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The Milnor–Stasheff Filtration on Spaces
and Generalized Cyclic Maps

Norio Iwase, Mamoru Mimura, Nobuyuki Oda, and Yeon Soo Yoon

Abstract. The concept of Ck-spaces is introduced, situated at an intermediate stage between H-spaces

and T-spaces. The Ck-space corresponds to the k-th Milnor–Stasheff filtration on spaces. It is proved

that a space X is a Ck-space if and only if the Gottlieb set G(Z, X) = [Z, X] for any space Z with

cat Z ≤ k, which generalizes the fact that X is a T-space if and only if G(ΣB, X) = [ΣB, X] for any

space B. Some results on the Ck-space are generalized to the C
f

k
-space for a map f : A → X. Projective

spaces, lens spaces and spaces with a few cells are studied as examples of Ck-spaces, and non-Ck-spaces.

1 Introduction

A 0-connected space X is called a T-space if the fibration ΩX → XS1

→ X is fiber

homotopically trivial [1], and it is known that any 0-connected H-space is a T-space.

To investigate intermediate stages between H-spaces and T-spaces, Aguadé [1] de-

fined Tk-spaces for any integer k ≥ 1 and k = ∞, making use of the Milnor–Stasheff

filtration on spaces, so that the T∞-space is an H-space and the T1-space is a T-

space. It seems that relations between Tk-spaces and the L-S category of spaces were

not investigated clearly after his work. In this paper we define the concept of the

Ck-space for k ≥ 1 so that the C1-space is the same as the T-space and the C∞-space

is an H-space. We also employ the Milnor–Stasheff filtration on spaces to define Ck-

spaces. However, the definition of the Ck-space is directly connected with the L-S

category; it enables us to prove, for example, that a space X is a Ck-space if and only

if the Gottlieb set G(Z, X) = [Z, X] for any space Z with cat Z ≤ k (Theorem 2.3),

which is a generalization of the fact that X is a T-space if and only if the Gottlieb

group G(ΣB, X) = [ΣB, X] for any space B [26, Theorem 2.2].

For each k, let jX
k : ΣΩX = P1(ΩX) → Pk(ΩX) and eX

k : Pk(ΩX) → P∞(ΩX) ≃ X

be the natural inclusions for the spaces Pk(ΩX) [16, 21] (see §2). Let f : A → X be

any map. A 0-connected space X is called a C
f
k -space if eX

k : Pk(ΩX) → X is f -cyclic

(Definition 3.1). A C1X

k -space X is called a Ck-space (Definition 2.1).

We show that a space X is a C
f
k -space if and only if G f (Z, X) = [Z, X] for any

space Z with cat Z ≤ k (Theorem 3.2). Let f : A → X and g : B → Y be any maps.

The product space X × Y is a C
f×g
k -space if and only if X is a C

f
k -space and Y is a

C
g
k-space (Theorem 4.7). It follows that the product space X × Y is a Ck-space if and

only if both X and Y are Ck-spaces (Theorem 4.8).
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Let X̃ be a covering space of a space X with the covering map p : X̃ → X and

1 ≤ k ≤ ∞. Let f : A → X, f̃ : B → X̃, and q : B → A be maps such that the

following diagram is homotopy commutative,

B

ef
//

q

²²

X̃

p

²²
A

f
// X

In Theorem 4.9 we show that if X is a C
f
k -space, then the covering space X̃ is a C

ef
k -

space. A relation between two “multiplications” that are induced by a pairing and a

copairing [18, Proposition 3.4] will be used to prove Theorem 4.9. A similar result

holds for the T
f

k -space, which is a generalization of Aguadé’s Tk-space (see Defini-

tion 3.3). If we put f = 1X , f̃ = 1eX , q = p, then we see that any covering space of a

Ck-space (resp. Aguadé’s Tk-space) is a Ck-space (resp. Tk-space) for any 1 ≤ k ≤ ∞
(Theorem 4.10).

In the last section we study projective spaces, lens spaces and spaces with a few

cells.

2 Ck-Spaces

We work in the category of topological spaces with base point. The symbol f ∼
g : X → Y means the based homotopy relation and the symbol X ≃ Y the based

homotopy equivalence. The set of based homotopy classes of maps [ f ] : X → Y is

denoted by [X,Y ]. Let f : A → X be a map. A based map g : B → X is said to be

f-cyclic [17] if there exists a map φ : B × A → X such that the diagram

A × B
φ

// X

A ∨ B

j

OO

f∨g
// X ∨ X

∇

OO

is homotopy commutative, where j : A∨B → A×B is the inclusion and ∇ : X∨X →
X is the folding map. We call such a map φ an associated map of an f -cyclic map g.

Clearly, g is f -cyclic if and only if f is g-cyclic. We write f⊥g if g is f -cyclic. If

f⊥g for maps f : A → X and g : B → X, then (w ◦ f ◦ f ′)⊥(w ◦ g ◦ g ′) for any

maps w : X → W , f ′ : A ′ → A, and g ′ : B ′ → B by [17, Theorems 1.4 and 1.5]. This

formula is used repeatedly in the following arguments without further reference. A

based map g : B → X is said to be cyclic [23] if 1X⊥g, that is, g is 1X-cyclic. The

Gottlieb set denoted by G(B, X) is the set of all homotopy classes of cyclic maps from

B to X.
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The loop space ΩX of any space X has a homotopy type of an associative H-space.

