the following (see Dold and Thom [4]). 

Theorem 3.4. Let X be a CW-complex. Then 

~ , R ( x + )4 Hq(X;R) and n,R(X) 2 Zq(x; R) . 
Proof. Let us define an additive generalized homology theory h, by the fol-

lowing formulas as a functor of the category of pairs of CW-complexes to the 

category of graded R-modules: 

hq(X)= ~ , ( R ( x + ) ) ,  hq(X. '4)= n,(R(X/A)). 

To prove that h, is an additive generalized homology theory, we need to show 

the homotopy axiom, the exact sequence axiom, the excision axiom, and the 

additivity axiom. 

Homotopy axiom. Suppose f, and f, are homotopic mappings in 

Map*(X, Y) . Then there is a homotopy f :  [0, I] -Map,(X , Y) such that 

f (0) = f, and f (1) = f, . By Lemma 1.6, R( ) induces a continuous mapping 

from Map, (X , Y )  to Map, (R(X), R(Y)), and R 0 f gives a homotopy of 

R(f,) to R( f , ) .  This implies that h* satisfies the homotopy axiom. 

Exact sequence axiom. Proposition 3.1 tells us that the functor h* satisfies 

the exact sequence axiom. 

Excision axiom. Assume that ( X ,  A) is a CW-pair and an open set U 

satisfies CT c Interior(A) . Then (X - U)/(A - CT)  is homeomorphic with 

X/A , and hence h, satisfies the excision axiom. 
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Additivity axiom. Suppose that X is a wedge sum of Xu at the base point 
for all a E A ,  where A is not necessarily finite. Then, as a topological abelian 
group, R ( X )  is the direct sum of R(X,)  . Actually, the natural projections 
q, : X -+ Xu and inclusions j, : Xu +X induce the structural homomorphisms 

R(q,) and R(j , )  of the direct sum decomposition of R ( X ). These mappings 
also induce the direct sum decomposition of h , ( X ,  {*I). This implies that h,  

satisfies the additivity axiom. 
Hence, h,  is an additive generalized homology theory. Moreover, Corollary 

3.3 tells us that h* also satisfies the dimension axiom. 
The theorem follows by Eilenberg-Steenrod [7]and Milnor [19].  

Corollary 3.5 (J .  C. Moore). For a CW-complex X and a discrete abelian group 

R , R ( X )  has the homotopy type of the generalized Eilenberg-Mac Lane complex 

l-Ii>0K ( Z , ( X  , R )  9 1) .  

Together with Proposition 2.4, we have 

Corollary 3.6. If R is a discrete ring with unit, then there is a continuous algebra 

functor R (  ) such that R ( X )  is homotopy equivalent to n,,,K ( Z , ( X ,R )  , i )  . 

Let us recall the constructions (2.6) and (2.7) of the total space R , ( X )  of 

the simplicia1 space R'(x)given in $2. By using a parallel argument to [2], we 
have the following 

Theorem 3.7. Let R be a core ring such as a subring of thefield of rational num-

bers Q or F, , the prime field of characteristic p . If X is a good CW-complex, 

then { R , ( X ) )  gives a nilpotent tower for X and hencegives a continuous local-

ization (or completion) q,  : X -+ RooX of Bousfield-Kan type. 

We will show this later in this section. 

Remark. If, further, X is a G-space, then so is RooX .' But we do not know 

about the fixed points ( R ~ x ) ~ .  

Corollary 3.8. There is an associated unstable Adams spectral sequence of 

Bousfield-Kan type: 

and 

ES" ( X  , y )  xt- , (Map,(X,  Y ), *) 

Then from a result due to Dror, Dwyer, and Kan [5], the following follows. 

