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ABSTRACT. Adjoint actions of compact simply connected Lie groups are studied by Kozima
and the second author based on the series of studies on the classification of simple Lie groups
and their cohomologies. At odd primes, the first author showed that there is a homotopy
theoretic approach that will prove the results of Kozima and the second author for any 1-
connected finite loop spaces. In this paper, we use the rationalisation of the classifying space
to compute the adjoint actions and the cohomology of classifying spaces assuming torsion free
hypothesis, at the prime 2. And, by using Browder’s work on the Kudo-Araki operations @
for homotopy commutative Hopf spaces, we show the converse for general 1-connected finite
loop spaces, at the prime 2. This can be done because the inclusion j : G — BAG satisfies
the homotopy commutativity for any non-homotopy commutative loop space G.

1. INTRODUCTION

For a connected topological group G, the loop group AG = {u : S' — G} is homeomorphic
with the product group GxQG, where QG denotes the subspace of loops start and end the
unit e € G. However the multiplication of AG is different from that of the product group
GxQG, unless G is abelian. The difference can be described by the adjoint (left) action of
G on QG, say Ad : GXxQG — QG by Ad(g,?)(t) = gl(t)g~'. Kozima and the second author
[?] studied the difference in terms of the cohomology of the classifying space, when G is a

1-connected compact Lie group. In this paper, our approach is rather homotopy theoretical.
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2. MAIN THEOREMS

First of all, let G be a finite loop space, in other words, a topological group with the
homotopy type of a finite CW complex.

Let us recall that the classifying space of GxQG has the homotopy type of { BG}xG, while
the classifying space of AG is given by BAG = EGXgG, where EG denotes the total space
of the universal principal G-bundle and the right and left actions of G on EG is the diagonal
action and that on G is the self adjoint (left) action ad : GXG — G by ad(g,h) = ghg™'.
Thus there is the following fibration:

(2.1) G L BAG = EGxcG 2 BG,

where the projection p has a cross-section s : BG — EG X G, since the adjoint action leaves
the unit fixed.
The following theorem is due to Hubbuck’s Torus Theorem and we leave its proof to the

reader.

Theorem 2.1. The following three conditions are equivalent for G a finite loop space.
a) The inclusion j : G — BAG has a homotopy left inverse: BAG — G, at the prime 2.
b) There is a homotopy equivalence ® : BAG — BGxG, at the prime 2, which satisfies
®j ~ iny, where iny denotes the inclusion to the second factor.
c) G has, at the prime 2, the homotopy type of a torus of some dimension, say r > 0, and

then BG has the homotopy type of the product of r copies of C'P*.

From now on we always assume that GG is a 1-connected finite loop space. The following

result are obtained by assuming homological properties.

Theorem 2.2. At the prime 2, the following three conditions are equivalent.

i) The integral homology H,.(G;Z) has no 2-torsion.

ii) The adjoint action induces the trivial action Ad, = pra, : H.(G;F)@H,(QG;Fy) —
H.(QG; Fs).

iii) There is an isomorphism of algebras ® : H*(BAG;Fy) = H*({BG}xG;Fy) which

satisfies iny® = j*.



By Theorem ??, BAG does not have the modulo 2 homotopy type of { BG}xG even when
the conditions given in Theorem ?7 is satisfied. In [?], Kozima and the second author proved
the above theorem for 1-connected compact Lie groups. In this paper, for the prime 2, we
only assume that G is a topological group or a loop space with homotopy type of a finite
complex. Our result needs a modification of Browder’s work on the Kudo-Araki operations

(see [?] and [?]). For the module structures, we also have the following result.

Theorem 2.3. At the prime 2, the following two conditions are equivalent.
iv) The induced homomorphism j* : H*(BAG;Fy) — H*(G;Fs) is surjective.
v) There is an H*(BG;Fy)-module isomorphism ® : H*(BAG;Fy) = H*({ BG}xG;Fy)

which satisfies in5® = j*.
If we consider ad, instead of Ad,, we only have the following result.

