The Milnor-Stasheff Filtration on Spaces and Generalized Cyclic Maps

Norio Iwase, Mamoru Mimura, Nobuyuki Oda, and Yeon Soo Yoon

Abstract

The concept of C_{k}-spaces is introduced, situated at an intermediate stage between H-spaces and T-spaces. The C_{k}-space corresponds to the k-th Milnor-Stasheff filtration on spaces. It is proved that a space X is a C_{k}-space if and only if the Gottlieb set $G(Z, X)=[Z, X]$ for any space Z with cat $Z \leq k$, which generalizes the fact that X is a T-space if and only if $G(\Sigma B, X)=[\Sigma B, X]$ for any space B. Some results on the C_{k}-space are generalized to the C_{k}^{f}-space for a map $f: A \rightarrow X$. Projective spaces, lens spaces and spaces with a few cells are studied as examples of C_{k}-spaces, and non- C_{k}-spaces.

1 Introduction

A 0 -connected space X is called a T-space if the fibration $\Omega X \rightarrow X^{S^{1}} \rightarrow X$ is fiber homotopically trivial [1], and it is known that any 0 -connected H-space is a T-space. To investigate intermediate stages between H-spaces and T-spaces, Aguadé [1] defined T_{k}-spaces for any integer $k \geq 1$ and $k=\infty$, making use of the Milnor-Stasheff filtration on spaces, so that the T_{∞}-space is an H-space and the T_{1}-space is a T space. It seems that relations between T_{k}-spaces and the L-S category of spaces were not investigated clearly after his work. In this paper we define the concept of the C_{k}-space for $k \geq 1$ so that the C_{1}-space is the same as the T-space and the C_{∞}-space is an H-space. We also employ the Milnor-Stasheff filtration on spaces to define $C_{k^{-}}$ spaces. However, the definition of the C_{k}-space is directly connected with the L-S category; it enables us to prove, for example, that a space X is a C_{k}-space if and only if the Gottlieb set $G(Z, X)=[Z, X]$ for any space Z with cat $Z \leq k$ (Theorem 2.3), which is a generalization of the fact that X is a T-space if and only if the Gottlieb group $G(\Sigma B, X)=[\Sigma B, X]$ for any space $B[26$, Theorem 2.2].

For each k, let $j_{k}^{X}: \Sigma \Omega X=P^{1}(\Omega X) \rightarrow P^{k}(\Omega X)$ and $e_{k}^{X}: P^{k}(\Omega X) \rightarrow P^{\infty}(\Omega X) \simeq X$ be the natural inclusions for the spaces $P^{k}(\Omega X)[16,21]$ (see $\mathbb{4} 1$). Let $f: A \rightarrow X$ be any map. A 0 -connected space X is called a C_{k}^{f}-space if $e_{k}^{X}: P^{k}(\Omega X) \rightarrow X$ is f-cyclic (Definition 3.1). A $C_{k}^{1_{X}}$-space X is called a C_{k}-space (Definition 2.1).

We show that a space X is a C_{k}^{f}-space if and only if $G^{f}(Z, X)=[Z, X]$ for any space Z with cat $Z \leq k$ (Theorem[3.2). Let $f: A \rightarrow X$ and $g: B \rightarrow Y$ be any maps. The product space $X \times Y$ is a $C_{k}^{f \times g}$-space if and only if X is a C_{k}^{f}-space and Y is a C_{k}^{g}-space (Theorem4.7). It follows that the product space $X \times Y$ is a C_{k}-space if and only if both X and Y are C_{k}-spaces (Theorem4.8).

[^0]Let \widetilde{X} be a covering space of a space X with the covering map $p: \widetilde{X} \rightarrow X$ and $1 \leq k \leq \infty$. Let $f: A \rightarrow X, \widetilde{f}: B \rightarrow \widetilde{X}$, and $q: B \rightarrow A$ be maps such that the following diagram is homotopy commutative,

In Theorem 4.9 we show that if X is a C_{k}^{f}-space, then the covering space \widetilde{X} is a $C_{k}^{\widetilde{f}}$ space. A relation between two "multiplications" that are induced by a pairing and a copairing [18, Proposition 3.4] will be used to prove Theorem4.9. A similar result holds for the T_{k}^{f}-space, which is a generalization of Aguadés T_{k}-space (see Definition 3.3). If we put $f=1_{X}, \widetilde{f}=1_{\widetilde{X}}, q=p$, then we see that any covering space of a C_{k}-space (resp. Aguade's T_{k}-space) is a C_{k}-space (resp. T_{k}-space) for any $1 \leq k \leq \infty$ (Theorem 4.10).

In the last section we study projective spaces, lens spaces and spaces with a few cells.

$2 C_{k}$-Spaces

We work in the category of topological spaces with base point. The symbol $f \sim$ $g: X \rightarrow Y$ means the based homotopy relation and the symbol $X \simeq Y$ the based homotopy equivalence. The set of based homotopy classes of maps $[f]: X \rightarrow Y$ is denoted by $[X, Y]$. Let $f: A \rightarrow X$ be a map. A based map $g: B \rightarrow X$ is said to be f-cyclic [17] if there exists a map $\phi: B \times A \rightarrow X$ such that the diagram

is homotopy commutative, where $j: A \vee B \rightarrow A \times B$ is the inclusion and $\nabla: X \vee X \rightarrow$ X is the folding map. We call such a map ϕ an associated map of an f-cyclic map g.

Clearly, g is f-cyclic if and only if f is g-cyclic. We write $f \perp g$ if g is f-cyclic. If $f \perp g$ for maps $f: A \rightarrow X$ and $g: B \rightarrow X$, then $\left(w \circ f \circ f^{\prime}\right) \perp\left(w \circ g \circ g^{\prime}\right)$ for any maps $w: X \rightarrow W, f^{\prime}: A^{\prime} \rightarrow A$, and $g^{\prime}: B^{\prime} \rightarrow B$ by [17, Theorems 1.4 and 1.5]. This formula is used repeatedly in the following arguments without further reference. A based map $g: B \rightarrow X$ is said to be cyclic [23] if $1_{X} \perp g$, that is, g is 1_{X}-cyclic. The Gottlieb set denoted by $G(B, X)$ is the set of all homotopy classes of cyclic maps from B to X.

