
ADJOINT ACTION OF A FINITE LOOP SPACE

NORIO IWASE

Abstract. Adjoint actions of compact simply connected Lie groups are studied by A. Kono
and K. Kozima based on the series of studies on the classification of compact Lie groups and
their cohomologies. At odd primes, there is a simpler homotopy theoretic approach that
will prove the results of Kono and Kozima for any finite loop spaces. However, there are
some technical difficulties at the prime 2.

1. Introduction

For a connected topological group G, the loop group ΛG = {u : S1 → G} is homeomorphic

with the product group G×ΩG, where ΩG denotes the subspace of loops start and end the

unit e ∈ G. However the multiplication of ΛG is different from that of G×ΩG, unless G is

abelian. The difference can be described by the adjoint action of G on ΩG, say Ad : G×ΩG

→ ΩG by Ad(g, ℓ)(t) = gℓ(t)g−1. Kono and Kozima [5] studied the difference in terms of

the cohomology of the classifying space for G a compact simple Lie group. In this paper,

our approach is rather homotopy theoretical and even simple.

2. Main Theorems

Let G be a connected topological group with the homotopy type of a finite CW complex

and let p be a prime. We have the following result, which is due to Hubbuck’s Torus Theorem.

Theorem 2.1. If the inclusion G → BΛG has a homotopy left inverse : BΛG → G, then G

has the homotopy type of a torus of some dimension ≥ 0 and BΛG is homotopy equivalent

with the product BG×G.

The following results are obtained by assuming homological properties.

Theorem 2.2. For an odd prime p, the following four conditions are equivalent.

i) The induced homomorphism j∗ : H∗(BΛG; Fp) → H∗(G; Fp) is surjective.

ii) The Pontryagin ring H∗(G; Fp) is commutative Hopf algebra. In other words, the self

adjoint action induces the trivial action ad∗ = pr2∗ : H∗(G; Fp)⊗H∗(G; Fp) → H∗(G; Fp).
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iii) The Hopf algebra H∗(G; Fp) is primitively generated.

iv) There is an H∗(BG; Fp)-module isomorphism H∗(BΛG; Fp) ∼= H∗(BG×G; Fp).

Theorem 2.3. Under the same hypothesis as in Theorem 2.2, the conditions i), ii), iii) and

iv) are also equivalent to any of the following three conditions:

v) The integral homology H∗(G; Z) has no p-torsion.

vi) The adjoint action induces the trivial action Ad∗ = pr2∗ : H∗(G; Fp)⊗H∗(ΩG; Fp) →

H∗(ΩG; Fp).

vii) There is an isomorphism of algebras H∗(BΛG; Fp) ∼= H∗(BG×G; Fp).

In [5], Kono and Kozima prove the above theorems for compact Lie groups. For odd

primes, we only assume that G is a finite topological group or loop space.

The proof of the above two theorems suggests that Theorem 2.2 would be true even if

p = 2:

The only difficulty lies in proving that i)-iii) implies iv). And if it holds, this would

visualize the ’primitivity’. At the prime 2, the conditions given in Theorem 2.2 are clearly

weaker than those in Theorem 2.3, since there exist compact Lie groups whose homology

has 2 torsion and whose cohomology mod 2 is primitively generated.

3. Key Lemma

Let us recall that the classifying space of G×ΩG has the homotopy type of BG×G. Also

the classifying space of ΛG is given by BΛG = EG×GG, where EG denotes the total space

of the universal principal G-bundle and the (left) action of G on EG is the diagonal action

and that on G is the self adjoint (left) action ad : G×G → G by ad(g, h) = ghg−1. Thus

there is the following fibering:

(3.1) G
j→ BΛG = EG×GG

p→ BG,

where the projection p has a cross-section s : BG → EG×GG, since the adjoint action leaves

the unit fixed.

Now the proofs of the main theorems is straight forward, if one notices the following

lemma.

