
GANEA’S CONJECTURE ON A CO-H-SPACE

NORIO IWASE

Before starting my talk, je remercie (le organisateur spetialement Professeur) Jean Claude

Thomas. Ca me fait grand plaisir que je donne un expose dans cette conference.

Maybe it’s better to talk in English rather than in French or Japanese.

Tudor Ganea (1922 - 1971) worked mainly on L-S category, co-H-spaces and co-category.

He posed 15 problems at a conference in 1971.

Problem 1: Compute L-S category of manifolds.

Problem 2: (conjecture) catX×Sn = catX + 1

:

Problem 10: (conjecture) A co-H-space X has the homotopy type of B ∨ C , where B is a

bouquet of circles and C is simply connected.

This Problem 10 is the subject of my talk. This conjecture is often called the Ganea

conjecture in a number of literatures.

1. Definitions

A co-H-space and a co-H-map are conceptual dual of an H-space and an H-map in the

sense of Eckmann and Hilton, where an H-space and an H-map are homotopy theoretical

generalisations of a Lie group and a continuous homomorphism between them.

Definition 1.1. Let X be a path-connected space. The space X is a co-H-space if there

exists a co-multiplication µX : X → X ∨X with two-sided homotopy co-unit X → {∗}, i.e.,

its compositions with projections to the t-th factors X
µ→ X ∨ X

prt→ X , t = 1,2 are both

homotopic to the identity.

Definition 1.2. Let f : X → Y be a map between co-H-spaces. The map f is a co-H-map if

(f ∨ f)◦µX ∼ µY ◦f , where µX denotes the co-multiplication of X .
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We can easily see the following facts.

Fact 1.3. 1. The following two conditions are equivalent.

(a) X is a co-H-space.

(b) The homotopy set functor [X,−] has a natural multiplications with natural unit.

2. The following two conditions are equivalent.

(a) f : X → Y is a co-H-map.

(b) f induces a map f∗ : [Y,−] → [X,−] preserving the multiplications and the units.

We state here the following classical result of a co-H-space.

Theorem 1.4. (Fox) The fundamental group of a co-H-space is a free group.

The following theorems are fundamental results on a co-H-space and a co-H-map.

Theorem 1.5. (Ganea) For a non-contractible path-connected space X, X is a co-H-space if

and only if the Lusternik-Schnirelmann category catX is cat {∗} + 1.

Theorem 1.6. (Berstein-Hilton and Saito) For a map f between co-H-spaces, f is a co-H-

map if and only if its generalized Hopf invariant is trivial.

These results are obtained by using the following result:

Theorem 1.7. (Ganea) A co-H-space X is dominated by ΣΩX which is a homotopy fibre of

the folding map X ∨X → X .

2. A simply connected co-H-space

A simply connected co-H-space has nice properties:

Theorem 2.1. (Arkowincz) If a simply connected co-H-space is co-associative, then the given

co-multiplication is a co-group structure, i.e., the co-multiplication induces a natural group

structure on the functor [X,−].

Theorem 2.2. (Berstein) A simply connected co-H-space is rationally equivalent with a wedge

of spheres of dimensions ≥ 2.
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By Eckmann and Hilton, a simply connected space X admits a homology decomposition,

i.e., there is a filtration {Xi} of X ′ ' X such that

1. X ′ has the weak topology with respect to the filtration,

2. the homology of each Xi is of dimension i and the inclusion Xi → X induces an iso-

mophism up to dimensions i, and

3. each Xi has the homotopy type of the mapping cone of a map (k’-invariant) hi : Mi−1 →
Xi−1 where Mi−1 denotes the Moore space of type (Hi(X,Z), i− 1).

Theorem 2.3. (Curjel) If X is a simply connected co-H-space, then the inclusionsXi−1 → Xi

and Xi−1 → X are co-H-maps and each k’-invariant is of finite order.

3. A standard co-H-space

Let us call a co-H-space standard, if the Ganea conjecture holds for the co-H-space.

Theorem 3.1. For a co-H-space X , the condition 1) below is equivalent with other six con-

ditions below.

1. (Ganea) X is standard.

2. (Berstein-Dror) The co-action of B along j : X → B associated with the co-multiplication

of X can be chosen as co-associative.

3. (Hilton-Mislin-Roitberg) Co-shear map ΦR : X ∨X → X ∨X given by ΦR(x, ∗) = (x, ∗)
and ΦR(∗, x) = µ(x) is a homotopy equivalence.