The loop space ΩX of any space X has a homotopy type of an associative H-space. A 0 -connected space X is filtered by the projective spaces of $\Omega X[16,21]$:

$$
*=P^{0}(\Omega X) \hookrightarrow \Sigma \Omega X=P^{1}(\Omega X) \hookrightarrow \cdots \hookrightarrow P^{k}(\Omega X) \hookrightarrow \cdots \hookrightarrow P^{\infty}(\Omega X) \simeq X
$$

For each k, let $j_{k}^{X}: \Sigma \Omega X=P^{1}(\Omega X) \rightarrow P^{k}(\Omega X)$ and $e_{k}^{X}: P^{k}(\Omega X) \rightarrow P^{\infty}(\Omega X) \simeq X$ be the natural inclusions. We write $e^{X}=e_{1}^{X}: \Sigma \Omega X=P^{1}(\Omega X) \rightarrow X$. We see that $j_{\infty}^{X} \sim e^{X}: \Sigma \Omega X \rightarrow X$ and $e_{\infty}^{X} \sim 1_{X}: X \rightarrow X$.

A 0 -connected space X is called a T_{k}-space [1] if $1_{X} \perp \bar{e}_{k}$ for some extension $\bar{e}_{k}: P^{k}(\Omega X) \rightarrow X$ of $e^{X}: \Sigma \Omega X \rightarrow X$, that is, there exists a map $\phi_{k}: X \times P^{k}(\Omega X) \rightarrow X$ such that $\phi_{k} \circ j \circ\left(1_{X} \vee j_{k}^{X}\right) \sim \nabla \circ\left(1_{X} \vee e^{X}\right): X \vee \Sigma \Omega X \rightarrow X$. Aguade showed that X is a T-space if and only if X is a T_{1}-space [1, Proposition 4.1]. If X is a T_{k}-space, then it is a T_{i}-space for any $1 \leq i \leq k$. By [1, Proposition 4.1(i)(ii)], a 0 -connected space is an H-space if and only if it is a T_{∞}-space; we remark that $\bar{e}_{\infty} \sim 1_{X}$ when X is a 0 -connected CW complex. The concepts of the T-space and the Gottlieb set are closely connected by the fact that X is a T-space if and only if $G(\Sigma B, X)=[\Sigma B, X]$ for any space B [26, Theorem 2.2].

Definition 2.1 Let $k \geq 1$ be an integer or $k=\infty$. A 0 -connected space X is called a C_{k}-space if $1_{X} \perp e_{k}^{X}$, that is, the inclusion $e_{k}^{X}: P^{k}(\Omega X) \rightarrow X$ is cyclic. A 0 -connected space X is called an $N C$-space if X is not a C_{k}-space for any $k \geq 1$.

Clearly any C_{k}-space is a T_{k}-space for any $k \geq 1$. We use the L-S category cat X for a 0 -connected space X in the sense that cat $X=n$ if n is the minimum number of categorical open coverings $U_{0}, U_{1}, \ldots, U_{n}$ of X, so that cat $X=0$ if and only if X is contractible and cat $X \leq 1$ if X is a suspension. Throughout this paper, we follow Iwase for the notations for the L-S category; his list of references covers much of the widely-known literature [11] .

We now recall Ganea's theorem [10, 11].
Theorem 2.2 (Ganea [3,10]) Let $k \geq 1$ be an integer or $k=\infty$ and assume that X is a 0 -connected space. The category cat $X \leq k$ if and only if $e_{k}^{X}: P^{k}(\Omega X) \rightarrow X$ has a right homotopy inverse.

In the rest of this section, we mention some results on the C_{k}-space that are obtained as special cases of the results on the C_{k}^{f}-spaces for a map $f: A \rightarrow X$ in the following sections, since the C_{k}-space is the C_{k}^{f}-space for the identity map $f=$ $1_{X}: X \rightarrow X$.

The property of the T-spaces in [26, Theorem 2.2] is extended to the C_{k}-spaces using the L-S category in the sense that the L-S category of any suspension space ΣB satisfies cat $\Sigma B \leq 1$.

Theorem 2.3 Let $k \geq 1$ be an integer. A space X is a C_{k}-space if and only if $G(Z, X)=$ [$Z, X]$ for any space Z with cat $Z \leq k$.

Theorem 2.3 is a special case of Theorem 3.2 which is proved in the next section. The following proposition is a direct consequence of the definition.

Proposition 2.4 (i) A space X is a T-space if and only if X is a C_{1}-space.
(ii) Any C_{m}-space is a C_{n}-space for $\infty \geq m \geq n \geq 1$.
(iii) A space X is an H-space if and only if X is a C_{∞}-space.

As a direct consequence of Proposition 3.4 (ii),(v) and Theorem4.3 the following theorem is obtained.

Theorem 2.5 Assume that cat $X=k \geq 1$. Then X is an H-space if and only if X is a C_{n}-space for some $n \geq k$.

It is known [14] that cat $X \leq \operatorname{dim} X$ for any finite CW complex X. Thus, we obtain the following corollary.

Corollary 2.6 If a T-space X is a 1-dimensional finite $C W$ complex, then $X=S^{1}$.
Example 2.7 By [1, Proposition 4.2] Aguadé obtained a space X such that X is a T_{p-1}-space but not a T_{p}-space. This space X is not a C_{p}-space, but it is not known whether X is a C_{p-1}-space or not.

$3 \quad C_{k}^{f}$-Spaces for a Map $f: A \rightarrow X$

We denote the set of all homotopy classes of f-cyclic maps from B to X by

$$
G(B ; A, f, X)=G^{f}(B, X)=f^{\perp}(B, X) \subset[B, X]
$$

This is called the Gottlieb set for a map $f: A \rightarrow X$. If $f=1_{X}: X \rightarrow X$, then we recover the set $G(B, X)$ defined by Varadarajan [23]:

$$
G(B, X)=G\left(B ; X, 1_{X}, X\right)=G^{1_{X}}(B, X)=\left(1_{X}\right)^{\perp}(B, X)
$$

In general, $G(B, X) \subset G^{f}(B, X) \subset[B, X]$ for any spaces A, B, X and any map $f: A \rightarrow X$. An example is shown in [27] such that $G(B, X) \neq G(B ; A, f, X) \neq[B, X]:$

$$
G_{5}\left(S^{5} \times S^{5}\right) \cong 2 \mathbb{Z} \oplus 2 \mathbb{Z} \neq G_{5}\left(S^{5}, i_{1}, S^{5} \times S^{5}\right) \cong 2 \mathbb{Z} \oplus \mathbb{Z} \neq \pi_{5}\left(S^{5} \times S^{5}\right) \cong \mathbb{Z} \oplus \mathbb{Z}
$$

Definition 3.1 Let $k \geq 1$ be an integer or $k=\infty$. Let $f: A \rightarrow X$ be any map. A 0 -connected space X is called a C_{k}^{f}-space if $f \perp e_{k}^{X}$ (or $e_{k}^{X}: P^{k}(\Omega X) \rightarrow X$ is f-cyclic). A 0 -connected space X is called an $N C^{f}$-space if X is not a C_{k}^{f}-space for any $k \geq 1$.