A 0-connected space X is filtered by the projective spaces of ΩX [16, 21]:

∗ = P0(ΩX) →֒ ΣΩX = P1(ΩX) →֒ · · · →֒ Pk(ΩX) →֒ · · · →֒ P∞(ΩX) ≃ X.

For each k, let jX
k : ΣΩX = P1(ΩX) → Pk(ΩX) and eX

k : Pk(ΩX) → P∞(ΩX) ≃ X

be the natural inclusions. We write eX
= eX

1 : ΣΩX = P1(ΩX) → X. We see that

jX
∞ ∼ eX : ΣΩX → X and eX

∞ ∼ 1X : X → X.

A 0-connected space X is called a Tk-space [1] if 1X⊥ek for some extension

ek : Pk(ΩX) → X of eX : ΣΩX → X, that is, there exists a map φk : X × Pk(ΩX) → X

such that φk ◦ j ◦ (1X ∨ jX
k ) ∼ ∇ ◦ (1X ∨ eX) : X ∨ ΣΩX → X. Aguadé showed that

X is a T-space if and only if X is a T1-space [1, Proposition 4.1]. If X is a Tk-space,

then it is a Ti-space for any 1 ≤ i ≤ k. By [1, Proposition 4.1(i)(ii)], a 0-connected

space is an H-space if and only if it is a T∞-space; we remark that e∞ ∼ 1X when X

is a 0-connected CW complex. The concepts of the T-space and the Gottlieb set are

closely connected by the fact that X is a T-space if and only if G(ΣB, X) = [ΣB, X]

for any space B [26, Theorem 2.2].

Definition 2.1 Let k ≥ 1 be an integer or k = ∞. A 0-connected space X is called

a Ck-space if 1X⊥eX
k , that is, the inclusion eX

k : Pk(ΩX) → X is cyclic. A 0-connected

space X is called an NC-space if X is not a Ck-space for any k ≥ 1.

Clearly any Ck-space is a Tk-space for any k ≥ 1. We use the L-S category cat X

for a 0-connected space X in the sense that cat X = n if n is the minimum number

of categorical open coverings U0,U1, . . . ,Un of X, so that cat X = 0 if and only if X

is contractible and cat X ≤ 1 if X is a suspension. Throughout this paper, we follow

Iwase for the notations for the L-S category; his list of references covers much of the

widely-known literature [11] .

We now recall Ganea’s theorem [10, 11].

Theorem 2.2 (Ganea [3,10]) Let k ≥ 1 be an integer or k = ∞ and assume that X is

a 0-connected space. The category cat X ≤ k if and only if eX
k : Pk(ΩX) → X has a right

homotopy inverse.

In the rest of this section, we mention some results on the Ck-space that are ob-

tained as special cases of the results on the C
f
k -spaces for a map f : A → X in the

following sections, since the Ck-space is the C
f
k -space for the identity map f =

1X : X → X.

The property of the T-spaces in [26, Theorem 2.2] is extended to the Ck-spaces

using the L-S category in the sense that the L-S category of any suspension space ΣB

satisfies cat ΣB ≤ 1.

Theorem 2.3 Let k ≥ 1 be an integer. A space X is a Ck-space if and only if G(Z, X) =

[Z, X] for any space Z with cat Z ≤ k.

Theorem 2.3 is a special case of Theorem 3.2 which is proved in the next section.

The following proposition is a direct consequence of the definition.
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Proposition 2.4 (i) A space X is a T-space if and only if X is a C1-space.

(ii) Any Cm-space is a Cn-space for ∞ ≥ m ≥ n ≥ 1.

(iii) A space X is an H-space if and only if X is a C∞-space.

As a direct consequence of Proposition 3.4(ii),(v) and Theorem 4.3, the following

theorem is obtained.

Theorem 2.5 Assume that cat X = k ≥ 1. Then X is an H-space if and only if X is a

Cn-space for some n ≥ k.

It is known [14] that cat X ≤ dim X for any finite CW complex X. Thus, we obtain

the following corollary.

Corollary 2.6 If a T-space X is a 1-dimensional finite CW complex, then X = S1.

Example 2.7 By [1, Proposition 4.2] Aguadé obtained a space X such that X is a

Tp−1-space but not a Tp-space. This space X is not a C p-space, but it is not known

whether X is a C p−1-space or not.

3 C
f

k -Spaces for a Map f : A → X

We denote the set of all homotopy classes of f -cyclic maps from B to X by

G(B; A, f , X) = G f (B, X) = f ⊥(B, X) ⊂ [B, X].

This is called the Gottlieb set for a map f : A → X. If f = 1X : X → X, then we

recover the set G(B, X) defined by Varadarajan [23]:

G(B, X) = G(B; X, 1X, X) = G1X (B, X) = (1X)⊥(B, X).

In general, G(B, X) ⊂ G f (B, X) ⊂ [B, X] for any spaces A, B, X and any map

f : A → X. An example is shown in [27] such that G(B, X) 6= G(B; A, f , X) 6= [B, X]:

G5(S5 × S5) ∼= 2Z ⊕ 2Z 6= G5(S5, i1, S5 × S5) ∼= 2Z ⊕ Z 6= π5(S5 × S5) ∼= Z ⊕ Z.