Theorem 2.4. At the prime 2, the following four conditions are equivalent.

vi) The self adjoint action induces the trivial action ad, = pro, : H.(G;F)@H,(G;Fy) —
H,(G;Fs).

vii) The Pontryagin ring H,.(G;Fs) is commutative Hopf algebra.

viti) The Hopf algebra H*(G;Fs) is primitively generated.

iz) The Hopf algebra H.(G;F3) is an exterior algebra.

We have the following relations among the conditions given in the above theorems.

Theorem 2.5. The conditions given in Theorem 7?7 are stronger than those in Theorem 77

and the conditions given in Theorem ??7 are stronger than those in Theorem ?77.

Example 2.6. It is well-known that

1) SU(n)’s and Sp(n)’s satisfy all the conditions in Theorems 7?7, 77 and 77.

2) Go, Fy, Spin(n) (n < 9) satisfy the conditions in Theorems 7?7 and ??, but do not the
conditions in Theorem ?77.

3) Spin(2* +1)’s (k > 4) satisfy the conditions in Theorems 77, but do not the conditions
in Theorem ?77.

4) Es, E7, Eg and Spin(n) (n > 10 and n # 2*) do not satisfy any of the conditions in

Theorems 77, 77 and 77.

We feel that it is too optimistic to think that Spin(2¥ + 1)’s (k > 4) satisfy the conditions

in Theorem 7?7, because they are not A.-primitive but (As-)primitive (see Quillen [?]).
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3. THE PROOF OF THEOREM 77

It is clear that the condition iii) implies v). To show that iv) implies vii), we refer the

following fact from [?]. .

Fact 3.1. Let i : GXG — G be the multiplication of the group G and T : GXxG — GXG be
the switching mapping. Then we have the homotopy relation jouoT ~ jou, where j denotes
the inclusion G — BAG.

The condition v) implies that j, is injective. Hence we have vii) by the above fact.

4. THE PROOF OF THEOREM 77

The condition ¢) implies clearly b) and the condition b) implies clearly a). Hence we are
left to show that the condition a) implies c¢). By Fact ??, the condition c) implies that G is
homotopy commutative at the prime 2. By the Hubbuck’s Torus Theorem [?], we have that
G must have the homotopy type of a torus at the prime 2.

5. THE PROOF OF THEOREM 77

Firstly, it is well-known that viii) is equivalent with ix).
Secondly, we show that vi) is equivalent with vii): By the definition of ad, we have the

equality

= plad x 1)(1 x T)(A x 1)

pT = p(pra x 1)(1 x T)(A x 1),
where T' denotes the transposition. Thus we have the following proposition:

Proposition 5.1. 1) For any a € H,(G;Fs) with Asa = a®l+1®a+) . ai®a;, the following

equation holds.
(ps — 1) (a®b) = (ady — pra,)(a®b) + Z s (ad,(a;@b)®a;)

2) If we make an additional assumption that every element x in H*(GxG;Fy) satisfies

ad,(x) = pro,(x) in dimensions x < m, then we have the following equation for any w €

(ke = . To)(w) = (ad, — pra, ) (w).
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Thus vi) is equivalent with vii).

Thirdly, we show that vii) is equivalent with viii): vii) is equivalent with the condition that
H*(G;F,) is bicommutative and biassociative, which is equivalent with the condition that
H*(G;Fy) is primitively generated by Kane [?]. Thus we have that vii) is equivalent with

viii). This completes the proof of Theorem ?7.

6. THE PROOF OF THEOREM 77

Firstly, it is obvious that v) implies iv).

Thus we are left to show iv) implies v): Assuming iv), we consider the cohomology Eilenberg-
Moore spectral sequence associated with the fibration (??7). Then, by the standard argument
of the Eilenberg-Moore spectral sequence, the Fs-term of the spectral sequence is described

as
E;’* = COtOTET‘(G;FQ)(]FQJ H*<G7 FQ))

converging to H*(BAG;F,). Hence iv) implies that j. : H.(G;Fy) — H.(BAG;F,) is in-
jective, and hence, EY* = kerd, : H,(BAG;F,) — H,(BAG;Fy)®H,(BAG;F;) should be
H.(BAG;Fy), where d; is given by ad, — pro,. Thus iv) implies v). This completes the proof

of Theorem ?77?.

