
ADJOINT ACTION OF A FINITE LOOP SPACE II

NORIO IWASE
GRADUATE SCHOOL OF MATHEMATICS,
KYUSHU UNIVERSITY ROPPONMATSU,

FUKUOKA 810, JAPAN
CURRENT: DEPARTMENT OF MATHEMATICAL SCIENCES,

UNIVERSITY OF ABERDEEN,
EDWARD WRIGHT BUILDING, DUNBAR STREET,

ABERDEEN AB24 3QY, SCOTLAND

AKIRA KONO
DEPARTMENT OF MATHEMATICS,

FACULTY OF SCIENCE, KYOTO UNIVERSITY,
KYOTO 606, JAPAN

Abstract. Adjoint actions of compact simply connected Lie groups are studied by Kozima
and the second author based on the series of studies on the classification of simple Lie groups
and their cohomologies. At odd primes, the first author showed that there is a homotopy
theoretic approach that will prove the results of Kozima and the second author for any 1-
connected finite loop spaces. In this paper, we use the rationalisation of the classifying space
to compute the adjoint actions and the cohomology of classifying spaces assuming torsion free
hypothesis, at the prime 2. And, by using Browder’s work on the Kudo-Araki operations Q1

for homotopy commutative Hopf spaces, we show the converse for general 1-connected finite
loop spaces, at the prime 2. This can be done because the inclusion j : G → BΛG satisfies
the homotopy commutativity for any non-homotopy commutative loop space G.

1. Introduction

For a connected topological group G, the loop group ΛG = {u : S1 → G} is homeomorphic

with the product group G×ΩG, where ΩG denotes the subspace of loops start and end the

unit e ∈ G. However the multiplication of ΛG is different from that of the product group

G×ΩG, unless G is abelian. The difference can be described by the adjoint (left) action of

G on ΩG, say Ad : G×ΩG → ΩG by Ad(g, ℓ)(t) = gℓ(t)g−1. Kozima and the second author

[?] studied the difference in terms of the cohomology of the classifying space, when G is a

1-connected compact Lie group. In this paper, our approach is rather homotopy theoretical.
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2. Main Theorems

First of all, let G be a finite loop space, in other words, a topological group with the

homotopy type of a finite CW complex.

Let us recall that the classifying space of G×ΩG has the homotopy type of {BG}×G, while

the classifying space of ΛG is given by BΛG = EG×GG, where EG denotes the total space

of the universal principal G-bundle and the right and left actions of G on EG is the diagonal

action and that on G is the self adjoint (left) action ad : G×G → G by ad(g, h) = ghg−1.

Thus there is the following fibration:

(2.1) G
j→ BΛG = EG×GG

p→ BG,

where the projection p has a cross-section s : BG → EG×GG, since the adjoint action leaves

the unit fixed.

The following theorem is due to Hubbuck’s Torus Theorem and we leave its proof to the

reader.

Theorem 2.1. The following three conditions are equivalent for G a finite loop space.

a) The inclusion j : G → BΛG has a homotopy left inverse: BΛG → G, at the prime 2.

b) There is a homotopy equivalence Φ : BΛG → BG×G, at the prime 2, which satisfies

Φj ≅ in2, where in2 denotes the inclusion to the second factor.

c) G has, at the prime 2, the homotopy type of a torus of some dimension, say r ≥ 0, and

then BG has the homotopy type of the product of r copies of CP∞.

From now on we always assume that G is a 1-connected finite loop space. The following

result are obtained by assuming homological properties.

Theorem 2.2. At the prime 2, the following three conditions are equivalent.

i) The integral homology H∗(G; Z) has no 2-torsion.

ii) The adjoint action induces the trivial action Ad∗ = pr2∗ : H∗(G; F2)⊗H∗(ΩG; F2) →

H∗(ΩG; F2).

iii) There is an isomorphism of algebras Φ : H∗(BΛG; F2) ∼= H∗({BG}×G; F2) which

satisfies in∗
2Φ = j∗.
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By Theorem ??, BΛG does not have the modulo 2 homotopy type of {BG}×G even when

the conditions given in Theorem ?? is satisfied. In [?], Kozima and the second author proved

the above theorem for 1-connected compact Lie groups. In this paper, for the prime 2, we

only assume that G is a topological group or a loop space with homotopy type of a finite

complex. Our result needs a modification of Browder’s work on the Kudo-Araki operations

(see [?] and [?]). For the module structures, we also have the following result.