Definition 3.1 Let k ≥ 1 be an integer or k = ∞. Let f : A → X be any map. A

0-connected space X is called a C
f
k -space if f⊥eX

k (or eX
k : Pk(ΩX) → X is f -cyclic). A

0-connected space X is called an NC f -space if X is not a C
f
k -space for any k ≥ 1.

We see that a C1X

k -space X is a Ck-space.

Theorem 3.2 Let f : A → X be any map. A space X is a C
f
k -space if and only if

G f (Z, X) = [Z, X] for any space Z with cat Z ≤ k.

Proof Suppose that X is a C
f
k -space, namely, f⊥eX

k . Let Z be a space with cat Z ≤ k

and g : Z → X any map. Since cat Z ≤ k, there exists a map sZ
k : Z → Pk(ΩZ) such
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that eZ
k ◦sZ

k ∼ 1Z . We see that eX
k ◦Pk(Ωg) ∼ g◦eZ

k by the naturality of the construction

of Pk(ΩZ), as is shown in the following homotopy commutative diagram:

Pk(ΩZ)
Pk(Ωg)

//

eZ
k

²²

Pk(ΩX)

eX
k

²²
Z

g
// X

Hence the relation f⊥eX
k implies f⊥(eX

k ◦ Pk(Ωg) ◦ sZ
k ) or f⊥g. It follows that

G f (Z, X) = [Z, X].

Conversely, assume that G f (Z, X) = [Z, X] for any space Z with cat Z ≤ k. It is

known that cat Cθ ≤ cat Y + 1 for any map θ : X → Y [24, (1.6) Theorem, p. 459],

where Cθ is the mapping cone of θ. Thus cat Pk(ΩX) = cat Cθ ≤ cat Pk−1(ΩX) + 1,

where θ : (ΩX) ∗ · · · ∗ (ΩX)(k-times) → Pk−1(ΩX) is the map in [21, Part I, Theo-

rem 12 ]. By induction, we have cat Pk(ΩX) ≤ k. Thus we know that eX
k : Pk(ΩX) →

X is f -cyclic by our assumption, and hence X is a C
f
k -space.

A space X is called an H f -space for a map f : A → X if 1X is f -cyclic (namely

f⊥1X), and a T f -space for a map f : A → X if eX : ΣΩX → X is f -cyclic (namely

f⊥eX)[28, 29]. Any H-space X is an H f -space and any H f -space X is a T f -space for

any map f : A → X. We remark that the 2-dimensional sphere S2 is not an H-space

nor a T-space, but it is an Hη2 -space and a Tη2 -space for the Hopf map η2 : S3 → S2

[29, Example 2.10], [26, Corollary 2.8].

Definition 3.3 Let f : A → X be any map. A space X is called a T
f

k -space if f⊥ek

for some extension ek : Pk(ΩX) → X of eX : ΣΩX → X, that is, there exists a map

φk : A×Pk(ΩX) → X such that φk ◦ j ◦ (1X ∨ jX
k ) ∼ ∇◦ ( f ∨ eX) : A∨P1(ΩX) → X.

An H1X -space X is an H-space and a T1X

k -space X is a Tk-space.

Proposition 3.4 Let f : A → X be any map.

(i) X is a C
f
1 -space ⇔ X is a T

f
1 -space ⇔ X is a T f -space.

(ii) Any C
f
m-space is a C

f
n -space for ∞ ≥ m ≥ n ≥ 1.

(iii) Any T
f

m-space is a T
f

n -space for ∞ ≥ m ≥ n ≥ 1.

(iv) If X is a C
f
k -space, then X is a T

f
k -space for ∞ ≥ k ≥ 1.

(v) If X has the homotopy type of a CW complex, then the following equivalences hold:

X is an H f -space ⇔ X is a C
f
∞-space ⇔ X is a T

f
∞-space.

Proof These results are direct consequences of the definitions except the following

part of (v): “X is a T
f
∞-space ⇒ X is an H f -space”, which is proved by a method

similar to the proof of [1, Proposition 4.1 (ii)] as follows.

Suppose that X is a T
f
∞-space. Then f⊥e for some extension e : P∞(ΩX)(≃ X) →

X of eX
1 : ΣΩX → X, and there exists a map m : A× P∞(ΩX) → X with axes f and e,



6 N. Iwase, M. Mimura, N. Oda, and Y. S. Yoon

making the following diagram commutative up to homotopy:

A × X A × P∞(ΩX)
m

//
1×eX
∞

≃

oo X

A × ΣΩX

⊂

::ttttttttttt1×eX
1

ffLLLLLLLLLL

Let g : X → X be a map given by g(x) = m ◦ (1 × eX
∞)−1(∗, x) for any x ∈ X.

Then g ∼ e ◦ (eX
∞)−1 and we have g ◦ eX

1 ∼ eX
1 , and hence Ωg ∼ 1ΩX by taking

adjoints. Then it follows that g : X → X is a weak homotopy equivalence and hence is

a homotopy equivalence if X has the homotopy type of a CW complex, by a theorem

of J. H. C. Whitehead, and there exists a map h : X → X such that g ◦ h ∼ 1X . Hence

we have f⊥g, which implies that f⊥(g ◦ h) or f⊥1X by the composition formula we

discussed at the start of Section 2.

4 More about T
f

k -Spaces and C
f

k -Spaces

Proposition 4.1 Let f : A → X and g : B → A be any maps.