7. THE CONDITION I) IMPLIES II) AND III)

We shall show that the conditions i), ii) and iii) are equivalent.

In this section, we show that i) implies ii) and iii): i) implies that H*(G;Z) is an exterior
algebra on odd primitive generators. Then the generators of H*(G;Z) are all transgressive
and H*(BG;Z) is a polynomial algebra. Let ¢ : BG — BK = BGg be the rationalisation to
the generalised Eilenberg-MacLane space where K = QBK ~ Gg:

Q(0)
G———G QBK —— QBK

[ | o | I

(7.1) BAG == ABG ABEK = {BK}xQOBK

| £ Z [ [

BG BG BK BK
Comparing the Serre spectral sequences for p : ABG — BG and for pry : {BK}xK — BK,

we can obtain that the spectral sequence collapses from the F-terms, and hence i) implies

v). Again by i), every generators of H*(G;Z) are in odd dimensions, and hence the square of
5



generators are all trivial in the integral cohomology. This implies that the module isomorphism
gives an isomorphism of algebras. Thus the condition i) implies iii).

Also by (??), we have ABGg = BGgxQ1BGg ~ BGyxGg and hence the adjoint action
of Gg on QG is trivial up to homotopy. Since the integral homologies of G and QG has no
torsion, it is embedded in the rational homologies, and hence we get that the adjoint action

of G on QG induces trivial action on the homologies. Thus the condition i) implies ii).

8. BOCKSTEIN OPERATION IN PRIMITIVELY GENERATED COHOMOLOGY

Before proving the converse, we need to show the following

Lemma 8.1. Let H*(G;Fs) be primitively generated. If G has 2-torsion, there is an odd
primitive generator y = j*y' and a non-zero primitive element x = j*x’ both of height 2,

which satisfies ' = Sq'y'.

Proof. Since H*(G;F3) be primitively generated, G has no higher torsion by Browder [7].
Let z; = Sq'y; be the non-trivial Bockstein image appearing in the lowest dimension, say
N + 1, provided that G has 2-torsion. Then by Browder [?], N must be odd and y; is an
indecomposable. Thus y; is an odd primitive generator of height > 2, and z; = Sq'y; is a
primitive element.

Using the Rothenberg-Steenrod spectral sequence for the group G, the following proposition
is clear by the definition of N.

Proposition 8.2. 1) The module of primitive elements PH*(G;F) is concentrated in odd
dimensions up to dimension N.

2) H*(G;Fy) and H*(G;Fy) are exterior algebras on odd primitive generators up to dimen-
sion N.

3) H*(BG;Fy) is concentrated in even dimensions up to dimension N + 1.

Now let us consider the Serre spectral sequence for the fibration EGxqG — BG. In Es-
term, 1®y; is primitive with respect to the fibrewise Hopf structure, since y; is primitive
with respect to the Hopf structure of the group G. Then the differential image of 1®y; has
even total dimension and is in H*(BG;Fy)@PH*(G;Fy). It is impossible by 1) and 3) of
Proposition ??. This implies that 1®y; is a permanent cycle in the Serre spectral sequence.
Hence the odd primitive generator y; is in the image of j* and has height > 2. If y; has height