We see that a $C_{k}^{1_{X}}$-space X is a C_{k}-space.
Theorem 3.2 Let $f: A \rightarrow X$ be any map. A space X is a C_{k}^{f}-space if and only if $G^{f}(Z, X)=[Z, X]$ for any space Z with cat $Z \leq k$.

Proof Suppose that X is a C_{k}^{f}-space, namely, $f \perp e_{k}^{X}$. Let Z be a space with cat $Z \leq k$ and $g: Z \rightarrow X$ any map. Since cat $Z \leq k$, there exists a map $s_{k}^{Z}: Z \rightarrow P^{k}(\Omega Z)$ such
that $e_{k}^{Z} \circ s_{k}^{Z} \sim 1_{Z}$. We see that $e_{k}^{X} \circ P^{k}(\Omega g) \sim g \circ e_{k}^{Z}$ by the naturality of the construction of $P^{k}(\Omega Z)$, as is shown in the following homotopy commutative diagram:

Hence the relation $f \perp e_{k}^{X}$ implies $f \perp\left(e_{k}^{X} \circ P^{k}(\Omega g) \circ s_{k}^{Z}\right)$ or $f \perp g$. It follows that $G^{f}(Z, X)=[Z, X]$.

Conversely, assume that $G^{f}(Z, X)=[Z, X]$ for any space Z with cat $Z \leq k$. It is known that cat $C_{\theta} \leq$ cat $Y+1$ for any map $\theta: X \rightarrow Y$ [24, (1.6) Theorem, p. 459], where C_{θ} is the mapping cone of θ. Thus cat $P^{k}(\Omega X)=\operatorname{cat} C_{\theta} \leq \operatorname{cat} P^{k-1}(\Omega X)+1$, where $\theta:(\Omega X) * \cdots *(\Omega X)(k$-times $) \rightarrow P^{k-1}(\Omega X)$ is the map in [21, Part I, Theorem 12]. By induction, we have cat $P^{k}(\Omega X) \leq k$. Thus we know that $e_{k}^{X}: P^{k}(\Omega X) \rightarrow$ X is f-cyclic by our assumption, and hence X is a C_{k}^{f}-space.

A space X is called an H^{f}-space for a map $f: A \rightarrow X$ if 1_{X} is f-cyclic (namely $f \perp 1_{X}$), and a T^{f}-space for a map $f: A \rightarrow X$ if $e^{X}: \Sigma \Omega X \rightarrow X$ is f-cyclic (namely $\left.f \perp e^{X}\right)[28,29]$. Any H-space X is an H^{f}-space and any H^{f}-space X is a T^{f}-space for any map $f: A \rightarrow X$. We remark that the 2-dimensional sphere S^{2} is not an H-space nor a T-space, but it is an $H^{\eta_{2}}$-space and a $T^{\eta_{2}}$-space for the Hopf map $\eta_{2}: S^{3} \rightarrow S^{2}$ [29, Example 2.10], [26, Corollary 2.8].

Definition 3.3 Let $f: A \rightarrow X$ be any map. A space X is called a T_{k}^{f}-space if $f \perp \bar{e}_{k}$ for some extension $\bar{e}_{k}: P^{k}(\Omega X) \rightarrow X$ of $e^{X}: \Sigma \Omega X \rightarrow X$, that is, there exists a map $\phi_{k}: A \times P^{k}(\Omega X) \rightarrow X$ such that $\phi_{k} \circ j \circ\left(1_{X} \vee j_{k}^{X}\right) \sim \nabla \circ\left(f \vee e^{X}\right): A \vee P^{1}(\Omega X) \rightarrow X$.

An $H^{1_{X}}$-space X is an H-space and a $T_{k}^{1_{X}}$-space X is a T_{k}-space.
Proposition 3.4 Let $f: A \rightarrow X$ be any map.
(i) X is a C_{1}^{f}-space $\Leftrightarrow X$ is a T_{1}^{f}-space $\Leftrightarrow X$ is a T^{f}-space.
(ii) Any C_{m}^{f}-space is a C_{n}^{f}-space for $\infty \geq m \geq n \geq 1$.
(iii) Any T_{m}^{f}-space is a T_{n}^{f}-space for $\infty \geq m \geq n \geq 1$.
(iv) If X is a C_{k}^{f}-space, then X is a T_{k}^{f}-space for $\infty \geq k \geq 1$.
(v) If X has the homotopy type of a CW complex, then the following equivalences hold:

$$
X \text { is an } H^{f} \text {-space } \Leftrightarrow X \text { is a } C_{\infty}^{f} \text {-space } \Leftrightarrow X \text { is a } T_{\infty}^{f} \text {-space. }
$$

Proof These results are direct consequences of the definitions except the following part of (v): " X is a T_{∞}^{f}-space $\Rightarrow X$ is an H^{f}-space", which is proved by a method similar to the proof of [1, Proposition 4.1 (ii)] as follows.

Suppose that X is a T_{∞}^{f}-space. Then $f \perp \bar{e}$ for some extension $\bar{e}: P^{\infty}(\Omega X)(\simeq X) \rightarrow$ X of $e_{1}^{X}: \Sigma \Omega X \rightarrow X$, and there exists a map $m: A \times P^{\infty}(\Omega X) \rightarrow X$ with axes f and \bar{e},
making the following diagram commutative up to homotopy:

Let $g: X \rightarrow X$ be a map given by $g(x)=m \circ\left(1 \times e_{\infty}^{X}\right)^{-1}(*, x)$ for any $x \in X$. Then $g \sim \bar{e} \circ\left(e_{\infty}^{X}\right)^{-1}$ and we have $g \circ e_{1}^{X} \sim e_{1}^{X}$, and hence $\Omega g \sim 1_{\Omega X}$ by taking adjoints. Then it follows that $g: X \rightarrow X$ is a weak homotopy equivalence and hence is a homotopy equivalence if X has the homotopy type of a CW complex, by a theorem of J. H. C. Whitehead, and there exists a map $h: X \rightarrow X$ such that $g \circ h \sim 1_{X}$. Hence we have $f \perp g$, which implies that $f \perp(g \circ h)$ or $f \perp 1_{X}$ by the composition formula we discussed at the start of Section 2.

4 More about T_{k}^{f}-Spaces and C_{k}^{f}-Spaces

Proposition 4.1 Let $f: A \rightarrow X$ and $g: B \rightarrow A$ be any maps.
(i) If X is an H^{f}-space, then X is an $H^{f \circ g}$-space.
(ii) If X is a T_{k}^{f}-space, then X is a $T_{k}^{f \circ g}$-space.
(iii) If X is a C_{k}^{f}-space, then X is a $C_{k}^{f \circ g}$-space.