(i) If X is an H f -space, then X is an H f◦g-space.

(ii) If X is a T
f

k -space, then X is a T
f◦g

k -space.

(iii) If X is a C
f
k -space, then X is a C

f◦g
k -space.

Proof The relations (i) f⊥1X , (ii) f⊥ek, and (iii) f⊥eX
k imply (i) ( f ◦ g)⊥1X , (ii)

( f ◦ g)⊥ek, and (iii) ( f ◦ g)⊥eX
k , respectively, and we have the results.

Proposition 4.2 Assume that f : A → X has a right inverse s : X → A, i.e., f ◦s ∼ 1X .

Then the following results hold.

(i) An H f -space X is an H-space.

(ii) A T
f

k -space X is a Tk-space.

(iii) A C
f
k -space X is a Ck-space.

Proof These are immediate by Proposition 4.1.

If X is an H f -space, then X is a C
f
k -space for any k ≥ 1 by Proposition 3.4 (ii), (v).

The following theorem shows that the converse holds if cat X ≤ k.

Theorem 4.3 Let f : A → X be any map.

(i) If X is a C
f
k -space and cat X ≤ k, then X is an H f -space.

(ii) If X is a Ck-space and cat X ≤ k, then X is an H-space.

Proof (i) Since cat X ≤ k, we see that G f (X, X) = [X, X] by Theorem 3.2. It follows

that f⊥1X . (ii) is the case where f = 1X , and hence 1X⊥1X .

Theorem 4.4 Assume that Y is a homotopy retract of X with the maps r : X → Y and

s : Y → X such that r ◦ s ∼ 1Y .
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(i) If X is a C
f
k -space, then Y is a C

r◦ f
k -space for any map f : A → X.

(ii) If X is a Ck-space, then Y is a Ck-space.

Proof Let rk = Pk(Ωr) : Pk(ΩX) → Pk(ΩY ) and sk = Pk(Ωs) : Pk(ΩY ) → Pk(ΩX)

be the maps induced by r and s, respectively. Then we see that

eY
k = r ◦ s ◦ eY

k = eY
k ◦ rk ◦ sk = r ◦ eX

k ◦ sk : Pk(ΩY ) → Y.

Then (i) the relation f⊥eX
k implies (r ◦ f )⊥(r ◦ eX

k ◦ sk), or (r ◦ f )⊥eY
k and (ii) the

relation 1X⊥eX
k implies (r◦1X ◦ s)⊥(r◦eX

k ◦ sk), or 1Y⊥eY
k [17, Theorems 1.4, 1.5].

The following result is a generalization of Woo and Kim [25, Theorem 3.6].

Proposition 4.5 Let f : A → X and g : B → Y be any maps. The relation

G f×g(Z, X × Y ) ∼= G f (Z, X) × Gg(Z,Y )

holds for any space Z (under the identification [Z, X × Y ] ∼= [Z, X] × [Z,Y ]).

Proof Let α : Z → X and β : Z → Y be maps. We define a map (α, β) : Z → X × Y

by (α, β) = (α × β) ◦ ∆Z for the diagonal map ∆Z : Z → Z × Z. Suppose that

(α, β) ∈ G f (Z, X) × Gg(Z,Y ), which is identified with a map (α, β) : Z → X × Y .

Since f⊥α and g⊥β, we have ( f × g)⊥(α×β) [17, Proposition 1.7]). It follows that

( f × g)⊥{(α × β) ◦ ∆Z} or ( f × g)⊥(α, β), and hence (α, β) ∈ G f×g(Z, X × Y ).

Conversely, suppose that (α, β) ∈ G f×g(Z, X × Y ) or ( f × g)⊥(α, β). Let

p1 : X × Y → X and p2 : X × Y → Y be the projections and i1 : X → X × Y and

i2 : Y → X × Y be the inclusions defined by i1(x) = (x, y0) and i2(y) = (x0, y) for

any x ∈ X and y ∈ Y , where x0 ∈ X and y0 ∈ Y are base points. It follows that

{p1 ◦ ( f × g) ◦ i1}⊥{p1 ◦ (α, β)} and {p2 ◦ ( f × g) ◦ i2}⊥{p2 ◦ (α, β)}

and we have f⊥α and g⊥β. It follows that α ∈ G f (Z, X) and β ∈ Gg(Z,Y ).

Remark 4.6 The converse of Proposition 1.7 of [17] holds by an argument similar

to the proof of Proposition 4.5. Let f1 : X1 → Z1, f2 : X2 → Z2, g1 : Y1 → Z1,

g2 : Y2 → Z2 be any maps. Then the following statements are equivalent.

(i) f1⊥g1 and f2⊥g2.

(ii) ( f1 × f2)⊥(g1 × g2)

Theorem 4.7 Let f : A → X and g : B → Y be any maps. The product space X × Y

is a C
f×g
k -space if and only if X is a C

f
k -space and Y is a C

g
k-space.

Proof If X × Y is a C
f×g
k -space, then for any space Z with cat Z ≤ k we see

G f (Z, X) × Gg(Z,Y ) ∼= G f×g(Z, X × Y ) = [Z, X × Y ] = [Z, X] × [Z,Y ]

by Theorem 3.2 and Proposition 4.5, and hence G f (Z, X) = [Z, X] and Gg(Z,Y ) =

[Z,Y ].

