SPLITTING OFF RATIONAL PARTS IN HOMOTOPY TYPES

"International Conference on Algebraic Topology" Chinese Academy of Sciences, China 23th~26st, August, 2004

Norio IWASE and Nobuyuki Oda (Kyushu Univ & Fukuoka Univ)

1 Rational case

A graded module H over a field K is called a Hopf algebra if there are homomorphisms of K-modules

$$\phi: H \otimes H \to H, \quad \eta: K \to H,$$

$$\psi: H \to H \otimes H, \quad \epsilon: H \to K,$$

such that

- (1) (H, ϕ) is an algebra with two-sided unit $\eta(1)$,
- (2) (H^*, ψ^*) is an algebra with two-sided unit $\epsilon^*(1)$,
- (3) ϵ and η^* are homomophisms of algebras and
- (4) ψ and ϕ^* are homomorphisms of algebras.

(Borel [Bo67]) A connected commutative associative Hopf algebra H of finite type over \mathbb{Q} is isomorphic as algebra to the tensor product of a polynomial algebra on even dimensional generators and an exterior algebra on odd:

$$H \cong P[x_1, x_2, \cdots] \otimes E(y_1, y_2, \cdots).$$

The resulting formula can be rewritten as

$$H \cong \bigotimes_{n=1}^{\infty} A[x_n]$$

where x_n is a homogeneous generator of dimension $d_n \ge 1$ and A[x] is defined as follows: A[x] = P[x] if d_n is even and A[S] = E(S) if d_n is odd.

A space X is called a Hopf space if there is a map

$$\mu: X \times X \longrightarrow X$$

such that μ has two-sided homotopy unit.

(Scheerer [Sch85]) If a rational space X_0 is a Hopf space, then X_0 has the homotopy type of a generalized Eilenberg-Mac Lane space:

$$X_0 \simeq \bigoplus_{n=1}^{\infty} K(\pi_n(X_0); n)$$

where \bigoplus denotes the weak product:

$$\bigoplus_{\lambda \in \Lambda} X_{\lambda} = \left\{ (x_{\lambda}) \in \prod_{\lambda \in \Lambda} X_{\lambda} \middle| \begin{array}{l} x_{\lambda} = * \text{ except for } \\ \text{finitely many } \lambda \end{array} \right\}$$

Can it happen only for a Hopf space?

(Oprea [Op86]) If X_0 is a rational G-space of finite type, then X_0 has the homotopy type of a generalized Eilenberg-Mac Lane space.

(Aguadé [Ag87]) If X_0 is a rational T-space of finite type, then X_0 has the homotopy type of a generalized Eilenberg-Mac Lane space.

Defn 1.1

$$G(X,Y) = \left\{ [f] \in [X,Y] \; \middle| \begin{array}{l} \exists_{F:X \times Y \to Y} \; s.t. \; F \\ has \; axes \; f \; and \; 1_Y \end{array} \right\}$$

Defn 1.2

- (1) (Gottlieb [Go69]) A space X is a G-space iff $\pi_n(X) = G(S^n, X) \text{ for all } n \ge 1.$
- (2) (Aguadé [Ag87], Woo-Yoon [WY95]) A space X is a T-space iff $[\Sigma A, X] = G(\Sigma A, X)$ for any space A.

What happens in non-rational case?

(L. Fuchs) Any abelian group A is a direct sum of a divisible group and a reduced group:

 $A \cong (disivible \ part) \oplus (reduced \ part)$

2 Non-rational case

Let $\overline{\rho}: [S^n_{\mathbb{Q}}, X] \to H_n(X)$ be a homomorphism defined by $\overline{\rho}(\alpha) = \alpha_*([S^n] \otimes 1)$, where we regard $H_n(S^n_{\mathbb{Q}}) = H_n(S^n) \otimes \mathbb{Q}$.

Thm 2.1 Let R be a finite or an infinite di- $mensional \mathbb{Q}$ -vector space. If $R \subset \overline{\rho}(G(S^n_{\mathbb{Q}}, X)) \subseteq$ $H_n(X)$ $(n \geq 2)$, then we have

$$X \simeq Y \times K(R, n)$$
.

Cor 2.1.1 Let R be a finite or an infinite dimensional \mathbb{Q} -vector space. Let X be an (n-1)connected T-space with $R \subseteq H_n(X)$ $(n \ge 2)$.

Then X decomposes as

 $X \simeq Y \times K(R, n)$ for a T-space Y.