Theorem 2.3. At the prime 2, the following two conditions are equivalent.

iv) The induced homomorphism j∗ : H∗(BΛG; F2) → H∗(G; F2) is surjective.

v) There is an H∗(BG; F2)-module isomorphism Φ : H∗(BΛG; F2) ∼= H∗({BG}×G; F2)

which satisfies in∗
2Φ = j∗.

If we consider ad∗ instead of Ad∗, we only have the following result.

Theorem 2.4. At the prime 2, the following four conditions are equivalent.

vi) The self adjoint action induces the trivial action ad∗ = pr2∗ : H∗(G; F2)⊗H∗(G; F2) →

H∗(G; F2).

vii) The Pontryagin ring H∗(G; F2) is commutative Hopf algebra.

viii) The Hopf algebra H∗(G; F2) is primitively generated.

ix) The Hopf algebra H∗(G; F2) is an exterior algebra.

We have the following relations among the conditions given in the above theorems.

Theorem 2.5. The conditions given in Theorem ?? are stronger than those in Theorem ??

and the conditions given in Theorem ?? are stronger than those in Theorem ??.

Example 2.6. It is well-known that

1) SU(n)’s and Sp(n)’s satisfy all the conditions in Theorems ??, ?? and ??.

2) G2, F4, Spin(n) (n ≤ 9) satisfy the conditions in Theorems ?? and ??, but do not the

conditions in Theorem ??.

3) Spin(2k + 1)’s (k ≥ 4) satisfy the conditions in Theorems ??, but do not the conditions

in Theorem ??.

4) E6, E7, E8 and Spin(n) (n ≥ 10 and n ̸= 2∗) do not satisfy any of the conditions in

Theorems ??, ?? and ??.

We feel that it is too optimistic to think that Spin(2k + 1)’s (k ≥ 4) satisfy the conditions

in Theorem ??, because they are not A∞-primitive but (A2-)primitive (see Quillen [?]).
3



3. The proof of Theorem ??

It is clear that the condition iii) implies v). To show that iv) implies vii), we refer the

following fact from [?]. .

Fact 3.1. Let µ : G×G → G be the multiplication of the group G and T : G×G → G×G be

the switching mapping. Then we have the homotopy relation j◦µ◦T ∼ j◦µ, where j denotes

the inclusion G → BΛG.

The condition v) implies that j∗ is injective. Hence we have vii) by the above fact.

4. The proof of Theorem ??

The condition c) implies clearly b) and the condition b) implies clearly a). Hence we are

left to show that the condition a) implies c). By Fact ??, the condition c) implies that G is

homotopy commutative at the prime 2. By the Hubbuck’s Torus Theorem [?], we have that

G must have the homotopy type of a torus at the prime 2.

5. The proof of Theorem ??

Firstly, it is well-known that viii) is equivalent with ix).

Secondly, we show that vi) is equivalent with vii): By the definition of ad, we have the

equality

µ = µ(ad × 1)(1 × T )(∆ × 1)

µT = µ(pr2 × 1)(1 × T )(∆ × 1),

where T denotes the transposition. Thus we have the following proposition:

Proposition 5.1. 1) For any a ∈ H∗(G; F2) with ∆∗a = a⊗1+1⊗a+
∑

i a
′
i⊗a′′

i , the following

equation holds.

(µ∗ − µ∗T∗)(a⊗b) = (ad∗ − pr2∗)(a⊗b) +
∑

i

µ∗(ad∗(a
′
i⊗b)⊗a′′

i )

2) If we make an additional assumption that every element x in H∗(G×G; F2) satisfies

ad∗(x) = pr2∗(x) in dimensions ∗ < m, then we have the following equation for any w ∈

Hm(G×G; F2).

(µ∗ − µ∗T∗)(w) = (ad∗ − pr2∗)(w).
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Thus vi) is equivalent with vii).