Proof The relations (i) $f \perp 1_{X}$, (ii) $f \perp \bar{e}_{k}$, and (iii) $f \perp e_{k}^{X}$ imply (i) $(f \circ g) \perp 1_{X}$, (ii) $(f \circ g) \perp \bar{e}_{k}$, and (iii) $(f \circ g) \perp e_{k}^{X}$, respectively, and we have the results.

Proposition 4.2 Assume that $f: A \rightarrow X$ has a right inverse s: $X \rightarrow A$, i.e., $f \circ s \sim 1_{X}$. Then the following results hold.
(i) An H^{f}-space X is an H-space.
(ii) $A T_{k}^{f}$-space X is a T_{k}-space.
(iii) $A C_{k}^{f}$-space X is a C_{k}-space.

Proof These are immediate by Proposition 4.1
If X is an H^{f}-space, then X is a C_{k}^{f}-space for any $k \geq 1$ by Proposition 3.4 (ii), (v). The following theorem shows that the converse holds if cat $X \leq k$.

Theorem 4.3 Let $f: A \rightarrow X$ be any map.
(i) If X is a C_{k}^{f}-space and cat $X \leq k$, then X is an H^{f}-space.
(ii) If X is a C_{k}-space and cat $X \leq k$, then X is an H-space.

Proof (i) Since cat $X \leq k$, we see that $G^{f}(X, X)=[X, X]$ by Theorem 3.2 It follows that $f \perp 1_{X}$. (ii) is the case where $f=1_{X}$, and hence $1_{X} \perp 1_{X}$.

Theorem 4.4 Assume that Y is a homotopy retract of X with the maps $r: X \rightarrow Y$ and $s: Y \rightarrow X$ such that $r \circ s \sim 1_{Y}$.
(i) If X is a C_{k}^{f}-space, then Y is a $C_{k}^{r \circ f}$-space for any map $f: A \rightarrow X$.
(ii) If X is a C_{k}-space, then Y is a C_{k}-space.

Proof Let $\bar{r}_{k}=P^{k}(\Omega r): P^{k}(\Omega X) \rightarrow P^{k}(\Omega Y)$ and $\bar{s}_{k}=P^{k}(\Omega s): P^{k}(\Omega Y) \rightarrow P^{k}(\Omega X)$ be the maps induced by r and s, respectively. Then we see that

$$
e_{k}^{Y}=r \circ s \circ e_{k}^{Y}=e_{k}^{Y} \circ \bar{r}_{k} \circ \bar{s}_{k}=r \circ e_{k}^{X} \circ \bar{s}_{k}: P^{k}(\Omega Y) \rightarrow Y .
$$

Then (i) the relation $f \perp e_{k}^{X}$ implies $(r \circ f) \perp\left(r \circ e_{k}^{X} \circ \bar{s}_{k}\right)$, or $(r \circ f) \perp e_{k}^{Y}$ and (ii) the relation $1_{X} \perp e_{k}^{X}$ implies $\left(r \circ 1_{X} \circ s\right) \perp\left(r \circ e_{k}^{X} \circ \bar{s}_{k}\right)$, or $1_{Y} \perp e_{k}^{Y}$ [17, Theorems 1.4, 1.5].

The following result is a generalization of Woo and Kim [25, Theorem 3.6].
Proposition 4.5 Let $f: A \rightarrow X$ and $g: B \rightarrow Y$ be any maps. The relation

$$
G^{f \times g}(Z, X \times Y) \cong G^{f}(Z, X) \times G^{g}(Z, Y)
$$

holds for any space Z (under the identification $[Z, X \times Y] \cong[Z, X] \times[Z, Y]$).
Proof Let $\alpha: Z \rightarrow X$ and $\beta: Z \rightarrow Y$ be maps. We define a map $(\alpha, \beta): Z \rightarrow X \times Y$ by $(\alpha, \beta)=(\alpha \times \beta) \circ \Delta_{Z}$ for the diagonal map $\Delta_{Z}: Z \rightarrow Z \times Z$. Suppose that $(\alpha, \beta) \in G^{f}(Z, X) \times G^{g}(Z, Y)$, which is identified with a map $(\alpha, \beta): Z \rightarrow X \times Y$. Since $f \perp \alpha$ and $g \perp \beta$, we have $(f \times g) \perp(\alpha \times \beta)$ [17, Proposition 1.7]). It follows that $(f \times g) \perp\left\{(\alpha \times \beta) \circ \Delta_{Z}\right\}$ or $(f \times g) \perp(\alpha, \beta)$, and hence $(\alpha, \beta) \in G^{f \times g}(Z, X \times Y)$.

Conversely, suppose that $(\alpha, \beta) \in G^{f \times g}(Z, X \times Y)$ or $(f \times g) \perp(\alpha, \beta)$. Let $p_{1}: X \times Y \rightarrow X$ and $p_{2}: X \times Y \rightarrow Y$ be the projections and $i_{1}: X \rightarrow X \times Y$ and $i_{2}: Y \rightarrow X \times Y$ be the inclusions defined by $i_{1}(x)=\left(x, y_{0}\right)$ and $i_{2}(y)=\left(x_{0}, y\right)$ for any $x \in X$ and $y \in Y$, where $x_{0} \in X$ and $y_{0} \in Y$ are base points. It follows that

$$
\left\{p_{1} \circ(f \times g) \circ i_{1}\right\} \perp\left\{p_{1} \circ(\alpha, \beta)\right\} \quad \text { and } \quad\left\{p_{2} \circ(f \times g) \circ i_{2}\right\} \perp\left\{p_{2} \circ(\alpha, \beta)\right\}
$$

and we have $f \perp \alpha$ and $g \perp \beta$. It follows that $\alpha \in G^{f}(Z, X)$ and $\beta \in G^{g}(Z, Y)$.
Remark 4.6 The converse of Proposition 1.7 of [17] holds by an argument similar to the proof of Proposition 4.5. Let $f_{1}: X_{1} \rightarrow Z_{1}, f_{2}: X_{2} \rightarrow Z_{2}, g_{1}: Y_{1} \rightarrow Z_{1}$, $g_{2}: Y_{2} \rightarrow Z_{2}$ be any maps. Then the following statements are equivalent.
(i) $f_{1} \perp g_{1}$ and $f_{2} \perp g_{2}$.
(ii) $\left(f_{1} \times f_{2}\right) \perp\left(g_{1} \times g_{2}\right)$

Theorem 4.7 Let $f: A \rightarrow X$ and $g: B \rightarrow Y$ be any maps. The product space $X \times Y$ is a $C_{k}^{f \times g}$-space if and only if X is a C_{k}^{f}-space and Y is a C_{k}^{g}-space.
Proof If $X \times Y$ is a $C_{k}^{f \times g}$-space, then for any space Z with cat $Z \leq k$ we see

$$
G^{f}(Z, X) \times G^{g}(Z, Y) \cong G^{f \times g}(Z, X \times Y)=[Z, X \times Y]=[Z, X] \times[Z, Y]
$$

by Theorem 3.2 and Proposition 4.5, and hence $G^{f}(Z, X)=[Z, X]$ and $G^{g}(Z, Y)=$ [Z, Y].