> 2, we get an odd primitive generator i, = S¢”~!y; in the image of j* in a higher dimension
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which satisfies Sqly, = S¢Vy, = y? # 0. If y, has also height > 2, we can continue this
process and so on. But our group G has the homotopy type of a finite complex, this process
should end in a finitely many steps. Thus we get an odd primitive generator y; and yxy; in
the image of j* with 0 # y? = S¢'yr11 and y7,; = 0. Letting y = yx41 and z = S¢'y, we have

also 22 = 0. This completes the proof of Lemma ?7?. O

9. THE CONDITION III) IMPLIES 1)

Secondly, we show that iii) implies i): iii) implies clearly v) and iv), and hence, vi), vii),
viii) and ix). Assuming that G has 2-torsion, we will be led to a contradiction. By Fact 77,
we have a homotopy ¢ : I x G x G — BAG of j(gh) and j(hg). This enables us to define a
Kudo-Araki operation Q; : H,,(G;Fy) — Hapmy1(BAG; Fy) so that an even primitive element
in the image of Sq'j* has l-implication in H*(BAG;Fy). By Lemma ??, there is an odd
primitive generator y in the image of j* with x = S¢'y and x and y have height 2, if G has
2-torsion. Thus 2’ has 1-implication. Let a be an even generator with b = aSq' is dual to y.
Then by ix), a> = 0 and hence z* is non-zero in H*(BAG;F,). Hence by S¢?y* = 2%, y/* is
non-zero for any choice of 3. This contradicts with iii), and hence, G has no 2-torsion. Thus

iii) implies i).
10. THE CONDITION II) IMPLIES VI) THROUGH IX)

To show that ii) implies i), we need to show that ii) implies vi) through ix). Assuming that
H.(G;F,) is not commutative, under the condition ii), we shall be led to a contradiction. Let
la, b] be a non-zero commutator in the lowest dimension, say m. Since H,.(G;F2) is associative,
we have that a and b are generators and [a,b] is primitive. Then by 2) of Proposition 77,
it follows that ad.(a®b) = [a,b]. Then by Theorem 5.4.1 (c) of [?], m must be odd, and
hence, we may assume that a is even indecomposable and b is odd indecomposable. Then
there is an odd primitive element y such that the Kronecker index (b,y) is non-zero. Since
H*(G;TFy) is associative and commutative, by Proposition 4.21 of [?], the odd primitive element
y € PH*(G;TFy) is indecomposable. Hence we can choose an odd primitive generator b’ as
a representative of the class [b] in QH,(G;Fy) = H.(G;Fs)/(decomposable). Thus we have
ad,(a®b') = [a,V'] = [a,b] # 0. By a series of results on the cohomology of a Hopf space such
as [?], [?] or [?], it follows that o, : QHepen(QG;Fo) — PHoua(G;Fo) is surjective. Hence

there is an element by such that o,(by) = 0'. By the relation 0,Ad, = ad.(1x0),, we have

0. Ad,(a®by) = ad,(1®0,)(a®by) = ad,.(a®l') # 0.
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This contradicts with Ad, = prs,, and hence ii) implies vi).

Thus we have that ii) implies vi), vii) viii) and ix).

11. THE EXISTENCE OF 1-IMPLICATION

The presence of 2-torsion in G implies 1-implication: Let us consider the subspaces of
BAG : G 18 F2Gx oG (EGQ)x¢G ~ BAG, where we denote by E?G the space G * G /e x e
obtained from G % G by collapsing e * e. We remark here that, for any space H which
allow a left action of G with a fixed point, there is a fibration G Lyl xoH ™ $G with
cross-section sy : G — E2GxcH, ie, a space over ¥G. Then the characteristic map

Yy : C(G)xH — E?Gx¢gH for the fibration E2GxgH — XG is given as follows:

Yy (t,g;h) = (tg+ (1 —t)e; h).
Thus E?GxgG is given by G U,y C(G)x@G, and hence the cohomology of E?*GxgG is
isomorphic with H*(XG)®H*(G) as H*(XG)-modules, since ad* = prj by vii).
The proof of Fact 77 still works well on the subspace E2Gx G and we have a homotopy

o I x G x G — E*’GxcG so that ¢ = iys:

(11.1) Galts g, 1) = (tg + (1 = t)es hg) = g (1x 1) (IXT)(Ax1)(g, h).

By the arguments given in showing i) assuming iii), we have a homology operation ] :
H,(G;Fy) — Haypi1 (E*GXgG;Fy) so that we can get a relation @1 = i,@Q} and that an even
primitive element in the image of Sq'j% has 1-implication in H*(E*GxgG;TFs).