Lemma 3.1. Let µ : G×G → G be the multiplication of the group G and T : G×G →

G×G be the switching mapping. Then we have the homotopy relation j◦µ◦T ∼ j◦µ, where

j denotes the inclusion G → BΛG.
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Proof. The total space EG of the universal principal G-bundle is defined to be the infi-

nite union of n-fold join EnG = G∗G∗· · ·∗G of G. Hence we have the subspaces E2G =

I×G×G/∼ ⊆ EG. Thus it is sufficient to show the homotopy relation j0◦µ◦T ∼ j0◦µ, where

j0 denotes the inclusion G → E2G×GG.

Now, let us define a homotopy H : I×G×G → E2G×GG by

H(t, g, h) = [(1 − 2t)·e + 2t·e; hg], t ≤ 1

2
(3.2)

H(t, g, h) = [(2t − 1)·h + (2 − 2t)·e; hg], t ≥ 1

2
(3.3)

hence we obtain the following formulae.

H(0, g, h) = [1·e + 0·e, hg] = j0(hg) = j0◦µ◦T (g, h)(3.4)

H(1, g, h) = [1·h + 0·e, hg] = [1·h + 0·h, gh](3.5)

= [1·e + 0·e, h−1(hg)h] = [1·e + 0·e, gh](3.6)

= j0◦µ(g, h)(3.7)

This implies the desired homotopy relation. ¤

4. The proof of Theorem 2.1

The existence of a homotopy equivalence φ : BG×G → BΛG implies that G
j

⊆ BΛG is

a retract up to homotopy. If so, there is a left homotopy inverse r : BΛG → G of j, and

hence, µ◦T ∼ r◦j◦µ◦T ∼ r◦j◦µ ∼ µ. By Hubbuck’s Torus Theorem, this implies that G

has the homotopy type of a torus of some dimension ≥ 0, since G has the homotopy type of

a finite CW complex. This completes the proof of the theorem.

5. The proof of Theorem 2.2

The condition iv) implies clearly i). So, we firstly show the condition i) implies ii): The

condition i) implies that j∗ : H∗(G; Fp) → H∗(BΛG; Fp) is injective. On the other hand, the

homotopy relation given in Lemma 3.1 implies that j∗◦µ∗◦T∗ = j∗◦µ∗. Hence the condition

i) implies that µ∗◦T∗ = µ∗, in other words, the multiplication of the Pontryagin ring is

commutative. Thus i) implies ii).

Secondly, we show the condition ii) implies iii): The condition ii) implies that the coho-

mology Hopf algebra H∗(G; Fp) is bicommutative, and hence, is primitively generated by

Kane [4]. Thus ii) implies iii).
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Thirdly, we show the condition iii) implies iv): The condition iii) implies that H∗(G; Fp) is

a biprimitive exterior algebra when p odd by Zabrodsky [9]. Then it follows that H∗(G; Fp)

is generated by odd dimensional transgressive generators which determine completely the

cohomology Serre spectral sequence for the universal principal G-bundle π. Hence we have

that H∗(BG; Fp) is a polynomial algebra concentrated in even dimensions.

(5.1)

G
in2−−−→ EG×G

pr1−−−→ EG∥∥∥ y π

y
G

j−−−→ BΛG
p−−−→ BG.

Now we consider the cohomology Serre spectral sequence for p: Let x be a lowest dimensional

generator which is not a permanent cycle in the spectral sequence, say drx = Σaua⊗xa ̸= 0.

Then by H∗(G; Fp) is primitively generated, x is an odd dimensional primitive generator,

and hence drx has even total dimension. On the other hand, p : BΛG → BG is a fibre-

wise Hopf space (see Cook-Crabb [3]), the differential dr is a co-algebra homomorphism over

the algebra H∗(BG; Fp). This implies that xa’s are all primitive, and hence, are all odd

generators and ua’s are even-dimensional. This contradicts to the fact that drx has even

total dimension. Thus all the generators are permanent cycles and hence the condition iii)

implies iv). This completes the proof of Theorem 2.2.

6. The proof of Theorem 2.3

It is sufficient to show that the conditions v), vi) and vii) are equivalent.

