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1 Rational case

A graded module H over a field K is called a Hopt

algebra if there are homomorphisms of K-modules
o - H®H —H, n:K— H,
v H—-H®H, €e:H—K,
such that
(1) (H, ¢) is an algebra with two-sided unit (1),
(2) (H*, ™) is an algebra with two-sided unit €*(1),
(3) € and ™ are homomophisms of algebras and

(4) b and ¢* are homomorphisms of algebras.



(Borel [Bo67]) A connected commutative associa-
tive Hopf algebra H of finite type over Q is isomor-
phic as algebra to the tensor product of a polyno-
mial algebra on even dimensional generators and an

exterior algebra on odd:

HgP[xlax%'”]®E(y17y27”'>’

The resulting formula can be rewritten as

H = (X) Alay)
n=1

where x,, is a homogeneous generator of dimension
dp > 1 and Alx]| is defined as follows: A|x| = P|z]
if dj, is even and A|S| = E(9) if dj, is odd.



A space X is called a Hopf space if there is a map
X xX—X

such that p has two-sided homotopy unit.

(Scheerer [Sch85])  If a rational space X is a Hopf
space, then X has the homotopy type of a gener-
alized Eilenberg-Mac Lane space:

Xo ~ P K(mn(Xo);n)

n=1

where @ denotes the weak product:

@XA: {(l’)\> & HX)\

hert Y finitely many A

x) = * except for}






(Oprea [Op86]) If X{ is a rational G-space of finite
type, then X has the homotopy type of a general-

ized Eilenberg-Mac Lane space.

(Aguadé [Ag8T7]) If X is a rational T-space of fi-
nite type, then X has the homotopy type of a gen-

eralized Eilenberg-Mac Lane space.

Defn 1.1

G(X,Y) = {[f] S [X,Y] ‘has 0268 f and 1Y}

Defn 1.2

(1) (Gottlieb [Go69]) A space X is a G-space iff
(X)) = G(S™, X) for alln > 1.

(2) (Aguadé [Ag87], Woo-Yoon [WY95]) A space
X is a T-space iff [LA, X] = G(XA,X) for

any space A.



(L. Fuchs) Any abelian group A is a direct sum

of a diwvisible group and a reduced group:

A = (disivible part) @ (reduced part)



2 Non-rational case

Let p [S&,X] — Hy,(X) be a homomorphism
defined by p(a) = a«([S"|®1), where we regard
H,(SB) = Ha(S")2Q

Thm 2.1 Let R be a finite or an infinite di-
menstonal Q-vector space. If R C ﬁ(G(S&, X)) C
Hp(X) (n > 2), then we have

X >~Y xX K(R,n).
Cor 2.1.1 Let R be a finite or an infinite di-
mensional Q-vector space. Let X be an (n—1)-

connected T-space with R C Hp(X) (n > 2).

Then X decomposes as

X ~Y x K(R,n) foraT-spaceY .



3 Rational case revisited

Thm 3.1 Let R = @), Q be a finite or an

infinite dimensional Q-vector space. If a ratio-

nal space X is an (n—1)-connected G-space with

Hp(Xo) 2 R for n > 2, then Xq decomposes as
XO ~ YO X K(R, n),

where Yy 1s an rational G-space.

Cor 3.1.1 Let X be a 0-connected CW complex
with rationalization Xq, then the following con-
ditions are equivalent:

1) Xq is a G-space.
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(1)

(2) Xgq is a T-space.
(3) Xq @s a Hopf space.
(4)

4) FEvery k-invariant of X 1is of finite order.



Cor 3.1.2  If the rationalization Xg of a 0-
connected virtually nilpotent space X is a G-
space, then Xq has the homotopy type of a weak
product of Eilenberg-Mac Lane spaces:

Xg ~ @ K(mp(Xg);n)

n=1

Cor 3.1.3 Let X be a 1-connected rational G-
space. Then Xq is a Hopf space and the Hopf al-
gebra Hy(X; Q) is isomorphic as co-algebra with
a tensor product of a polynomial algebra on even
dimensional generators and an exterior algebra

on odd, where generators may be infinitely many:
Hi(X:Q) = ® Alx,], as coalgebras,

where A denotes an inder set of homogeneous

generators.
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