Thirdly, we show that vii) is equivalent with viii): vii) is equivalent with the condition that

H∗(G; F2) is bicommutative and biassociative, which is equivalent with the condition that

H∗(G; F2) is primitively generated by Kane [?]. Thus we have that vii) is equivalent with

viii). This completes the proof of Theorem ??.

6. The proof of Theorem ??

Firstly, it is obvious that v) implies iv).

Thus we are left to show iv) implies v): Assuming iv), we consider the cohomology Eilenberg-

Moore spectral sequence associated with the fibration (??). Then, by the standard argument

of the Eilenberg-Moore spectral sequence, the E2-term of the spectral sequence is described

as

E∗,∗
2 = Cotor∗,∗H∗(G;F2)(F2, H

∗(G; F2)).

converging to H∗(BΛG; F2). Hence iv) implies that j∗ : H∗(G; F2) → H∗(BΛG; F2) is in-

jective, and hence, E0,∗
2 = ker d1 : H∗(BΛG; F2) → H∗(BΛG; F2)⊗H∗(BΛG; F2) should be

H∗(BΛG; F2), where d1 is given by ad∗ − pr2∗. Thus iv) implies v). This completes the proof

of Theorem ??.

7. The condition i) implies ii) and iii)

We shall show that the conditions i), ii) and iii) are equivalent.

In this section, we show that i) implies ii) and iii): i) implies that H∗(G; Z) is an exterior

algebra on odd primitive generators. Then the generators of H∗(G; Z) are all transgressive

and H∗(BG; Z) is a polynomial algebra. Let ℓ : BG → BK = BGQ be the rationalisation to

the generalised Eilenberg-MacLane space where K = ΩBK ≅ GQ:

(7.1)

G G ΩBK ΩBK

BΛG ΛBG ΛBK {BK}×ΩBK

BG BG BK BK

z

u

w

Ω(ℓ)

z

u

z

u

z

u

u

w

Λ(ℓ)

u

p
u

pQ
u

pr1

w

ℓ

Comparing the Serre spectral sequences for p : ΛBG → BG and for pr1 : {BK}×K → BK,

we can obtain that the spectral sequence collapses from the E2-terms, and hence i) implies

v). Again by i), every generators of H∗(G; Z) are in odd dimensions, and hence the square of
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generators are all trivial in the integral cohomology. This implies that the module isomorphism

gives an isomorphism of algebras. Thus the condition i) implies iii).

Also by (??), we have ΛBGQ = BGQ×ΩBGQ ≅ BGQ×GQ and hence the adjoint action

of GQ on ΩGQ is trivial up to homotopy. Since the integral homologies of G and ΩG has no

torsion, it is embedded in the rational homologies, and hence we get that the adjoint action

of G on ΩG induces trivial action on the homologies. Thus the condition i) implies ii).

8. Bockstein operation in primitively generated cohomology

Before proving the converse, we need to show the following

Lemma 8.1. Let H∗(G; F2) be primitively generated. If G has 2-torsion, there is an odd

primitive generator y = j∗y′ and a non-zero primitive element x = j∗x′ both of height 2,

which satisfies x′ = Sq1y′.

Proof. Since H∗(G; F2) be primitively generated, G has no higher torsion by Browder [?].

Let x1 = Sq1y1 be the non-trivial Bockstein image appearing in the lowest dimension, say

N + 1, provided that G has 2-torsion. Then by Browder [?], N must be odd and y1 is an

indecomposable. Thus y1 is an odd primitive generator of height ≥ 2, and x1 = Sq1y1 is a

primitive element.

Using the Rothenberg-Steenrod spectral sequence for the group G, the following proposition

is clear by the definition of N .

Proposition 8.2. 1) The module of primitive elements PH̃∗(G; F2) is concentrated in odd

dimensions up to dimension N .

2) H̃∗(G; F2) and H̃∗(G; F2) are exterior algebras on odd primitive generators up to dimen-

sion N .

3) H̃∗(BG; F2) is concentrated in even dimensions up to dimension N + 1.

Now let us consider the Serre spectral sequence for the fibration EG×GG → BG. In E2-

term, 1⊗y1 is primitive with respect to the fibrewise Hopf structure, since y1 is primitive

with respect to the Hopf structure of the group G. Then the differential image of 1⊗y1 has

even total dimension and is in H̃∗(BG; F2)⊗PH̃∗(G; F2). It is impossible by 1) and 3) of

Proposition ??. This implies that 1⊗y1 is a permanent cycle in the Serre spectral sequence.