Corollary 3.9 (Arithmetic Square Theorem). There is the following continuous 

functor from the category of virtually nilpotent CW-complexes to the category of 

weak pull-back diagrams called the "arithmetic square," where a virtually nilpo-

tent space means a base space of a finite covering space with a nilpotent total 
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space: 

Let us turn our attention to An-spaces and An-mappings. By [22, 12, 131 the 

An-formof a space X or a mapping f :  X - Y is given by a series of mappings 

K, -Map*(x1, X) or J, -Map,(X1 , Y) ,where K, is a complex isomorphic 

with ( i  -2)-disk and J, is also a complex isomorphic with ( i  - 1)-disk. On the 

other hand, the mapping R(X)  x R(Y) -+ R(X x Y)  given by 

gives rise to a natural transformation R'(x) x R1( Y )  -+ R'(X x Y) and (R1(x))'-R J ( x ' )  by the similar argument given in the proof of Lemma 1.6. This gives 

a natural transformation ( R ~ x ) '-Roo(XL). 

Corollary 3.10. Let X and Y be CW-complexes and f :  X -+ Y a mapping. 

If X has an An-structure, so does RooX and the localization mapping of X to 

RooX strictly preserves the An-forms (an An-homomorphism,see [22]). If f is 

an An-mapping,so is Roof . If f is an An-homomorphism, so is Roof . 

Proof. R gives a continuous mapping Map, (x', Y) -+ Map, (Roo(xi), RooY) . 
Composing this with the mapping induced by composition with the mapping 

( R ~ X ) '4 Roo(Xi), we obtain the continuous mapping 

By composing this mapping with the An-forms for X or f ,  we obtain the 

An-forms for RooX or Roof.  The latter part is a trivial consequence of the 

construction of An-forms. 

So we are left to show the proof of Theorem 3.7. We show that, by the 

assumption, {RS(X))is an R-nilpotent tower for a CW-complex X in the sense 

of Bousfield and Kan [2]: The inclusion d["-'In -+ d["In induces a restriction 

P m : R m ( X ) - R m - , ( X ) ,  m > 0 .  

The inverse image of the constant mapping 0 in Rm(X) by Pm is 

where N" R'(x) = Ker S and the continuous mapping 

m 

S :  Rm" (x)-nRm(x) 

is defined as a homomorphism by the formula S (a )  = ( sO(a ) ,. . . , sm- ' (a) )  
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As is seen in May [15], S has a right inverse C which is described by a 

composition of continuous mappings and hence is continuous. By the fact that 

S is a continuous homomorphism, it follows that S is a fibration with a cross 

section C whose fiber is Nm R'(x) . In addition, we obtain 

and N"R'(x) is a generalized Eilenberg-Mac Lane complex. On the other 

hand, for any space Y the restriction mapping 

M ~ ~ ( A "  , Y), Y) -+ Map@
[m- l]m 

is a fibration. Hence one sees that the mapping 

with B = Map(A
[m- l]m 

, nmR m ( x ) )  given by the formula P(f) = (Sf,7)is 

a fibration with fiber R m N m R ' ( ~ )  d d m, where f is the restriction of f to 

and x, denotes the fiber product over B . Let us consider the following com- 

mutative diagram: 

I 1pm  

Rm-, (X)  ---%~ a p ( d " ', nmR m ( x ) )x, , Rm+l(x)) 
where F and G are inclusions given by F({fJ}) = (f,) and G({gj)) = 

-
(is,,- x . . . x gm-, )S ,  gm) and S:Am -+ nmdm-' is given by S(X)= 

(sO(x) ,. . . , sm-I (x)). 
One can also see the image of F is just the inverse image by P of the image 

of G . Hence Pm is a fibration whose fiber is P - I  ( 0 ,  0) = Qm Nm R'(x) . 
Clearly the fiber of Pm acts on the total space Rm(X)  and Pm is principal 

(see [ l l ]  for its classifying mapping). Thus R,(X) is an R-nilpotent space 

with the homotopy type of a CW-complex. So the arguments given in [2] show 

that {R,(X)} is an R-nilpotent tower for X , when R is a core ring, and the 

inverse limit RooX gives an R-completion (or localization) of X . This implies 

the theorem. 