Firstly we show the condition vii) implies v): The condition vii) implies clearly the condi-

tion iv), and hence, ii) by Theorem 2.2. Then by Theorem D of [9] and Theorem 1.1 of [4],

it implies that H∗(G; Z) has no p-torsion. Thus vii) implies v).

Secondly we show the condition v) implies vi): The condition v) implies clearly ii). By

the condition ii), we have ad∗ = pr2
∗ : H∗(G; Fp) → H∗(G×G; Fp) ∼= H∗(G; Fp)⊗H∗(G; Fp).

On the other hand by v), the cohomology suspension σ∗ : H∗(G; Fp) → H∗(ΩG; Fp) induces

an isomorphism QH∗(G; Fp) ∼= PH∗(ΩG; Fp) with the following relation:

(6.1) Ad∗σ∗ = (1⊗σ∗)ad∗ = (1⊗σ∗)pr2
∗ = pr2

∗σ∗.

Hence, Ad∗ = pr2
∗ on the module of primitive elements PH∗(ΩG; Fp). Then for a generator

u ∈ PH∗(ΩG; Fp) and an element x ∈ H∗(G; Fp), we have the equation

(6.2) Ad∗(x⊗u) = pr2∗(x⊗u) = 0
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modulo the module of decomposables DH∗(ΩG; Fp). On the other hand, since

(6.3)

Ad(1×Ad)(g1, g2, h) = Ad(g1, g2hg−1
2 ) = g1g2hg−1

2 g−1
1 = Ad(g1g2, h) = Ad(µ×1)(g1, g2, h),

one has the relation Ad(1×Ad) = Ad(µ×1), where we denote by µ the multiplication of the

group G. Using this, by the induction on the dimension of an element in H∗(ΩG; Fp), we have

the desired formula: Ad∗(x⊗u) = 0 for x ∈ H̃∗(G; Fp). This implies that Ad∗(u) = 1⊗u.

Thus the condition v) implies vi).

Finally, we show the condition vi) implies vii): Assuming that H∗(G; Fp) is not commu-

tative, under the condition vi), we shall be led to a contradiction. Let [a, b] be a non-zero

commutator in the lowest dimension, say m. Since H∗(G; Fp) is associative, it follows that

a and b are generators and [a, b] is primitive. Then by Theorem 5.4.1 (c) of [6], the m must

be odd, and hence, we may assume that a is an even-dimensional generator and b is an

odd-dimensional generator. Let us dualize the situation: Let u and v be the dual primitive

elements to a and b, and choose x to be a generator such that 〈x, [a, b]〉 ̸= 0. Since H∗(G; Fp)

is associative and commutative, by Proposition 4.21 of [7], v is an odd primitive generator.

Then the diagonal image µ̃∗(x) satisfies that 〈µ̃∗(x), a⊗b〉 ≠ 0. Here, by a series of results

on the cohomology of a Hopf space such as [8], [1] or [2], it follows that σ∗ : QHodd(G; Fp)

→ PHeven(ΩG; Fp) is injective. Hence we have that σ∗(x) ̸= 0, σ∗(v) ̸= 0 and σ∗(u) = 0.

Also we have the relation

Ad∗(σ∗(x)) = Ad∗σ∗(x) = (1⊗σ∗)ad∗(x) = (1⊗σ∗)(pr2
∗x + µ̃∗(x))(6.4)

= (1⊗σ∗)pr2
∗(x) + (1⊗σ∗)(µ̃∗(x)) = pr2

∗σ∗(x) ± u⊗σ∗(v) ̸= pr2
∗σ∗(x).(6.5)

This implies that Ad∗ ̸= pr2
∗. Thus the condition vi) implies the condition ii), and hence iii)

and iv). Hence, it implies the existence of an H∗(BG; Fp)-module isomorphism H∗(BΛG; Fp)

∼= H∗(BG; Fp)⊗H∗(G; Fp), where H∗(G; Fp) is generated by odd primitive elements. Then

the square of the odd-dimensional generators of H∗(G; Fp) in H∗(BΛG; Fp) must be trivial

by the standard argument of graded commutative algebras, and hence the isomorphism

preserves the algebra structures. Thus the condition vi) implies vii).
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