Hence the odd primitive generator y1 is in the image of j∗ and has height ≥ 2. If y1 has height

> 2, we get an odd primitive generator y2 = SqN−1y1 in the image of j∗ in a higher dimension
6



which satisfies Sq1y2 = SqNy1 = y2
1 ̸= 0. If y2 has also height > 2, we can continue this

process and so on. But our group G has the homotopy type of a finite complex, this process

should end in a finitely many steps. Thus we get an odd primitive generator yk and yk+1 in

the image of j∗ with 0 ̸= y2
k = Sq1yk+1 and y2

k+1 = 0. Letting y = yk+1 and x = Sq1y, we have

also x2 = 0. This completes the proof of Lemma ??. ¤

9. The condition iii) implies i)

Secondly, we show that iii) implies i): iii) implies clearly v) and iv), and hence, vi), vii),

viii) and ix). Assuming that G has 2-torsion, we will be led to a contradiction. By Fact ??,

we have a homotopy φ : I × G × G → BΛG of j(gh) and j(hg). This enables us to define a

Kudo-Araki operation Q1 : Hm(G; F2) → H2m+1(BΛG; F2) so that an even primitive element

in the image of Sq1j∗ has 1-implication in H∗(BΛG; F2). By Lemma ??, there is an odd

primitive generator y in the image of j∗ with x = Sq1y and x and y have height 2, if G has

2-torsion. Thus x′ has 1-implication. Let a be an even generator with b = aSq1 is dual to y.

Then by ix), a2 = 0 and hence x′2 is non-zero in H∗(BΛG; F2). Hence by Sq2y′2 = x′2, y′2 is

non-zero for any choice of y′. This contradicts with iii), and hence, G has no 2-torsion. Thus

iii) implies i).

10. The condition ii) implies vi) through ix)

To show that ii) implies i), we need to show that ii) implies vi) through ix). Assuming that

H∗(G; F2) is not commutative, under the condition ii), we shall be led to a contradiction. Let

[a, b] be a non-zero commutator in the lowest dimension, say m. Since H∗(G; F2) is associative,

we have that a and b are generators and [a, b] is primitive. Then by 2) of Proposition ??,

it follows that ad∗(a⊗b) = [a, b]. Then by Theorem 5.4.1 (c) of [?], m must be odd, and

hence, we may assume that a is even indecomposable and b is odd indecomposable. Then

there is an odd primitive element y such that the Kronecker index 〈b, y〉 is non-zero. Since

H∗(G; F2) is associative and commutative, by Proposition 4.21 of [?], the odd primitive element

y ∈ PH∗(G; F2) is indecomposable. Hence we can choose an odd primitive generator b′ as

a representative of the class [b] in QH∗(G; F2) = H∗(G; F2)/(decomposable). Thus we have

ad∗(a⊗b′) = [a, b′] = [a, b] ̸= 0. By a series of results on the cohomology of a Hopf space such

as [?], [?] or [?], it follows that σ∗ : QHeven(ΩG; F2) → PHodd(G; F2) is surjective. Hence

there is an element b0 such that σ∗(b0) = b′. By the relation σ∗Ad∗ = ad∗(1×σ)∗, we have

σ∗Ad∗(a⊗b0) = ad∗(1⊗σ∗)(a⊗b0) = ad∗(a⊗b′) ̸= 0.
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This contradicts with Ad∗ = pr2∗, and hence ii) implies vi).

Thus we have that ii) implies vi), vii) viii) and ix).

11. The existence of 1-implication

The presence of 2-torsion in G implies 1-implication: Let us consider the subspaces of

BΛG : G
jG→ E2G×GG

i2→ (EG)×GG ≅ BΛG, where we denote by E2G the space G ∗G/e ∗ e

obtained from G ∗ G by collapsing e ∗ e. We remark here that, for any space H which

allow a left action of G with a fixed point, there is a fibration G
jH→ E2G×GH

pH→ ΣG with

cross-section sH : ΣG → E2G×GH, i.e, a space over ΣG. Then the characteristic map

ψH : C(G)×H → E2G×GH for the fibration E2G×GH → ΣG is given as follows:

ψH(t, g; h) = (tg + (1 − t)e; h).