It follows from Proposition ??, that there is an odd primitive generator y of height 2 in the
image of j* = j&i3 with x = Sq¢'y # 0, if G has 2-torsion. Then by the arguments given in
showing i) assuming iii), we have that 52’ is non-trivial in H*(E2Gx¢G;F,), while 22 = 0
in H*(G;F,). This implies that the non-trivial element itz’> € H*(E2GxG;F,) lies in both

the kernel of j% and the image of Sq?7.

12. THE REPRESENTATIVE COCYCLE OF i;:c’Z

Let us consider the following exact sequence obtained from E?G x ¢ H by collapsing GV H:
(12.1) H*(SGAH;Fy) s H*(E2GxcH;Fy) s H (SGVH;F,),

where ¢y denotes the inclusion and ¢y the collapsion.
Let us recall that j5ize’ = 22 = 0. Also the restriction of i3z"* to H*(XG;Fy) is zero, since
a suspension space has no non-trivial cup-product in its cohomology. Then the exactness of

(??) implies that i’ ? is in the image of ¢¢*. This implies the following proposition:
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Proposition 12.1. we may choose the representative cocyle n = qc™ (o) of i§$’2, where 1y 18

a cocycle in C*(LGAG).

On the other hand, the Hopf structure p : GXG — G induces the fibrewise Hopf structure
on E°GxcG — G, say i : (E*?GXgG)Xsq(E*GXxgG) = E*GXq(GxG) — E*GXgG. Let
us denote by piy : E?Gxg(GxG) — E?GxgG the projection to the ¢t-th factor and by ing
E?GxgG — E*Gxg(GxQ@) the inclusion to the t-th factor of fibrewise Hopf spaces. Then
the primitivity of y implies that

i (lgy/) = pi"l*(@;?/) + pira™ (i5y") + Z a; ®b;dc¢;,

where a; is in H*(XG;F,). Since G has no 2-torsion in its cohomology up to dimension N,

E?Gx oG and E*Gx G xG have no 2-torsion, too. Thus we have

~

i (iga') = pin " (iga") + pia" (i32"),
and since [i induces a map i’ : XSGA(GXG) — XGAG, we have
Gexet (o)) = i (aglmol) = pin* (isa’) + pia" (i32"), = pin” (g5 mo]) + P2 (a6 o))
= daxa (P ([mo]) + pi2" ([mo])),

By vi), we have that ¢, is injective, and hence [n] satisfies
" ([mo)) = p1*([mo]) + 2" ([o))
This yields the following proposition:

Proposition 12.2.

~ H . .
1" (no) = piv® (o) + pira™ (o) + Im 6.

13. COMPUTATIONS ON KUDO-ARAKI OPERATION AND BROWDER’S OPERATION

Since the base space ¥G has a cross-section, the condition vi) implies that ¢f, is injective.

Now we show the following lemma.

Lemma 13.1. There is an element [no) € H*(SGAG;Fy) which satisfies that i5z'> = q&[no]
and that the Kronecker Index {(Xa)®b, [no]) is non-zero, where aSq* = b is a primitive gener-

ator dual to y.



Proof. Let us recall that ¢o(t, g, h) = ¥ (t, g, 1u(h, g)), and hence, we have

P2(e'®a®B) = Yay(1x 1x ) (I IxT) e (Ix Ax1) (e’ ®a®P)

= ¢G#(el®a®ﬁ) + Z wa#(el®a£®ﬁ-a2’)7
= Yay(e'®a®B) £ Y Yoy (1010 4(c'®aj@B-af),

= Yay(e'@a®B) £ Y fipthey(e'®aj@pea)),

where we denote Ag(a) = a®l + ) . o;®a) with a’s degree > 0.