Conversely, suppose that X is a C_{k}^{f}-space and Y is a C_{k}^{g}-space. Then $G^{f}(Z, X)=$ [$Z, X]$ and $G^{g}(Z, Y)=[Z, Y]$ for any space Z with cat $Z \leq k$ by Theorem 3.2. It follows that $G^{f \times g}(Z, X \times Y) \cong G^{f}(Z, X) \times G^{g}(Z, Y)=[Z, X] \times[Z, Y]=[Z, X \times Y]$ for any space Z with cat $Z \leq k$.

Theorem 4.8 The product space $X \times Y$ is a C_{k}-space if and only if both X and Y are C_{k}-spaces.

Proof Set $f=1_{X}$ and $g=1_{Y}$ in Theorem4.7 Then we have the result.
We now consider covering spaces of C_{k}^{f}-spaces and T_{k}^{f}-spaces.
Theorem 4.9 Let \widetilde{X} be a covering space of a space X with the covering map $p: \widetilde{X} \rightarrow X$ and $1 \leq k \leq \infty$. Let $f: A \rightarrow X, \widetilde{f}: B \rightarrow \widetilde{X}$, and $q: B \rightarrow A$ be maps such that the following diagram is homotopy commutative:

(i) If X is a C_{k}^{f}-space, then the covering space \widetilde{X} is a $C_{k}^{\tilde{f}}$-space.
(ii) If X is a T_{k}^{f}-space, then the covering space \widetilde{X} is a $T_{k}^{\widetilde{f}}$-space.

Proof (i) Since X is a C_{k}^{f}-space, there exists a map m_{k} for $f \perp e_{k}^{X}$. Consider the following diagram.

We must show that

$$
\left(m _ { k } \circ (q \times P ^ { k } (\Omega p)) _ { * } \left(\pi_{1}\left(B \times P^{k}(\Omega \widetilde{X})\right) \subset p_{*} \pi_{1}(\widetilde{X})\right.\right.
$$

to obtain a map $\widetilde{m}_{k}: B \times P^{k}(\Omega \widetilde{X}) \rightarrow \widetilde{X}$ for $\widetilde{f} \perp e_{k}^{\widetilde{X}}$. Let $(\alpha, \beta) \in \pi_{1}\left(B \times P^{k}(\Omega \widetilde{X})\right)$ be any element. We see that

$$
\begin{aligned}
\left(m_{k} \circ\left(q \times P^{k}(\Omega p)\right)_{*}((\alpha, \beta))\right. & =(f \circ q)_{*}(\alpha)+\left(e_{k}^{X} \circ P^{k}(\Omega p)\right)_{*}(\beta) \\
& =(p \circ \widetilde{f})_{*}(\alpha)+\left(p \circ e_{k}^{\widetilde{X}}\right)_{*}(\beta) \\
& =p_{*}\left(\widetilde{f}_{*}(\alpha)+\left(e_{k}^{\widetilde{X}}\right)_{*}(\beta)\right) \in p_{*} \pi_{1}(\widetilde{X})
\end{aligned}
$$

by [18, Proposition 3.4 (1)], since $f \circ q \sim p \circ \tilde{f}$ by assumption and the following
diagram is homotopy commutative:

(ii) is proved by an argument similar to (i); the proof is omitted.

The following theorem is obtained by setting $A=X, B=\widetilde{X}, q=p: \widetilde{X} \rightarrow X$, $f=1_{X}$, and $\widetilde{f}=1_{\widetilde{X}}$ in Theorem4.9,

Theorem 4.10 Any covering space of a C_{k}-space (resp. T_{k}-space) is a C_{k}-space (resp. T_{k}-space) for any $1 \leq k \leq \infty$.

5 Applications and Examples

We have the following result by Theorem 2.5 .
Proposition 5.1 If X is a C_{m}-space with cat $X \leq m$ for some $m \geq 1$, then X is an H-space.

Proposition 5.2 (i) If cat $X=1$ (for example, $X=\Sigma A$, or a general co- H-space) and X is not an H-space, then X is an $N C$-space.
(ii) If ΣX is a C_{1}-space, then $\Sigma X=S^{1}$, S^{3}, or S^{7}.

Proof (i) and (ii) are obtained by Proposition 5.1 .
Let X be a 0 -connected space. A space X is called a Gottlieb space or a G-space if the Gottlieb group $G_{m}(X)=\pi_{m}(X)$ for any $m \geq 1[4,5]$. A space X is called a Whitehead space or a W-space if every Whitehead product $[\alpha, \beta]=0$ in $\left[S^{m+n+1}, X\right]$ for any $\alpha \in\left[S^{n+1}, X\right], \beta \in\left[S^{m+1}, X\right]$, and any $n, m \geq 0$. A space X is called a generalized Whitehead space or a $G W$-space if every generalized Whitehead product on X is trivial, that is, $[\alpha, \beta]=0$ in $[\Sigma(A \wedge B), X]$ for any $\alpha \in[\Sigma A, X], \beta \in[\Sigma B, X]$, and any spaces A, B.

Remark 5.3 The following implications hold:
(i) X is a C_{1}-space $\Rightarrow X$ is a G-space $\Rightarrow X$ is a W-space.
(ii) X is a C_{1}-space $\Rightarrow X$ is a $G W$-space $\Rightarrow X$ is a W-space.
(See [26, Theorem 2.2] and [20, Theorem 1.9] for (i); [12, Remark (4), p. 616] for (ii).)

The complex projective space $C P^{3}$ is a $G W$-space [12, Theorem 1] such that $\operatorname{cat}\left(C P^{3}\right)=3$, but it is not a C_{k}-space for any k (Example 5.7). We note that $C P^{3}$ is not a G-space [20, Remark 3.4].

If $p>2$, then $L^{3}(p)$ is a G-space, but it is not a C_{k}-space for any $k \geq 2$ (see Example 5.10 and Theorem 5.13).