Thus E2G×GG is given by G ∪ad C(G)×G, and hence the cohomology of E2G×GG is

isomorphic with H∗(ΣG)⊗H∗(G) as H∗(ΣG)-modules, since ad∗ = pr∗2 by vii).

The proof of Fact ?? still works well on the subspace E2G×GG and we have a homotopy

φ2 : I × G × G → E2G×GG so that φ = i2φ2:

(11.1) φ2(t, g, h) = (tg + (1 − t)e; hg) = ψG(1×1×µ)(1×T )(∆×1)(g, h).

By the arguments given in showing i) assuming iii), we have a homology operation Q′
1 :

Hm(G; F2) → H2m+1(E
2G×GG; F2) so that we can get a relation Q1 = i2Q

′
1 and that an even

primitive element in the image of Sq1j∗G has 1-implication in H∗(E2G×GG; F2).

It follows from Proposition ??, that there is an odd primitive generator y of height 2 in the

image of j∗ = j∗Gi∗2 with x = Sq1y ̸= 0, if G has 2-torsion. Then by the arguments given in

showing i) assuming iii), we have that i∗2x
′2 is non-trivial in H̄∗(E2G×GG; F2), while x2 = 0

in H∗(G; F2). This implies that the non-trivial element i∗2x
′2 ∈ H̄∗(E2G×GG; F2) lies in both

the kernel of j∗G and the image of Sq2i∗2.

12. The representative cocycle of i∗2x
′2

Let us consider the following exact sequence obtained from E2G×GH by collapsing ΣG∨H:

(12.1) H̄∗(ΣG∧H; F2)
qH

∗
→ H̄∗(E2G×GH; F2)

ℓH
∗

→ H̄∗(ΣG∨H; F2),

where ℓH denotes the inclusion and qH the collapsion.

Let us recall that j∗Gi∗2x
′2 = x2 = 0. Also the restriction of i∗2x

′2 to H̄∗(ΣG; F2) is zero, since

a suspension space has no non-trivial cup-product in its cohomology. Then the exactness of

(??) implies that i∗2x
′2 is in the image of qG

∗. This implies the following proposition:
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Proposition 12.1. we may choose the representative cocyle η = qG
#(η0) of i∗2x

′2, where η0 is

a cocycle in C#(ΣG∧G).

On the other hand, the Hopf structure µ : G×G → G induces the fibrewise Hopf structure

on E2G×GG → ΣG, say µ̂ : (E2G×GG)×ΣG(E2G×GG) = E2G×G(G×G) → E2G×GG. Let

us denote by p̂rt : E2G×G(G×G) → E2G×GG the projection to the t-th factor and by ˆint :

E2G×GG → E2G×G(G×G) the inclusion to the t-th factor of fibrewise Hopf spaces. Then

the primitivity of y implies that

µ̂∗(i∗2y
′) = ˆpr1

∗(i∗2y
′) + ˆpr2

∗(i∗2y
′) +

∑
i

ai⊗bi⊗ci,

where ai is in H̃∗(ΣG; F2). Since G has no 2-torsion in its cohomology up to dimension N,

E2G×GG and E2G×GG×G have no 2-torsion, too. Thus we have

µ̂∗(i∗2x
′) = ˆpr1

∗(i∗2x
′) + ˆpr2

∗(i∗2x
′),

and since µ̂ induces a map µ̂′ : ΣG∧(G×G) → ΣG∧G, we have

q∗G×Gµ̂′∗([η0]) = µ̂∗(q∗G[η0]) = ˆpr1
∗(i∗2x

′) + ˆpr2
∗(i∗2x

′), = ˆpr1
∗(q∗G[η0]) + ˆpr2

∗(q∗G[η0]),

= q∗G×G( ˆpr1
∗([η0]) + ˆpr2

∗([η0])),

By vi), we have that q∗G×G is injective, and hence [η0] satisfies

µ̂′∗([η0]) = ˆpr1
∗([η0]) + ˆpr2

∗([η0])

This yields the following proposition:

Proposition 12.2.

µ̂′#(η0) = ˆpr1
#(η0) + ˆpr2

#(η0) + Im δ.