3 Rational case revisited

Thm 3.1 Let $R = \bigoplus_{\lambda \in \Lambda} \mathbb{Q}$ be a finite or an infinite dimensional \mathbb{Q} -vector space. If a rational space X_0 is an (n-1)-connected G-space with $H_n(X_0) \supseteq R$ for $n \ge 2$, then X_0 decomposes as

$$X_0 \simeq Y_0 \times K(R, n),$$

where Y_0 is an rational G-space.

Cor 3.1.1 Let X be a 0-connected CW complex with rationalization $X_{\mathbb{Q}}$, then the following conditions are equivalent:

- (1) $X_{\mathbb{Q}}$ is a G-space.
- (2) $X_{\mathbb{O}}$ is a T-space.
- (3) $X_{\mathbb{Q}}$ is a Hopf space.
- (4) Every k-invariant of X is of finite order.

Cor 3.1.2 If the rationalization $X_{\mathbb{Q}}$ of a 0connected virtually nilpotent space X is a Gspace, then $X_{\mathbb{Q}}$ has the homotopy type of a weak
product of Eilenberg-Mac Lane spaces:

$$X_{\mathbb{Q}} \simeq \bigoplus_{n=1}^{\infty} K(\pi_n(X_{\mathbb{Q}}); n)$$

Cor 3.1.3 Let X be a 1-connected rational Gspace. Then $X_{\mathbb{Q}}$ is a Hopf space and the Hopf algebra $H_*(X;\mathbb{Q})$ is isomorphic as co-algebra with
a tensor product of a polynomial algebra on even
dimensional generators and an exterior algebra
on odd, where generators may be infinitely many:

$$H_*(X;\mathbb{Q}) \cong \bigotimes_{\lambda \in \Lambda} A[x_{\lambda}], \quad as \ coalgebras,$$

where Λ denotes an index set of homogeneous generators.

References

- [Ag87] J. Aguadé, Decomposable free loop spaces, Canad. J. Math. 39 (1987), 938–955.
- [Bo67] A. Borel, Topics in the homology theory of fibre bundles, (Lecture Note in Math. 36), Springer, Berlin 1967.
- [BK72] A. K. Bousfield and D. M. Kan, *Homotopy limits*, completions and localizations, (Lecture notes in Math., **304**), Springer, Berlin 1972.
- [DDK77] E. Dror, W. G. Dwyer and D. M. Kan, An arithmetic square for virtually nilpotnet spaces, Ill. J. Math. 21 (1977), 242–254.
- [DG90] G. Dula and D. H. Gottlieb, Splitting off H-spaces and Conner-Raymond splitting theorem, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 37 (1990), 321–334.
- [FT81] Y. Felix and J. C. Thomas, Homotopie rationelle, dualité et complémentarite des modèles, Bull. Soc. Math. Belg. Ser. A 33 (1981), 7–19.
- [Fu70] L. Fuchs, Infinite abelian groups, Vol. I, (Graduate Texts in Mathematics, 61), Academic Press, New York-London, 1970.
- [Go65] D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math., 87 (1965), 840 856.
- [Go69] D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math., 91 (1969), 729 756.
- [Ha71] H. B. Haslam, G-spaces mod F and H-spaces mod F, Duke Math. J. 38, (1971), 671–679.
- [HMR75] P. Hilton, G. Mislin and J. Roitberg, *Localization of nilpotent groups and spaces*, (Mathematics studies, **15**), North-Holland, Amsterdam, 1975.
- [Ja55] I. M. James, Reduced product spaces, Ann. of Math. 62 (1955), 170–197.
- [Ma74] Y. Mataga, Localization of G-spaces, Proc. Japan Acad. 50 (1974), 448–452.
- [MNT71] M. Mimura, G. Nishida and H. Toda, Localization of CW-complexes and its applications, J. Math. Soc. Japan 23 (1971), 593–624.
- [Op86] J. Oprea, Decomposition theorems in rational homotopy theory, Proc. Amer. Math. Soc. **96** (1986), 505–512.
- [Sch85] H. Scheerer, On rationalized H- and co-H-spaces. With an appendix on decomposable H- and co-H-spaces, Manuscripta Math. 51 (1985), 63–87.
- [Su74] D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. **100** (1974), 1–79.
- [To75] G. H. Toomer, Two applications of homology decompositions, Canad. J. Math. 27 (1975), 323–329.
- [Va69] K. Varadarajan, Generalised Gottlieb groups, J. Indian Math. Soc. 33 (1969), 141–164.
- [Wh78] G. W. Whitehead, Elements of homotopy theory, (Graduate Texts in Mathematics, **61**), Springer-Verlag, New York-Berlin, 1978.
- [WY95] M. H. Woo and Y. S. Yoon, T-spaces by the Gottlieb groups and duality, J. Austral. Math. Soc. Ser. A 59 (1995), 193–203.