Conversely, suppose that X is a C
f
k -space and Y is a C

g
k-space. Then G f (Z, X) =

[Z, X] and Gg(Z,Y ) = [Z,Y ] for any space Z with cat Z ≤ k by Theorem 3.2. It

follows that G f×g(Z, X×Y ) ∼= G f (Z, X)×Gg(Z,Y ) = [Z, X]× [Z,Y ] = [Z, X×Y ]

for any space Z with cat Z ≤ k.
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Theorem 4.8 The product space X × Y is a Ck-space if and only if both X and Y are

Ck-spaces.

Proof Set f = 1X and g = 1Y in Theorem 4.7. Then we have the result.

We now consider covering spaces of C
f
k -spaces and T

f
k -spaces.

Theorem 4.9 Let X̃ be a covering space of a space X with the covering map p : X̃ → X

and 1 ≤ k ≤ ∞. Let f : A → X, f̃ : B → X̃, and q : B → A be maps such that the

following diagram is homotopy commutative:

B

ef
//

q

²²

X̃

p

²²
A

f
// X

(i) If X is a C
f
k -space, then the covering space X̃ is a C

ef
k -space.

(ii) If X is a T
f

k -space, then the covering space X̃ is a T
ef
k -space.

Proof (i) Since X is a C
f
k -space, there exists a map mk for f⊥eX

k . Consider the fol-

lowing diagram.

B × Pk(ΩX̃)
emk

//

q×Pk(Ωp)

²²

X̃

p

²²
A × Pk(ΩX)

mk

// X

We must show that

(mk ◦ (q × Pk(Ωp))∗(π1(B × Pk(ΩX̃)) ⊂ p∗π1(X̃)

to obtain a map m̃k : B × Pk(ΩX̃) → X̃ for f̃⊥e
eX
k . Let (α, β) ∈ π1(B × Pk(ΩX̃)) be

any element. We see that

(mk ◦ (q × Pk(Ωp))∗((α, β)) = ( f ◦ q)∗(α) +̇ (eX
k ◦ Pk(Ωp))∗(β)

= (p ◦ f̃ )∗(α) + (p ◦ e
eX
k )∗(β)

= p∗( f̃∗(α) + (e
eX
k )∗(β)) ∈ p∗π1(X̃),

by [18, Proposition 3.4 (1)], since f ◦ q ∼ p ◦ f̃ by assumption and the following
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diagram is homotopy commutative:

Pk(ΩX̃)
e

eX
k

//

Pk(Ωp)

²²

X̃

p

²²
Pk(ΩX)

eX
k

// X

(ii) is proved by an argument similar to (i); the proof is omitted.

The following theorem is obtained by setting A = X, B = X̃, q = p : X̃ → X,

f = 1X , and f̃ = 1eX in Theorem 4.9.

Theorem 4.10 Any covering space of a Ck-space (resp. Tk-space) is a Ck-space (resp.

Tk-space) for any 1 ≤ k ≤ ∞.

5 Applications and Examples

We have the following result by Theorem 2.5.

Proposition 5.1 If X is a Cm-space with cat X ≤ m for some m ≥ 1, then X is an

H-space.

Proposition 5.2 (i) If cat X = 1 (for example, X = ΣA, or a general co-H-space)

and X is not an H-space, then X is an NC-space.

(ii) If ΣX is a C1-space, then ΣX = S1, S3, or S7.

Proof (i) and (ii) are obtained by Proposition 5.1.

Let X be a 0-connected space. A space X is called a Gottlieb space or a G-space

if the Gottlieb group Gm(X) = πm(X) for any m ≥ 1 [4, 5]. A space X is called a

Whitehead space or a W -space if every Whitehead product [α, β] = 0 in [Sm+n+1, X]

for any α ∈ [Sn+1, X], β ∈ [Sm+1, X], and any n, m ≥ 0. A space X is called a

generalized Whitehead space or a GW -space if every generalized Whitehead product

on X is trivial, that is, [α, β] = 0 in [Σ(A∧B), X] for any α ∈ [ΣA, X], β ∈ [ΣB, X],

and any spaces A, B.

Remark 5.3 The following implications hold:

(i) X is a C1-space ⇒ X is a G-space ⇒X is a W -space.

(ii) X is a C1-space ⇒X is a GW -space ⇒X is a W -space.

(See [26, Theorem 2.2] and [20, Theorem 1.9] for (i); [12, Remark (4), p. 616] for

(ii).)

The complex projective space CP3 is a GW -space [12, Theorem 1] such that

cat(CP3) = 3, but it is not a Ck-space for any k (Example 5.7). We note that CP3

is not a G-space [20, Remark 3.4].

If p > 2, then L3(p) is a G-space, but it is not a Ck-space for any k ≥ 2 (see

Example 5.10 and Theorem 5.13).
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Proposition 5.4 Assume that X is a 1-connected space.

(i) X is a G-space =⇒ X is a rational H-space.

(ii) If k ≥ 1, then the rationalization of any Tk-space (and hence any Ck-space) is an

H-space.

Proof (i) is obtained by Haslam [7] (see also [13, Theorem 3.4]). (ii) is a direct

consequence of (i).

Example 5.5 It is known that H-spaces, T-spaces, and GW -spaces are equivalent in

the class of spaces of L-S category ≤ 1 (see Propositions 2.4 , 5.1 and the definition of

the GW -space). Then the following results hold by Proposition 3.4(v) and Theorem

4.3(ii).