13. Computations on Kudo-Araki operation and Browder’s operation

Since the base space ΣG has a cross-section, the condition vi) implies that q∗G is injective.

Now we show the following lemma.

Lemma 13.1. There is an element [η0] ∈ H̄∗(ΣG∧G; F2) which satisfies that i∗2x
′2 = q∗G[η0]

and that the Kronecker Index 〈(Σa)⊗b, [η0]〉 is non-zero, where aSq1 = b is a primitive gener-

ator dual to y.
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Proof. Let us recall that φ2(t, g, h) = ψG(t, g, µ(h, g)), and hence, we have

φ2#(e1⊗α⊗β) = ψG#(1×1×µ)#(1×1×T )#(1×∆×1)#(e1⊗α⊗β)

= ψG#(e1⊗α⊗β) ±
∑

i

ψG#(e1⊗α′
i⊗β·α′′

i ),

= ψG#(e1⊗α⊗β) ±
∑

i

ψG#(1⊗1⊗µ)#(e1⊗α′
i⊗β·α′′

i ),

= ψG#(e1⊗α⊗β) ±
∑

i

µ̂#ψG#(e1⊗α′
i⊗β⊗α′′

i ),

where we denote ∆#(α) = α⊗1 +
∑

i α
′
i⊗α′′

i with a′′
i ’s degree > 0.

Following to Browder, let α and β be the representing chains in C#(G; F2)of a and b = aSq1

which are dual to x = Sq1y and y, respectively. We can take α and β satisfying ∂(α) = 2β

and ∂(β) = 0. Then we have ∂(α2) = 2βα+2αβ which is zero modulo 2. Since ii) implies ix),

we have that α2 represents zero, and hence, one can take γ such that α2 = 2γ + Im ∂. Then it

follows that ∂(γ) = βα+αβ and ∂(jG#γ+φ2#(e1⊗α⊗β)) = 2jG#(αβ)−2φ2#(e1⊗α⊗α) which

is zero modulo 2. According to the arguments given in the proof of Browder’s implication

theorem, we get the following equation:

1 = 〈[jG#(αβ) − φ2#(e1⊗β⊗β)], i∗2(x
′y′)〉

= 〈[jG#γ + φ2#(e1⊗α⊗β)], i∗2x
′2〉

= 〈jG#γ + φ2#(e1⊗α⊗β), η〉 mod 2

Since η annihilates the image of jG#, we get

〈φ2#(e1⊗α⊗β), η〉 = 1 mod 2.

By (??), we have φ2#(e1⊗α⊗β) = ψG#(e1⊗α⊗β) ±
∑

i ψG#(e1⊗α′
i⊗µ#(β⊗α′′

i )). Then by

Proposition ??, the following equation modulo 2 follows:

1 = 〈φ2#(e1⊗α⊗β), η〉

= 〈ψG#(e1⊗α⊗β), qG
#η0〉 ±

∑
i

〈ψG#(e1⊗α′
i⊗µ#(β⊗α′′

i )), η〉

Since ψG satisfies the equation ψG(t, g, µ(h1, h2)) = µ̂(ψG(t, g, h1), ψG(t, g, h2)), we get
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1 = 〈qG#ψG#(e1⊗α⊗β), η0〉 ±
∑

i

〈ψG#(1×1×µ)#(e1⊗α′
i⊗β⊗α′′

i ), qG
#η0〉

= 〈(Σα)⊗β, η0〉 ±
∑

i

〈qG#µ̂#ψG×G#(e1⊗α′
i⊗β⊗α′′

i ), η0〉

= 〈(Σα)⊗β, η0〉 ±
∑

i

〈µ̂′
#qG×G#ψG×G#(e1⊗α′

i⊗β⊗α′′
i ), η0〉

= 〈(Σα)⊗β, η0〉 ±
∑

i

〈(Σα′
i)⊗β⊗α′′

i , µ̂
′#η0〉

By Proposition ??, we can proceed as

= 〈(Σα)⊗β, η0〉 ±
∑

i

〈(Σα′
i)⊗β⊗α′′

i , ˆpr1
#η0 + ˆpr2

#η0 + Im δ〉

= 〈(Σα)⊗β, η0〉 ±
∑

i

〈(Σα′
i)⊗β⊗α′′

i , Im δ〉

Here, let us recall that β, a′
i’s and a′′

i ’s are cycles modulo 2. Thus we get

(13.1) 〈(Σα)⊗β, η0〉 = 1.