Proposition 5.4 Assume that X is a 1-connected space.
(i) X is a G-space $\Longrightarrow X$ is a rational H-space.
(ii) If $k \geq 1$, then the rationalization of any T_{k}-space (and hence any C_{k}-space) is an H-space.

Proof (i) is obtained by Haslam [7] (see also [13, Theorem 3.4]). (ii) is a direct consequence of (i).

Example 5.5 It is known that H-spaces, T-spaces, and $G W$-spaces are equivalent in the class of spaces of L-S category ≤ 1 (see Propositions 2.4, 5.1 and the definition of the $G W$-space). Then the following results hold by Proposition 3.4(v) and Theorem 4.3 (ii).
(i) $\quad S^{1}, S^{3}$, and S^{7} are H-spaces and hence C_{k}-spaces for any $k \geq 1$.
(ii) If $1 \leq n<\infty$ and $n \neq 1,3,7$, then S^{n} is not an H-space and hence an $N C$ space, since cat $S^{n}=1$.

In the following argument we consider projective spaces $R P^{n}, C P^{n}$, and lens spaces $L^{n}(p)(p \geq 2)$; however, the cases $R P^{\infty}, C P^{\infty}$, and $L^{\infty}(p)$ are not referred to, since they are H-spaces and hence C_{k}-spaces for any $1 \leq k \leq \infty$.

Example 5.6 If $1 \leq n<\infty$ and $n \neq 1,3,7$, then the real projective space $R P^{n}$ is an $N C$-space by Example 5.5(ii) and Theorem4.10. However, $R P^{1}, R P^{3}$, and $R P^{7}$ are H-spaces and hence C_{k}-spaces for any $1 \leq k \leq \infty$.

Example 5.7 If a 1-connected space X is not a rational H-space, then X is an NCspace by Proposition 5.4 For $1 \leq n<\infty$, the complex projective space $C P^{n}$ is not a rational H-space, and hence it is an $N C$-space.

Let $S^{2 n+1}$ be the unit sphere in the $(n+1)$-dimensional complex vector space \mathbb{C}^{n+1} ($n \geq 1$). Let ω be the p-th root of unity $(p \geq 2)$. Then the group Γ generated by ω acts on $S^{2 n+1}$ by $\omega \cdot\left(z_{0}, z_{1}, \ldots, z_{n}\right)=\left(\omega z_{0}, \omega z_{1}, \ldots, \omega z_{n}\right)$. Let the lens space be $L^{2 n+1}(p)=S^{2 n+1} / \Gamma$, the quotient space of $S^{2 n+1}$ by Γ. See [24, Example 3, p. 91].

Proposition 5.8 ([24, Theorem (7.9), Chapter II]) Let p be an odd prime.

$$
H^{*}\left(L^{2 n+1}(p) ; \mathbb{Z} / p\right)=\bigwedge_{\mathbb{Z} / p}\left(x_{1}\right) \otimes\left\{\mathbb{Z} / p\left[x_{2}\right] /\left(x_{2}^{n+1}\right)\right\}
$$

where $x_{1} \in H^{1}\left(L^{2 n+1}(p) ; \mathbb{Z} / p\right)$ and $x_{2}=\beta_{p}^{*} x_{1} \in H^{2}\left(L^{2 n+1}(p) ; \mathbb{Z} / p\right)$.
Proposition 5.9 Let p be a prime.
(i) If $2 n+1 \neq 3,7$, then $L^{2 n+1}(p)$ is not a G-space.
(ii) If $2 n+1 \neq 3,7$, then $L^{2 n+1}(p)$ is a $N C$-space.

Proof (i) If $L^{2 n+1}(p)$ is a G-space, then $S^{2 n+1}$ is a G-space [6, Theorem 2.2].
(ii) If $L^{2 n+1}(p)$ is a C_{k}-space, then $S^{2 n+1}$ is a C_{k}-space by Theorem4.10

Let us recall that $L^{3}(p)$ is a G-space by [15, Corollary II.10], since $S^{3}=\operatorname{Sp}(1)$ is a Lie group. For general $L^{2 n+1}(p)$, we only know that $\pi_{1}\left(L^{2 n+1}(p)\right)=G_{1}\left(L^{2 n+1}(p)\right)$ by [2, Theorem] or [19, Theorem A]. See also [4, Theorems II.4, II.5] and [5, Theorem 6.2]. However, for $L^{3}(p)$, we obtain the result using an argument similar to [15], including a proof for the fundamental group that is simpler than $[2,19]$ in this particular case.

Example $5.10 \quad L^{3}(p)$ is a G-space for any $p \geq 2$.
Actually, we can show the result in this way. Assume that $\pi_{1}\left(L^{3}(p)\right)=\mathbb{Z} / p$ is generated by the inclusion map $\alpha: S^{1} \hookrightarrow L^{3}(p)$, which has a lift $\tilde{\alpha}:[0,1] \rightarrow S^{3}$ such that $\tilde{\alpha}(0)=1, \tilde{\alpha}(1)=\xi$ and $\pi \circ \tilde{\alpha}=\alpha \circ \omega$, where $\pi: S^{3} \rightarrow L^{3}(p)$ is the canonical projection taking the orbit space by the action of $\left\langle\xi \mid \xi^{p}\right\rangle \cong \mathbb{Z} / p$ a subgroup of a Lie group S^{3}, and where $\omega:[0,1] \rightarrow S^{1}$ is the standard identification map. Since S^{3} is a Lie group, there is an associative unital multiplication $\mu: S^{3} \times S^{3} \rightarrow S^{3}$ that defines a $\operatorname{map} \tilde{f}:[0,1] \times S^{3} \rightarrow S^{3}$ by $\tilde{f}=\mu \circ(\tilde{\alpha} \times 1)$. Then \tilde{f} induces a map f of orbit spaces by the action of \mathbb{Z} / p, since $\tilde{f}\left(1, \xi^{i} \cdot x\right)=\tilde{\alpha}(1) \cdot \xi^{i} \cdot x=\xi \cdot \xi^{i} \cdot x=\xi^{i+1} \cdot x=\xi^{i+1} \cdot \tilde{f}(0, x)$:

Thus $\alpha \in G_{1}\left(L^{3}(p)\right)$ and hence $G_{1}\left(L^{3}(p)\right)=\pi_{1}\left(L^{3}(p)\right)$. Since the universal cover of $L^{3}(p)$ is S^{3}, which is a Lie group, we see that the projection $\pi: S^{3} \rightarrow L^{3}(p)$ is a cyclic map, and hence $G_{n}\left(L^{3}(p)\right)=\pi_{n}\left(L^{3}(p)\right)$ for $n \geq 2$. It follows that $L^{3}(p)$ is a G-space.