(i) S1, S3 ,and S7 are H-spaces and hence Ck-spaces for any k ≥ 1.

(ii) If 1 ≤ n < ∞ and n 6= 1, 3, 7, then Sn is not an H-space and hence an NC-

space, since cat Sn
= 1.

In the following argument we consider projective spaces RPn, CPn, and lens spaces

Ln(p) (p ≥ 2); however, the cases RP∞, CP∞, and L∞(p) are not referred to, since

they are H-spaces and hence Ck-spaces for any 1 ≤ k ≤ ∞.

Example 5.6 If 1 ≤ n < ∞ and n 6= 1, 3, 7, then the real projective space RPn is

an NC-space by Example 5.5(ii)and Theorem 4.10. However, RP1, RP3, and RP7 are

H-spaces and hence Ck-spaces for any 1 ≤ k ≤ ∞.

Example 5.7 If a 1-connected space X is not a rational H-space, then X is an NC-

space by Proposition 5.4. For 1 ≤ n < ∞, the complex projective space CPn is not a

rational H-space, and hence it is an NC-space.

Let S2n+1 be the unit sphere in the (n + 1)-dimensional complex vector space C
n+1

(n ≥ 1). Let ω be the p-th root of unity (p ≥ 2). Then the group Γ generated by

ω acts on S2n+1 by ω · (z0, z1, . . . , zn) = (ωz0, ωz1, . . . , ωzn). Let the lens space be

L2n+1(p) = S2n+1/Γ, the quotient space of S2n+1 by Γ. See [24, Example 3, p. 91].

Proposition 5.8 ([24, Theorem (7.9), Chapter II]) Let p be an odd prime.

H∗(L2n+1(p); Z/p) =
∧

Z/p

(x1) ⊗ {Z/p [x2]/(xn+1
2 )},

where x1 ∈ H1(L2n+1(p); Z/p) and x2 = β∗
p x1 ∈ H2(L2n+1(p); Z/p).

Proposition 5.9 Let p be a prime.

(i) If 2n + 1 6= 3, 7, then L2n+1(p) is not a G-space.

(ii) If 2n + 1 6= 3, 7, then L2n+1(p) is a NC-space.

Proof (i) If L2n+1(p) is a G-space, then S2n+1 is a G-space [6, Theorem 2.2].

(ii) If L2n+1(p) is a Ck-space, then S2n+1 is a Ck-space by Theorem 4.10.
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Let us recall that L3(p) is a G-space by [15, Corollary II.10], since S3
= Sp(1) is

a Lie group. For general L2n+1(p), we only know that π1(L2n+1(p)) = G1(L2n+1(p))

by [2, Theorem] or [19, Theorem A]. See also [4, Theorems II.4, II.5] and [5, The-

orem 6.2]. However, for L3(p), we obtain the result using an argument similar to

[15], including a proof for the fundamental group that is simpler than [2, 19] in this

particular case.

Example 5.10 L3(p) is a G-space for any p ≥ 2.

Actually, we can show the result in this way. Assume that π1(L3(p)) = Z/p is

generated by the inclusion map α : S1 →֒ L3(p), which has a lift α̃ : [0, 1] → S3 such

that α̃(0) = 1, α̃(1) = ξ and π ◦ α̃ = α ◦ ω, where π : S3 → L3(p) is the canonical

projection taking the orbit space by the action of 〈ξ | ξp〉 ∼= Z/p a subgroup of a Lie

group S3, and where ω : [0, 1] → S1 is the standard identification map. Since S3 is a

Lie group, there is an associative unital multiplication µ : S3 × S3 → S3 that defines a

map f̃ : [0, 1]× S3 → S3 by f̃ = µ ◦ (α̃× 1). Then f̃ induces a map f of orbit spaces

by the action of Z/p, since f̃ (1, ξi ·x) = α̃(1)·ξi ·x = ξ ·ξi ·x = ξi+1 ·x = ξi+1 · f̃ (0, x):

[0, 1] × S3
f̃

//

ω×π

²²

S3

π

²²

[0, 1]
α̃

oo

ω

²²

S1 × L3(p)
f

// L3(p) S1
α

oo

S1 ∨ L3(p),

⊂

〈α,1L3(p)〉

::ttttttttt

Thus α ∈ G1(L3(p)) and hence G1(L3(p)) = π1(L3(p)). Since the universal cover of

L3(p) is S3, which is a Lie group, we see that the projection π : S3 → L3(p) is a cyclic

map, and hence Gn(L3(p)) = πn(L3(p)) for n ≥ 2. It follows that L3(p) is a G-space.

To examine the existence of a Ck-structure on L3(p), we need the following lemma

for a space X using observations on ΣΩX.

Lemma 5.11 Let X be a 0-connected CW-complex whose universal cover X̃ satisfies

that ΣΩX̃ has the homotopy type of a wedge sum of spheres. Then X is a C1-space if and

only if X is a G-space.

Proof Since ΩX ≃ π1(X) × ΩX̃, we have

ΣΩX ≃ (
∨

0 6=λ∈π1(X)

S1
λ) ∨ ΣΩX̃ ∨ (

∨
0 6=λ∈π1(X)

S1
λ ∧ ΩX̃),

which has the homotopy type of a wedge of spheres. Thus we have the lemma.