It then follows that the Kronecker index 〈(Σα)⊗β, η0〉 is non-trivial modulo 2. Let us recall

that a and b are the homology class of α and β and that ∂(α) = 2β. Then we have that

aSq1 = b and the Kronecker index 〈(Σa)⊗b, [η0]〉 is non-trivial. Also by vi), we have i∗2x
′2 =

q∗G[η0] and q∗G is injective. This completes the proof of Lemma ?? ¤

14. Pulling-Back to i∗2y
′2

Since y2 = 0, we have that i∗2y
′2 is in the image of q∗G, say i∗2y

′2 = q∗G[ϵ0). The squaring

relation Sq1y′ = x′ implies that Sq2y′2 = x′2 = q∗G[η0] and Sq2i∗2y
′2 = i∗2x

′2, and hence

i∗2y
′2 ̸= 0. Since q∗G is injective, Sq2[ϵ0] = [η0]. Then by Lemma ??, it follows that

1 = 〈((Σa)⊗b), [η0]〉 = 〈((Σa)⊗b), Sq2[ϵ0]〉 = 〈((Σa)⊗b)Sq2, [ϵ0]〉

= 〈((Σa)Sq2⊗b + (Σa)Sq1⊗bSq1 + (Σa)⊗bSq2), [ϵ0]〉,

Here we have aSq1 = b and bSq1 = 0. The elements b and bSq2 give odd primitive elements

in H̄∗(G; F2). Since every non-zero primitive element in H̄∗(G; F2) is in the image of σ∗ :

H̄∗(ΣΩG; F2) → H̄∗(G; F2), and hence there is an element w ∈ H̄∗(ΣG∧ΣΩG; F2) such that

((Σa)⊗b)Sq2 = (1∧σ)∗w. This implies

〈(1∧σ)∗w, [ϵ0]〉 = 〈((Σa)⊗b)Sq2, [ϵ0]〉 = 〈((Σa)⊗b), Sq2[ϵ0]〉 = 〈((Σa)⊗b), [η0]〉 ≠ 0.
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Thus we have shown the following proposition:

Proposition 14.1. 1) The element w ∈ H̄∗(ΣG∧ΣΩG; F2) satisfies ((Σa)⊗b)Sq2 = (1∧σ)∗w.

2) The class [ϵ0] ∈ H̄∗(ΣG∧ΣΩG; F2) satisfies 〈w, (1∧σ)∗[ϵ0]〉 ≠ 0.

15. The condition ii) implies i)

Now we proceed the final step: Let us consider the decomposition of space E2G×GΣΩG:

E2G×GΣΩG = ΣΩG ∪Âd CG×ΣΩG = (ΣG∨ΣΩG) ∪Ψ (CG×CΩG),

where Âd is given by Âd(g, t∧ℓ) = t∧Ad(g, ℓ) and Ψ : G∗ΩG → ΣG∨ΣΩG is the attaching

map.

A direct computation shows that Ψ ≅ [ιΣG, ιΣΩG] + in2H(Ad), and hence, pr2Ψ ≅ H(Ad),

where [ιΣG, ιΣΩG] denotes the Whitehead product and H(Ad) the Hopf construction of Ad :

G×ΩG → ΩG.

So we have the following commutative ladder of exact sequences:

H̄∗(ΣG∧G; F2) H̄∗
ΣG(E2G×GG; F2) H̄∗(G; F2)

H̄∗(ΣG∧G; F2) H̄∗(E2G×GG; F2) H̄∗(ΣG∨G; F2)

H̄∗(ΣG∧ΣΩG; F2) H̄∗(E2G×GΣΩG; F2) H̄∗(ΣG∨ΣΩG; F2) H̄∗(G∗ΩG; F2)

H̄∗(ΣG∧ΣΩG; F2) H̄∗
ΣG(E2G×GΣΩG; F2) H̄∗(ΣΩG; F2) H̄∗(G∗ΩG; F2)

w

qΣΩG
∗

w

jG
∗

z

u

z

u

w

qG
∗

u

(1∧σ)∗

w

ℓG
∗

u

(1×Gσ)∗

u

(1∨σ)∗

w

qΣΩG
∗

w

ℓΣΩG
∗

w

Ψ∗

w

qΣΩG
∗

w

jΣΩG
∗

u

y

w

H(Ad)∗

u

y

where jΣΩG denotes the inclusion of fibre and H̄∗
ΣG(−; F2) = H̄∗(−, ΣG; F2) is the cohomology

of spaces over ΣG.