To examine the existence of a C_{k}-structure on $L^{3}(p)$, we need the following lemma for a space X using observations on $\Sigma \Omega X$.

Lemma 5.11 Let X be a 0 -connected CW-complex whose universal cover \tilde{X} satisfies that $\Sigma \Omega \tilde{X}$ has the homotopy type of a wedge sum of spheres. Then X is a C_{1}-space if and only if X is a G-space.

Proof Since $\Omega X \simeq \pi_{1}(X) \times \Omega \tilde{X}$, we have

$$
\Sigma \Omega X \simeq\left(\underset{0 \neq \lambda \in \pi_{1}(X)}{\bigvee} S_{\lambda}^{1}\right) \vee \Sigma \Omega \tilde{X} \vee\left(\bigvee_{0 \neq \lambda \in \pi_{1}(X)} S_{\lambda}^{1} \wedge \Omega \tilde{X}\right)
$$

which has the homotopy type of a wedge of spheres. Thus we have the lemma.
Proposition $5.12 L^{3}(p)$ is a $C_{1}-$ space for any $p \geq 2$.

Proof By Example5.10 and Lemma 5.11, we have the result.
Theorem 5.13 $L^{3}(p)$ is a C_{2}-space if and only if $p=2$.
Remark When $p=2$, the lens space $L^{3}(2)\left(=R P^{3} \cong \mathrm{SO}(3)\right)$ is actually an H-space (see [12, Remark (1), p. 616]), and hence a C_{k}-space for any k.

Proof of Theorem 5.13 By Proposition 5.12, we know that $L^{3}(p)$ is a C_{1}-space. We also know that $L^{3}(2)=R P^{3}=\mathrm{SO}(3)$ is a Lie group. So we are left to show that $L^{3}(p)$ is not a C_{2}-space when $p \neq 2$. If $L^{3}(p)$ is a C_{2}-space, then there is a map

$$
m: P^{2}\left(\Omega L^{3}(p)\right) \times L^{3}(p) \rightarrow L^{3}(p)
$$

whose axes are $e_{2}^{L^{3}(p)}: P^{2}\left(\Omega L^{3}(p)\right) \rightarrow L^{3}(p)$ and the identity of $L^{3}(p)$.
Let $L^{3}(p)^{(2)}=S^{1} \cup e_{2}$ be the 2-skeleton of $L^{3}(p)=S^{1} \cup e_{2} \cup e_{3}$. Then there is a map $s_{2}: L^{3}(p)^{(2)} \rightarrow P^{2}\left(\Omega L^{3}(p)^{(2)}\right) \subset P^{2}\left(\Omega L^{3}(p)\right)$ such that $e_{2}^{L^{3}(p)} \circ s_{2} \sim i_{2}: L^{3}(p)^{(2)} \hookrightarrow$ $L^{3}(p)$ is the canonical inclusion. On the other hand, we have

$$
\begin{aligned}
H^{*}\left(L^{3}(p) ; \mathbb{Z} / p\right) & \cong \bigwedge_{\mathbb{Z} / p}\left(x_{1}\right) \otimes\left\{\mathbb{Z} / p\left[x_{2}\right] /\left(x_{2}^{2}\right)\right\} \\
& \cong H^{*}\left(L^{3}(p)^{(2)} ; \mathbb{Z} / p\right) \oplus \mathbb{Z} / p\left\{x_{1} x_{2}\right\}, \quad \operatorname{ker} i_{2}^{*}=\mathbb{Z} / p\left\{x_{1} x_{2}\right\}
\end{aligned}
$$

where x_{i} is in $H^{i}\left(L^{3}(p)^{(2)} ; \mathbb{Z} / p\right) \subset H^{i}\left(L^{3}(p) ; \mathbb{Z} / p\right)$ with a Bockstein relation $\beta_{p} x_{1}=$ x_{2}. Thus $\left(e_{2}^{L^{3}(p)}\right)^{*} x_{i} \neq 0$ for $i=1,2$, since $e_{2}^{L^{3}(p)} \circ s_{2} \sim i_{2}$.

Now let $h: \Sigma P^{2}\left(\Omega L^{3}(p)\right) \wedge L^{3}(p) \rightarrow \Sigma L^{3}(p)$ be the Hopf construction of the map $m: P^{2}\left(\Omega L^{3}(p)\right) \times L^{3}(p) \rightarrow L^{3}(p)$, and let C_{h} be the mapping cone of h. Then the connecting homomorphism

$$
\delta: H^{5}\left(\Sigma P^{2}\left(\Omega L^{3}(p)\right) \wedge L^{3}(p) ; \mathbb{Z} / p\right) \rightarrow H^{6}\left(C_{h} ; \mathbb{Z} / p\right)
$$

is an isomorphism, since $H^{q}\left(\Sigma L^{3}(p) ; \mathbb{Z} / p\right)=0$ for $q \geq 5$. Thus we have

$$
\begin{aligned}
& H^{6}\left(C_{h} ; \mathbb{Z} / p\right) \cong \\
& \quad H^{4}\left(P^{2}\left(\Omega L^{3}(p)\right) \wedge L^{3}(p) ; \mathbb{Z} / p\right) \supset H^{2}\left(L^{3}(p)^{(2)} ; \mathbb{Z} / p\right) \otimes H^{2}\left(L^{3}(p) ; \mathbb{Z} / p\right)
\end{aligned}
$$

Let $s^{*}: H^{n}(\Sigma X) \rightarrow H^{n-1}(X)$ be the suspension homomorphism $(n \geq 1)$. For dimensional reasons, we know that x_{1} and x_{2} are primitive with respect to m, and hence $s^{*-1} x_{i}$ lies in the image of the restriction $H^{i+1}\left(C_{h} ; \mathbb{Z} / p\right) \rightarrow H^{i+1}\left(\Sigma L^{3}(p) ; \mathbb{Z} / p\right)$, say $\left.y_{i+1}\right|_{\Sigma L^{3}(p)}=s^{*-1} x_{i}$ for $i=1,2$. Then by [22, Corollary 1.4(a)], we know

$$
y_{3}^{2}= \pm \delta\left(s^{*-1}\left(x_{2} \otimes x_{2}\right)\right) \neq 0
$$

while we know that $y_{3}^{2}=-y_{3}^{2}$ and hence $2 y_{3}^{2}=0$. Thus we have $p=2$.
Making use of the classification of $G W$-spaces of type (q, n, m) in [12, Theorem 1], the following result is proved.