Following to Browder, let o and (3 be the representing chains in Cy(G;Fs)of a and b = aSq!
which are dual to x = Sq'y and y, respectively. We can take o and 3 satisfying 9(a) = 23
and 9(3) = 0. Then we have d(a?) = 2B« + 2o which is zero modulo 2. Since ii) implies ix),
we have that a? represents zero, and hence, one can take v such that a® = 2y +Im 9. Then it
follows that d(v) = Ba+aB and d(jauy+ P24 (e' @a®B)) = 2ja4(af) —2¢24(e' ®a®a) which
is zero modulo 2. According to the arguments given in the proof of Browder’s implication

theorem, we get the following equation:

1= ([jag(aB) — day(e'®@BRB)),i5(2"y))
= (Jayy + ¢2#(61®@®ﬁ)]7 i§$/2>

= (Jau + ¢2#(61®Oz®5), n) mod 2
Since 1 annihilates the image of jg,, we get
(pou(e'®a®p),n) =1 mod 2.

By (72), we have o (¢! ®a®) = Yoy (' 0a®B) + ¥, viay (' @al@pg(A2a)). Then by

Proposition 77, the following equation modulo 2 follows:

1= (p2y(e'®@a®p),n)

= <¢G#(€1®O¢®ﬁ)> CIG#770> + Z (wG#(el®a2®u#(ﬁ®a;’)), )

Since ¢ satisfies the equation Vg (f, g, u(hn, ha)) = A(a(t. 9, h), di(t, g ha)), we get
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1= (qaytbay(e'@a®@B),m) £ Y (Yay(1x1xp)4(e' @ai@82a)), 46*no)
= ((Ba)®8,m) + Z (qogiutoxcy(e®@a;@B0a]),m0)

= ((Xa)®8,m0) £ Z (1 wlaxcatoxay (e @a@Ba), 1)

]

~ 7
— (Ba)@B,m) = 3 (Ba))@seal, i o)
By Proposition 77, we can proceed as
= (Ea)®p, o) + Z (Baj)©B0ay, pi i + pia™ o + Im 6)

= ((Za)®8,m0) £ Z (Xa))®0®a), Im §)

15
)

Here, let us recall that 3, a;’s and a’s are cycles modulo 2. Thus we get

(13.1) (Ba)®p,m) = 1.

It then follows that the Kronecker index ((Xa)®/, 1) is non-trivial modulo 2. Let us recall
that a and b are the homology class of o and # and that d(«) = 23. Then we have that
aSq" = b and the Kronecker index ((£a)®b, [1o]) is non-trivial. Also by vi), we have i5z"* =

q&[no] and ¢ is injective. This completes the proof of Lemma 77 O

14. PULLING-BACK TO %y’

Since y? = 0, we have that i%y’* is in the image of qg, say isy? = q5leo). The squaring

/2 k12

relation Sq'y’ = 2’ implies that S¢?y” = 2/* = q¢4no] and S¢*isy” = isa’

, and hence

i3y'* # 0. Since ¢ is injective, S¢*[eg] = [1o]. Then by Lemma ??, it follows that
1= (((Za)@b), [no]) = ((Ea)®b), Sg°[eo]) = {((Xa)@b)Sq”, [€ol)
= (((Za)Sg*@b + (Xa)Sq'®bSq" + (3a)@bS¢?), [el),
Here we have aSq' = b and bSq¢' = 0. The elements b and bSq? give odd primitive elements
in H,(G;Fy). Since every non-zero primitive element in H,(G;Fy) is in the image of o, :

H,(X0G;Fy) — H,(G;Fy), and hence there is an element w € H,(SGAXQG;Fy) such that
(Za)®b)Sq¢* = (1A0),w. This implies

((1n0)aw, [eo]) = ((Za)®b)Sq?, [eol) = (((Ea)@b), S¢*[eo]) = (((Sa)®b), [1o]) # 0.
11



Thus we have shown the following proposition:

Proposition 14.1. 1) The element w € H,(SGAXQG; Fy) satisfies (Xa)®b)Sq? = (1A0),w
2) The class [e] € H(XGAEOG;Fy) satisfies (w, (1A0)*[e]) # 0.