By the commutativity of the above diagram, we have

(1×Gσ)∗i∗2y
′2 = (1×Gσ)∗q∗G[ϵ0] = q∗ΣΩG(1∧σ)∗[ϵ0]

and 2) of Proposition ?? says that(1∧σ)∗[ϵ0] is non-zero. Since H(Ad)∗ is essentially given by

Ad∗ − pr∗2, it follows that q∗ΣΩG is injective, if ii) holds. Thus by ii), we have

(15.1) (1×Gσ)∗i∗2y
′2 ̸= 0.

Take y′′ = i∗2y − p∗Gs∗Gi∗2y ∈ H̄∗
ΣG(E2G×GG; F2), where we denote by pH the projection

E2G×GH → ΣG and sH the cross-section of pH . Then it follows that H(Ad)∗(σ∗y) =

H(Ad)∗σ∗j∗Gy′′ = H(Ad)∗j∗ΣΩG(1×Gσ)∗y′′ = 0 and (1×Gσ)∗y′′ ∈ H̄∗
ΣG(E2G×GΣΩG; F2).
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Then the functional cup product theorem of Thomas [?] tells us

(1×Gσ)∗y′′2 = q∗ΣΩG(y1⊗y2),

when Ad∗y = y1⊗1+1⊗y2. Here we have y1 = in∗
1Ad∗y = 0 and y2 = in∗

2Ad∗y = y, and hence

(1×Gσ)∗y′′2 = q∗ΣΩG(0⊗y) = 0.

Then by i∗2y
′ = y′′ + Im p∗, it follows that

(15.2) (1×Gσ)∗i∗2y
′2 = 0.

It’s a contradiction. Hence q∗ΣΩG must have non-trivial kernel and H(Ad)∗ must be non-trivial.

This implies that Ad∗ ̸= pr∗2 and the image of Ad∗ − pr∗2 should contain non-zero elements

w⊗σ∗u + other terms and x⊗σ∗y + other terms. This completes the proof of Theorem ??.

16. Examples

Our observation covers some results obtained in [?] and [?]:

Example 16.1. We obtain the following relations in the modulo 2 cohomologies.

(1) For G = G2 the 1-connected compact connected exceptional Lie group of type G2, our

observation implies x′
3
4 ̸= 0 and x′

5
2 ̸= 0, and hence

(Ad∗ − pr∗2)u10 = x2
3⊗u4,

(Ad∗ − pr∗2)u8 = x2
3⊗u2.

(2) For G = E6 the 1-connected compact connected exceptional Lie group of type E6, our

observation implies

(ad∗ − pr∗2)x15 = (µ∗ − T ∗µ∗)x15 = x2
3⊗x9 + x9⊗x2

3,

and hence we obtain

(Ad∗ − pr∗2)u14 = x2
3⊗u8,

and also by x′
3
4 ̸= 0 and x′

5
2 ̸= 0, we have

(Ad∗ − pr∗2)u10 = x2
3⊗u4,

(Ad∗ − pr∗2)u8 = x2
3⊗u2.
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(3) For G = ΩZ the Dwyer-Wilkerson complex with H∗(ΩZ; F2) = F2[x7]/(x
4
7)⊗Λ(x11, x13),

our observation implies x′
7
4 ̸= 0 and x′

13
2 ̸= 0, and hence

(Ad∗ − pr∗2)u26 = x2
7⊗u12,

(Ad∗ − pr∗2)u24 = x2
3⊗u10.

Since x13 = Sq2x11, we also have x′
13

2 = Sq4x′
11

2 ̸= 0, and hence

(Ad∗ − pr∗2)u20 = x2
7⊗u8.
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