Theorem 5.14 Let X be a C_{k}-space for some $k \geq 1$ with at most three cells (other than the base point 0 -cell). Then X has the homotopy type of one of the spaces in the following list.
(i) $X=S^{1}, S^{3}, S^{7}$ or their products; otherwise;
(ii) If $\pi_{1}(X)$ is a non-zero finite group, then $X=L^{3}(p, \ell)$ for an integer $p \geq 2$, where ℓ is a unit of the quotient ring $\mathbb{Z} \pi /\left(1+\tau+\cdots+\tau^{p-1}\right)$ of the group ring $\mathbb{Z} \pi$ for the group $\pi=\left\langle\tau \mid \tau^{p}=1\right\rangle \cong \mathbb{Z} / p ;$
(iii) If $\pi_{1}(X)=0$, then $X=S U(3)$ or $E_{k \omega}(k \not \equiv 2 \bmod 4)$; in the latter case $E_{k \omega}$ is an H-space.

Proof Since a C_{k}-space for some $k \geq 1$ is a T-space and hence a $G W$-space, we can examine the $G W$-spaces with up to 3 cells listed in Theorem 1 of [12]. However, $C P^{3}$ in the theorem is an $N C$-space by Example 5.7 and hence the result follows.

Remark 5.15 In view of Theorem 5.14 we see that any real, complex or quaternionic Stiefel manifold of 2-frames is an $N C$-space unless it is an H-space. We note that a Stiefel manifold is an H-space if and only if it is a Lie group or S^{7}, by [8, Theorems 1.1, 1.2] and [9, Corollary 0.6].

References

[1] J. Aguadé, Decomposable free loop spaces. Canad. J. Math. 39(1987), no. 4, 938-955. doi:10.4153/CJM-1987-047-9
[2] S. A. Broughton, The Gottlieb group of finite linear quotients of odd-dimensional spheres. Proc. Amer. Math. Soc. 111(1991), no. 4, 1195-1197.
[3] T. Ganea, Lusternik-Schnirelmann category and strong category. Illionis J. Math. 11(1967), 417-427.
[4] D. H. Gottlieb, A certain subgroup of the fundamental group. Amer. J. Math. 87(1965), 840-856. doi:10.2307/2373248
[5] , Evaluation subgroups of homotopy groups. Amer. J. Math. 91(1969), 729-756. doi:10.2307/2373349
[6] , On the construction of G-spaces and applications to homogeneous spaces. Proc. Cambridge Philos. Soc. 68(1970), 321-327. doi:10.1017/S0305004100046120
[7] H. B. Haslam, G-spaces mod F and H-spaces mod F. Duke Math. J. 38(1971), 671-679. doi:10.1215/S0012-7094-71-03882-8
[8] J. R. Hubbuck, Hopf structures on Stiefel manifolds. Math. Ann. 262(1983), no. 4, 529-547. doi:10.1007/BF01456067
[9] N. Iwase, H-spaces with generating subspaces. Proc. Roy. Soc. Edinburgh Sect. A 111(1989), no. 3-4, 199-211.
[10] , Ganea's conjecture on Lusternik-Schnirelmann category. Bull. London Math. Soc. 30(1998), no. 6, 623-634. doi:10.1112/S0024609398004548
[11] , The Ganea conjecture and recent developments on Lusternik-Schnirelmann category. Sugaku Expositions 20(2007), no. 1, 43-63.
[12] N. Iwase, A. Kono and M. Mimura, Generalized Whitehead spaces with few cells. Publ. Res. Inst. Math. Sci. 28(1992), no. 4, 615-652. doi:10.2977/prims/1195168211
[13] N. Iwase and N. Oda, Splitting off rational parts in homotopy types. Topology Appl. 153(2005), no. 1, 133-140. doi:10.1016/j.topol.2005.01.027
[14] I. M. James, On category in the sense of Lusternik-Schnirelmann. Topology 17(1978), no. 4, 331-348. doi:10.1016/0040-9383(78)90002-2
[15] G. E. Lang, Jr, Evaluation subgroups of factor spaces. Pacific J. Math. 42(1972), 701-709.
[16] J. Milnor, Construction of universal bundles. I, II. Ann. Math. 63(1956), 272-284, 430-436. doi:10.2307/1969609
[17] N. Oda, The homotopy set of the axes of pairings. Canad. J. Math. 17(1990), no. 5, 856-868. doi:10.4153/CJM-1990-044-3
[18] , Pairings and copairings in the category of topological spaces. Publ. Res. Inst. Math. Sci. 28(1992), no. 1, 83-97. doi:10.2977/prims/1195168857
[19] J. Oprea, Finite group actions on spheres and the Gottlieb group. J. Korean Math. Soc. 28(1991), no. 1, 65-78.
[20] J. Siegel, G-spaces, H-spaces and W-spaces. Pacific J. Math. 31(1969), 209-214.
[21] J. D. Stasheff, Homotopy associativity of H-spaces I, II, Trans. Amer. Math. Soc. 108(1963), 275-292, 293-312.
[22] E. Thomas, On functional cup-products and the transgression operator. Arch. Math. (Basel) 12(1961), 435-444.
[23] K. Varadarajan, Generalized Gottlieb groups. J. Indian Math. Soc. 33(1969), 141-164.
[24] G. W. Whitehead, Elements of Homotopy Theory. Graduate Texts in Mathematics 61. Springer-Verlag, New York, 1978.
[25] M. H. Woo and J.-R. Kim, Certain subgroups of homotopy groups. J. Korean Math. Soc. 21(1984), no. 2, $109-120$.
[26] M. H. Woo and Y. S. Yoon, T-spaces by the Gottlieb groups and duality. J. Austral. Math. Soc. Ser. A 59(1995), no. 2, 193-203. doi:10.1017/S1446788700038593
[27] Y. S. Yoon, Generalized Gottlieb groups and generalized Wang homomorphisms. Sci. Math. Jpn. 55(2002), no. 1, 139-148. , H^{f}-spaces for maps and their duals. J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 14(2007), no. 4, 289-306.
[29] L Lifting T-structures and their duals. J. Chungcheong Math. Soc. 20(2007), 245-259.
Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan
e-mail: iwase@math.kyushu-u.ac.jp
Department of Mathematics, Okayama University, Okayama 700-8530, Japan
e-mail: mimura@math.okayama-u.ac.jp
Department of Applied Mathematics, Fukuoka University, Fukuoka 814-0180, Japan e-mail: odanobu@cis.fukuoka-u.ac.jp
Department of Mathematics Education, Hannam University, Daejeon 306-791, Korea e-mail: yoon@hannam.ac.kr

[^0]: Received by the editors August 6, 2009.
 Published electronically June 29, 2011.
 The first and third authors were partly supported by JSPS Grant-in-Aid for Scientific Research (No. 19540106)

 AMS subject classification: 55P45, 55P35.
 Keywords: Gottlieb sets for maps, L-S category, T-spaces.

