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1 Rational case

A graded module H over a field K is called a Hopf

algebra if there are homomorphisms of K-modules

φ : H ⊗H → H, η : K → H,

ψ : H → H ⊗H, ε : H → K,

such that

(1) (H,φ) is an algebra with two-sided unit η(1),

(2) (H∗, ψ∗) is an algebra with two-sided unit ε∗(1),

(3) ε and η∗ are homomophisms of algebras and

(4) ψ and φ∗ are homomorphisms of algebras.
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(Borel [Bo67]) A connected commutative associa-

tive Hopf algebra H of finite type over Q is isomor-

phic as algebra to the tensor product of a polyno-

mial algebra on even dimensional generators and an

exterior algebra on odd:

H ∼= P [x1, x2, · · · ]⊗ E(y1, y2, · · · ).

−−−−−−−−−−−−−−−−

The resulting formula can be rewritten as

H ∼=
∞⊗

n=1

A[xn]

where xn is a homogeneous generator of dimension

dn ≥ 1 and A[x] is defined as follows: A[x] = P [x]

if dn is even and A[S] = E(S) if dn is odd.
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A space X is called a Hopf space if there is a map

µ : X ×X −→ X

such that µ has two-sided homotopy unit.

−−−−−−−−−−−−−−−−

(Scheerer [Sch85]) If a rational spaceX0 is a Hopf

space, then X0 has the homotopy type of a gener-

alized Eilenberg-Mac Lane space:

X0 '
∞⊕

n=1

K(πn(X0);n)

where
⊕

denotes the weak product:

⊕

λ∈Λ

Xλ =

{
(xλ) ∈

∏

λ∈Λ

Xλ

∣∣∣∣∣
xλ = ∗ except for

finitely many λ

}
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−−−−−−−−−−−−−−−−

Can it happen only for a Hopf space?

−−−−−−−−−−−−−−−−
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(Oprea [Op86]) IfX0 is a rational G-space of finite

type, then X0 has the homotopy type of a general-

ized Eilenberg-Mac Lane space.

(Aguadé [Ag87]) If X0 is a rational T -space of fi-

nite type, then X0 has the homotopy type of a gen-

eralized Eilenberg-Mac Lane space.

Defn 1.1

G(X,Y ) =

{
[f ] ∈ [X,Y ]

∣∣∣∣
∃F :X×Y→Y s.t. F

has axes f and 1Y

}

Defn 1.2

(1) (Gottlieb [Go69]) A space X is a G-space iff

πn(X) = G(Sn, X) for all n ≥ 1.

(2) (Aguadé [Ag87], Woo-Yoon [WY95]) A space

X is a T-space iff [ΣA,X ] = G(ΣA,X) for

any space A.
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−−−−−−−−−−−−−−−−

What happens in non-rational case?

−−−−−−−−−−−−−−−−

(L. Fuchs) Any abelian group A is a direct sum

of a divisible group and a reduced group:

A ∼= (disivible part)⊕ (reduced part)
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2 Non-rational case

Let ρ : [SnQ, X ] → Hn(X) be a homomorphism

defined by ρ(α) = α∗([Sn]⊗1), where we regard

Hn(S
n
Q) = Hn(S

n)⊗Q.

−−−−−−−−−−−−−−−−

Thm 2.1 Let R be a finite or an infinite di-

mensional Q-vector space. If R ⊂ ρ(G(SnQ, X)) ⊆
Hn(X) (n ≥ 2), then we have

X ' Y ×K(R, n).

Cor 2.1.1 Let R be a finite or an infinite di-

mensional Q-vector space. Let X be an (n−1)-

connected T -space with R ⊆ Hn(X) (n ≥ 2).

Then X decomposes as

X ' Y ×K(R, n) for a T -space Y .
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3 Rational case revisited

Thm 3.1 Let R =
⊕

λ∈ΛQ be a finite or an

infinite dimensional Q-vector space. If a ratio-

nal space X0 is an (n−1)-connected G-space with

Hn(X0) ⊇ R for n ≥ 2, then X0 decomposes as

X0 ' Y0 ×K(R, n),

where Y0 is an rational G-space.

Cor 3.1.1 Let X be a 0-connected CW complex

with rationalization XQ, then the following con-

ditions are equivalent:

(1) XQ is a G-space.

(2) XQ is a T -space.

(3) XQ is a Hopf space.

(4) Every k-invariant of X is of finite order.
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Cor 3.1.2 If the rationalization XQ of a 0-

connected virtually nilpotent space X is a G-

space, then XQ has the homotopy type of a weak

product of Eilenberg-MacLane spaces:

XQ '
∞⊕

n=1

K(πn(XQ);n)

Cor 3.1.3 Let X be a 1-connected rational G-

space. Then XQ is a Hopf space and the Hopf al-

gebra H∗(X ;Q) is isomorphic as co-algebra with

a tensor product of a polynomial algebra on even

dimensional generators and an exterior algebra

on odd, where generators may be infinitely many:

H∗(X ;Q) ∼=
⊗

λ∈Λ

A[xλ], as coalgebras,

where Λ denotes an index set of homogeneous

generators.
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