Proposition 5.12 L3(p) is a C1-space for any p ≥ 2.
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Proof By Example 5.10 and Lemma 5.11, we have the result.

Theorem 5.13 L3(p) is a C2-space if and only if p = 2.

Remark When p = 2, the lens space L3(2) (= RP3 ∼= SO(3)) is actually an H-space

(see [12, Remark (1), p. 616]), and hence a Ck-space for any k.

Proof of Theorem 5.13 By Proposition 5.12, we know that L3(p) is a C1-space. We

also know that L3(2) = RP3
= SO(3) is a Lie group. So we are left to show that L3(p)

is not a C2-space when p 6= 2. If L3(p) is a C2-space, then there is a map

m : P2(ΩL3(p)) × L3(p) → L3(p)

whose axes are e
L3(p)
2 : P2(ΩL3(p)) → L3(p) and the identity of L3(p).

Let L3(p)(2)
= S1∪e2 be the 2-skeleton of L3(p) = S1∪e2∪e3. Then there is a map

s2 : L3(p)(2) → P2(ΩL3(p)(2)) ⊂ P2(ΩL3(p)) such that e
L3(p)
2 ◦ s2 ∼ i2 : L3(p)(2) →֒

L3(p) is the canonical inclusion. On the other hand, we have

H∗(L3(p); Z/p) ∼=
∧

Z/p

(x1) ⊗ {Z/p[x2]/(x2
2)}

∼= H∗(L3(p)(2); Z/p) ⊕ Z/p{x1x2}, ker i∗2 = Z/p{x1x2},

where xi is in Hi(L3(p)(2); Z/p) ⊂ Hi(L3(p); Z/p) with a Bockstein relation βpx1 =

x2. Thus (e
L3(p)
2 )∗xi 6= 0 for i = 1, 2, since e

L3(p)
2 ◦ s2 ∼ i2.

Now let h : ΣP2(ΩL3(p))∧ L3(p) → ΣL3(p) be the Hopf construction of the map

m : P2(ΩL3(p)) × L3(p) → L3(p), and let Ch be the mapping cone of h. Then the

connecting homomorphism

δ : H5(ΣP2(ΩL3(p)) ∧ L3(p); Z/p) → H6(Ch; Z/p)

is an isomorphism, since Hq(ΣL3(p); Z/p) = 0 for q ≥ 5. Thus we have

H6(Ch; Z/p) ∼=

H4(P2(ΩL3(p)) ∧ L3(p); Z/p) ⊃ H2(L3(p)(2); Z/p) ⊗ H2(L3(p); Z/p).

Let s∗ : Hn(ΣX) → Hn−1(X) be the suspension homomorphism (n ≥ 1). For di-

mensional reasons, we know that x1 and x2 are primitive with respect to m, and hence

s∗−1xi lies in the image of the restriction Hi+1(Ch; Z/p) → Hi+1(ΣL3(p); Z/p), say

yi+1|ΣL3(p) = s∗−1xi for i = 1, 2. Then by [22, Corollary 1.4(a)], we know

y2
3 = ±δ(s∗−1(x2 ⊗ x2)) 6= 0,

while we know that y2
3 = −y2

3 and hence 2y2
3 = 0. Thus we have p = 2.

Making use of the classification of GW -spaces of type (q, n, m) in [12, Theorem 1],

the following result is proved.
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Theorem 5.14 Let X be a Ck-space for some k ≥ 1 with at most three cells (other than

the base point 0-cell). Then X has the homotopy type of one of the spaces in the following

list.

(i) X = S1, S3, S7 or their products; otherwise;

(ii) If π1(X) is a non-zero finite group, then X = L3(p, ℓ) for an integer p ≥ 2, where

ℓ is a unit of the quotient ring Zπ/(1 + τ + · · · + τ p−1) of the group ring Zπ for

the group π = 〈τ | τ p
= 1〉 ∼= Z/p;

(iii) If π1(X) = 0, then X = SU (3) or Ekω (k 6≡ 2 mod 4); in the latter case Ekω is an

H-space.

Proof Since a Ck-space for some k ≥ 1 is a T-space and hence a GW -space, we can

examine the GW -spaces with up to 3 cells listed in Theorem 1 of [12]. However, CP3

in the theorem is an NC-space by Example 5.7, and hence the result follows.

Remark 5.15 In view of Theorem 5.14 we see that any real, complex or quater-

nionic Stiefel manifold of 2-frames is an NC-space unless it is an H-space. We note

that a Stiefel manifold is an H-space if and only if it is a Lie group or S7, by [8, Theo-

rems 1.1, 1.2] and [9, Corollary 0.6].
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[1] J. Aguadé, Decomposable free loop spaces. Canad. J. Math. 39(1987), no. 4, 938–955.
doi:10.4153/CJM-1987-047-9

[2] S. A. Broughton, The Gottlieb group of finite linear quotients of odd-dimensional spheres. Proc.
Amer. Math. Soc. 111(1991), no. 4, 1195–1197.

[3] T. Ganea, Lusternik-Schnirelmann category and strong category. Illionis J. Math. 11(1967),
417–427.