From now on, we assume that G is a compact Lie group. Note that G I H  

and GIK are G-homeomorphic if H and K are conjugate subgroups in G .  

We fix a representative set F of the set of all G-homeomorphism classes of 

G-orbits to satisfy H < K when there is a G-mapping from G I H  to G I K ,  

i.e., K includes a conjugate of H ,  while G I H  and GIK are in F . We may 
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regard F as a discrete set. A G-connected G-space X is called F-orbital 

if the G-orbit G / H  of any point of X is G-homeomorphic with one of the 

elements of F . In this section, we also assume that a G-space is an F-orbital 

G-CW-complex with a base point * , and hence G/G is in F . 
Let OF be the full subcategory with objects in F of the topological category 

of all G-orbits and G-mappings. A continuous contravariant functor from 

OF to a topological category is called an OF-object in the category. Note 

that, for any G-space X ,  one can take an associated OF-object I"(x)by 

putting I'(x)(G/H) = M ~ ~ " ( G / H ,  = xHand I'(x)(f ) ( x )  = x f . WeX )  

remark that, in [lo], Illman shows that, for any closed subgroup H ,  xHhas a 

homotopy type of a CW-complex. 

By using a generalized bar construction due to May [18], Elmendorf [8] shows 

Theorem 4.1 (May [18], Elmendorf [8]). There is a continuous functor C" from 
the category of OF-spaces to the category ofF-orbital G-spaces. Moreover, there 

are natural transformations q : cGIG+ id and E : I'C' + id such that for any 

F-orbital G-CW-complex X ,  the natural projection q,: c"I'(x) + X is a 

G-equivalence and for any OF-space k , ck : (CGklH+ k(G/H)  is the natural 

system of homotopy equivalent projections. 

We remark that our continuous functors R and Roo automatically give the 

generaIized Eilenberg-Mac Lane complex and the localization (or completion) 

of an OF-object in the category of CW-complexes, by taking compositions with 

it. 

Illman's equivariant homology [9] gives a functor to the category of abelian 

groups. On the other hand, Bredon's homology [3] is a functor from the category 

of pairs of an OF-abelian group and an OF-space to that of OF-abelian groups. 

We will construct a localization (completion) with respect to Bredon's homology. 

Now let us introduce a slightly general notion, D-space, due to Dror and 

Zabrodsky [6]. The category D = OF satisfies the following conditions: 

(1 )  D is a small topological category and the space of all objects is discrete. 
(2) The morphism space of any two objects is a finite polyhedron. 

(3) D has the terminal object. 

We will call such a category D a polyhedral category, and a contravariant func- 

tor from D to the category of topological spaces (rings, etc.) will be called a 

D-space ( D-ring, etc.). In the remainder of this section, we work with D-spaces 

rather than G-spaces. 

A D-CW-complex X is defined, in accordance with Dror-Zabrodsky [6], as: 

( I )  X has a weak topology with respect to its filtration {X,) .

'(2) Xn+, is obtained by attaching (n + 1)-cells B: x D"" on Xn through 

natural transformations 
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where we denote by B: ) the contravariant functor taking values as follows 

for f :  A +A ' .  

Remark 4.2. The above definition of a D-CW-complex when D = O F  coincides 

with the definition of the G-CW-complex given in Matumoto [14]. 

Then a D-CW-complex satisfies the following condition: 

For any object A in D ,  X ( A )  has a filtration { X , ( A ) )  and  

each X,+,(A) is obtained by attaching polyhedra K,(A) on 
(*I X,(A) through mappings h: : L a ( A )- X, ( A )  ,where L a ( A )  is  

a subpolyhedron of K a ( A ).  

By deforming the attaching mappings, we obtain 

Proposition 4.3. For a given D-space X with property (*) , X ( A )  has a homo- 

topy type of a CW-complex. 