15. THE CONDITION II) IMPLIES I)
Now we proceed the final step: Let us consider the decomposition of space E2GxoX0G:
E’GxcX0G = 206G U4, CGX NG = (SGVEQG) Uy (CGXCNG),

where Ad is given by /id(g,t/\f) = tAAd(g,0) and ¥ : GxQG — LGVEQG is the attaching
map.

A direct computation shows that U ~ [ixq, txag] + inaH (Ad), and hence, pro¥ ~ H(Ad),
where [tsg, txac] denotes the Whitehead product and H(Ad) the Hopf construction of Ad :
GxQG — QG.

So we have the following commutative ladder of exact sequences:

g=oc”

H*(SGNG;Fy) —— H, (EQGXGG Fy)
H*(SGAG; Fy) H*(E*GxG;Fy) H*(XGVG;TFy)
(Ino)* (Ixgo)* (1vo)*
H*(XGAYQG; Fy

QG

A (SGASOQG: T 225 H (B2 G X o S0G; Fy) 222

H*(G F2)

lsac™

2 0 (B2 G x ¢ E0G; Fy) 2% H* (SGVEQG; Fy) —— H* (G+QG; Fy)

gsac™
)—

H(Ad)*

JZQG

H*(SQG; Fs)

where jsog denotes the inclusion of fibre and Hy(—;Fo) = H*(—, XG;Fy) is the cohomology
of spaces over X.G.

By the commutativity of the above diagram, we have

**/

(Ixgo)"izy™ = (1x60) qglé] = gsac(1A0) e

and 2) of Proposition 77 says that(1Ac)*[€] is non-zero. Since H(Ad)* is essentially given by
Ad* — pr3, it follows that ¢ is injective, if ii) holds. Thus by ii), we have

(15.1) (Ixgo) ity 0.

Take y" = i3y — phssisy € Hig(E*GxqG;Fy), where we denote by py the projection
E?*GxgH — YG and sy the cross-section of pgy. Then it follows that H(Ad)*(o*y) =

H(Ad)*o*jty" = H(Ad)* ji0c(1xco)y" = 0 and (1xqo)"y" € Hio(E*GxaX0G;Fy).
12



Then the functional cup product theorem of Thomas [?] tells us
(1%60)"y" = Ghac(11©ys),
when Ad*y = y1®1 4 1®y,. Here we have y; = infAd*y = 0 and y, = ini Ad*y = y, and hence
(1x60)"y" = giac(00y) = 0.
Then by 5y = y” + Im p*, it follows that
(15.2) (Ixgo) iy = 0.

It’s a contradiction. Hence g5, must have non-trivial kernel and H (Ad)* must be non-trivial.
This implies that Ad* # pr; and the image of Ad* — prj should contain non-zero elements

w®o*u 4 other terms and x®c*y + other terms. This completes the proof of Theorem ?7.

16. EXAMPLES

Our observation covers some results obtained in [?] and [?]:

Example 16.1. We obtain the following relations in the modulo 2 cohomologies.
(1) For G = Gy the 1-connected compact connected exceptional Lie group of type Go, our

observation implies xg4 40 and 2> # 0, and hence

(Ad* — pr3y)usg = x§®u4,

(Ad* — pry)ug = v3Rus.

(2) For G = Eg the 1-connected compact connected exceptional Lie group of type Eg, our

observation implies
(ad* — pry)xys = (u* — T u* )5 = x§®x9 + x9®x§,
and hence we obtain
(Ad* — pry)uis = w3 Qus,
and also by 24* # 0 and x> # 0, we have

(Ad* — pr3)uyo = x§®u4,

(Ad* — pri)us = T3Rus.
13



(3) For G = QZ the Dwyer-Wilkerson complex with H*(QZ;Fy) = Falz]/(23)@A(x11, 13),

our observation implies " # 0 and x'3*> # 0, and hence
(Ad* — pry)ugs = x3Quqy,

(Ad* — pri)ugy = 13Ru10.
Since x13 = Sq*x11, we also have z'5° = Sq*a’,> # 0, and hence
(Ad* — pry)usy = r2Qus.
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