[4] D. H. Gottlieb, A certain subgroup of the fundamental group. Amer. J. Math. 87(1965), 840–856.
doi:10.2307/2373248

[5] , Evaluation subgroups of homotopy groups. Amer. J. Math. 91(1969), 729–756.
doi:10.2307/2373349

[6] , On the construction of G-spaces and applications to homogeneous spaces. Proc. Cambridge
Philos. Soc. 68(1970), 321–327. doi:10.1017/S0305004100046120

[7] H. B. Haslam, G-spaces mod F and H-spaces mod F. Duke Math. J. 38(1971), 671–679.
doi:10.1215/S0012-7094-71-03882-8

[8] J. R. Hubbuck, Hopf structures on Stiefel manifolds. Math. Ann. 262(1983), no. 4, 529–547.
doi:10.1007/BF01456067

[9] N. Iwase, H-spaces with generating subspaces. Proc. Roy. Soc. Edinburgh Sect. A 111(1989),
no. 3-4, 199–211.

[10] , Ganea’s conjecture on Lusternik-Schnirelmann category. Bull. London Math. Soc.
30(1998), no. 6, 623–634. doi:10.1112/S0024609398004548

[11] , The Ganea conjecture and recent developments on Lusternik-Schnirelmann category.
Sugaku Expositions 20(2007), no. 1, 43–63.

[12] N. Iwase, A. Kono and M. Mimura, Generalized Whitehead spaces with few cells. Publ. Res. Inst.
Math. Sci. 28(1992), no. 4, 615–652. doi:10.2977/prims/1195168211

[13] N. Iwase and N. Oda, Splitting off rational parts in homotopy types. Topology Appl. 153(2005), no.
1, 133–140. doi:10.1016/j.topol.2005.01.027

[14] I. M. James, On category in the sense of Lusternik-Schnirelmann. Topology 17(1978), no. 4,
331–348. doi:10.1016/0040-9383(78)90002-2

[15] G. E. Lang, Jr, Evaluation subgroups of factor spaces. Pacific J. Math. 42(1972), 701–709.
[16] J. Milnor, Construction of universal bundles. I, II. Ann. Math. 63(1956), 272–284, 430–436.

doi:10.2307/1969609

[17] N. Oda, The homotopy set of the axes of pairings. Canad. J. Math. 17(1990), no. 5, 856–868.
doi:10.4153/CJM-1990-044-3

http://dx.doi.org/10.4153/CJM-1987-047-9
http://dx.doi.org/10.2307/2373248
http://dx.doi.org/10.2307/2373349
http://dx.doi.org/10.1017/S0305004100046120
http://dx.doi.org/10.1215/S0012-7094-71-03882-8
http://dx.doi.org/10.1007/BF01456067
http://dx.doi.org/10.1112/S0024609398004548
http://dx.doi.org/10.2977/prims/1195168211
http://dx.doi.org/10.1016/j.topol.2005.01.027
http://dx.doi.org/10.1016/0040-9383(78)90002-2
http://dx.doi.org/10.2307/1969609
http://dx.doi.org/10.4153/CJM-1990-044-3


14 N. Iwase, M. Mimura, N. Oda, and Y. S. Yoon

[18] , Pairings and copairings in the category of topological spaces. Publ. Res. Inst. Math. Sci.
28(1992), no. 1, 83–97. doi:10.2977/prims/1195168857

[19] J. Oprea, Finite group actions on spheres and the Gottlieb group. J. Korean Math. Soc. 28(1991),
no. 1, 65–78.

[20] J. Siegel, G-spaces, H-spaces and W -spaces. Pacific J. Math. 31(1969), 209–214.
[21] J. D. Stasheff, Homotopy associativity of H-spaces I, II, Trans. Amer. Math. Soc. 108(1963),

275–292, 293–312.
[22] E. Thomas, On functional cup-products and the transgression operator. Arch. Math. (Basel)

12(1961), 435–444.
[23] K. Varadarajan, Generalized Gottlieb groups. J. Indian Math. Soc. 33(1969), 141–164.
[24] G. W. Whitehead, Elements of Homotopy Theory. Graduate Texts in Mathematics 61.

Springer-Verlag, New York, 1978.
[25] M. H. Woo and J.-R. Kim, Certain subgroups of homotopy groups. J. Korean Math. Soc. 21(1984),

no. 2, 109 – 120.
[26] M. H. Woo and Y. S. Yoon, T-spaces by the Gottlieb groups and duality. J. Austral. Math. Soc. Ser. A

59(1995), no. 2, 193–203. doi:10.1017/S1446788700038593

[27] Y. S. Yoon, Generalized Gottlieb groups and generalized Wang homomorphisms. Sci. Math. Jpn.
55(2002), no. 1, 139–148.

[28] , H f -spaces for maps and their duals. J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math.
14(2007), no. 4, 289–306.

[29] , Lifting T-structures and their duals. J. Chungcheong Math. Soc. 20(2007), 245–259.

Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan
e-mail: iwase@math.kyushu-u.ac.jp

Department of Mathematics, Okayama University, Okayama 700-8530, Japan
e-mail: mimura@math.okayama-u.ac.jp

Department of Applied Mathematics, Fukuoka University, Fukuoka 814-0180, Japan
e-mail: odanobu@cis.fukuoka-u.ac.jp

Department of Mathematics Education, Hannam University, Daejeon 306-791, Korea
e-mail: yoon@hannam.ac.kr

http://dx.doi.org/10.2977/prims/1195168857
http://dx.doi.org/10.1017/S1446788700038593