Let R = {R" , R f )  be a D-abelian group and let X be connected, i.e., X ( A )  

is connected for all A E D .  Also we need a base point in a D-space, that is, 

a natural inclusion in X of the trivial D-space * . Then the homology of 

Bredon's type for X can be defined as the following D-abelian group: 

Let X be a connected D-CW-complex with base point. We define R ( X )  as 

the D-space 

where f :  A -A' is a morphism in D . Since an n-fold product of a polyhedron 

has a C,-equivariant triangular decomposition, we can apply the same argument 

as in the proof of Proposition 1.5. Hence R ( X )  is a D-space with the property 

(*) above. Then by the proof of Theorem 3.4, we obtain 

Proposition 4.4. R ( X )  is a D-space with the property (*) , and it satisfies 

Hence, for the functor RG = c G R z G ,we obtain 

Corollary 4.5. Let R be an abelian group. Then RG is a continuous functor frOm 

the category of OF- G-CW-complexes to the category of OF-spaces. Moreover, 

~ , ( R " ( x ) ~ )H,(xH; R )  for any GIH r F .= 

We introduce some notions for a D-space. 
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Definition 4.6. ( 1 )  A D-CW-complex X is said to be virtually nilpotent i f  X ( A )  
is virtually nilpotent for each object A in D .  

( 2 )  A D-space X is said to be R-local i f  each X ( A )  is R-local for each 
object A in D .  

( 3 )  A natural transformation X + Y o f  D-spaces is said to be an R-
localization i f  it is an R-homology equivalence and Y is R-local. 

For an OF-CW-complex X , X is R-local in our sense i f  and only i f  X is 

equivariantly R-local in the ordinary sense (by Sumi [24, Theorem 3.31). By 
Theorem 3.7, we obtain the following 

Proposition 4.7. Let X be a good nilpotent D-CW-complex, i.e., xH is good 
for all A in D .  For any R-homology equivalence f :  Y +2 ,  the homotopy set 
of G-mappingsfrom Y to RmX is in one-to-one correspondence with that from 
Z to RmX . Zgence RmX is an R-localization of X . 

Proof. It is a direct consequence o f  the fact that R$(x (A) )+ R:-, ( x ( A ) )is 
a principal fibration for any A E D whose fiber has the homotopy type o f  a 
connected generalized Eilenberg-Mac Lane complex. 

Theorem 4.8. Let R be a D-core ring ( a  system of core rings) and let X be a 
virtually nilpotent D-CW-complex. Then there is an R-nilpotent tower R s ( X )  
for X -and hence an R-localization RmX . 

Hence, for the functor R: = C " R ~ Z " ,we obtain 

Corollary 4.9 ( G-localization and G-completion). Let R be an OF-corering. 

Then R'( ) is a continuous functor from the category of 0,-CW-complexes to 

the category of R-local G-spaces. Moreover, (R: x ) ~- ( R ' " ' ~ ) ) ~( xH)for 
G I H E F .  

By Corollary 3.9 we obtain 

Theorem 4.10. There is the following continuous functor from the category of 
virtually nilpotent D-CW-complexes to the category of the D-weak pull-back 
diagram of D-spaces: "D-arithmeticsquare"among the localizations with respect 
to the constant coejicient rings Z ,  Q ,  and F p  : 

Corollary 4.11 ( G-Arithmetic Square Theorem). There is the following contin-
uous functor from the category of virtually nilpotent OF-CW-complexesto the 
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category of the OF-weak pull-back diagram of OF-spaces: 

where OF-weak pull-back means that the restriction of the diagram to the fuced 

point set by H is weak pull-back for any G / H  E F . 

Corollary 4.12. Let X and Y be 0,-CW-complexes and f :  X + Y an equi- 
G

variant mapping. If X is an equivariant An-space, so is RooX and the R- 

localization X + R;X is an equivariant An-mapping. If f is an equivariant 
G 

An-mapping, so is Roof . 
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