4. (Hilton-Mislin-Roitberg) Co-shear map ΦL : X ∨X → X ∨X given by ΦL(∗, x) = (x, ∗)
and ΦL(x, ∗) = µ(x) is a homotopy equivalence.

5. (Hilton-Mislin-Roitberg) The functor [X,−] has natural algebraic loop structure.

6. (Hilton-Mislin-Roitberg) The co-H-structure of X can be chosen to make e = i◦j be

loop-like from the left.

7. (Hilton-Mislin-Roitberg) The co-H-structure of X can be chosen to make e = i◦j be

loop-like from the right.

Corollary 3.1.1. (Berstein-Dror) If a co-H-space is co-associative, then it has a co-group

structure.
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The rational version of the Ganea conjecture was verified as follows.

Theorem 3.2. (Henn) Let X be an almost rational co-H-space, i.e., a co-H-space X with

rational higher homotopy groups πi(X), i ≥ 2. Then X is standard and splits into a one-

point-sum of circles and rational spheres of dimension ≥ 2.

Also for complexes up to dimension 3, the Ganea conjecture was verified.

Theorem 3.3. (Saito-Sumi-I.) If H∗(X,Z) is concentrated in dimensions 1, n+ 1 and n+ 2

(n ≥ 1) with Hn+2(X,Z) torsion free, then X is standard and splits into a one-point-sum of

circles, spheres of dimension n+1 and n+2, and Moore spaces Sn+1∪men+2, for some m ≥ 2.

The key lemma of this theorem is as follows:

Lemma 3.4. Let X̃ be the universal cover of X. Then H∗(X̃,Z) is isomorphic to the Zπ-

module Zπ⊗H∗(X,Z), where π denotes the fundamental group of X.

This can be shown by using a theorem due to Seshadri, Cohn and Bass.

This lemma also enables us to show the following result.

Theorem 3.5. (I.) A co-H-space X admits an almost homology decomposition, i.e., there is

a filtration {Xi} of X ′ ' X such that

1. X ′ has the weak topology w.r.t. the filtration,

2. the homology of each Xi is of dimension i and the inclusion Xi → X induces an iso-

mophism up to dimension i,

3. each Xi has the homotopy type of the mapping cone of a map (k’-invariant) hi : Mi−1 →
Xi−1 where Mi−1 denotes the Moore space of type (Hi(X,Z), i− 1),

4. the inclusions Xi−1 → Xi and Xi−1 → X are co-H-maps and each k’-invariant is of

finite order.

We remark that this implies that there is a simple construction of the localisation of higher

homnotopy groups (due to Bendersky).

So, one can proceed to show the almost p-local version of the Ganea conjecture using some

more technique.
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Conjecture 3.6. Let X be an almost p-local space. If X is a co-H-space, then X is standard.

But evenif one can succeed to show the almost p-local version, he needs to manipulate

p-local equivalences to get a true homotopy equivalence for a proof of the original conjecture.

4. Construction of counter examples

Theorem 4.1. There exists a series of complexes {Rn; n ≥ 4} such that the integral homology

groups of Rn is concentrated in dimensions 1, n+ 1 and n + 5.

Let Rn = (S1 ∨ Sn+1) ∪φ en+5, where φ is given by

φ : Sn+4 µ→ Sn+4∨Sn+4 9∨16→ Sn+4∨Sn+4 νn+1∨νn+1→ e·Sn+1 ∨ τ ·Sn+1 ⊂
∨
i∈Z

τ i·Sn+1 → S1 ∨ Sn+1.

(4.1)

5. Unsplittability of Rn

In this section, we show that Rn cannot be split. We state the following well-known result:

Proposition 5.1. The set of invertible elements in the group ring Zπ is ±π ⊂ Zπ.

Proof. Since π is the infinite cyclic group, Zπ is isomorphic with Z[x, 1
x
] the ring of Laurent

polynomials with coefficients in Z. We can express each Laurent polynomial as the form

xi(a`x
` + a`−1x

`−1 + ... + a1x
1 + a0) with a`a0 6= 0, ` ≥ 0 and i ∈ Z. If the product of any

two such Laurent polynomials, say xi(a`x
` + ... + a0) and xj(bmx

m + ... + b0), is equal to the

unity, then we have that i+ j = ` = m = 0 and a0b0 = 1. Hence every invertible element can

be expressed as ±xi for some i ∈ Z.

The (non-trivial) right actions of the Steenrod algebra on the homology groups H̃∗(R̃n; Fp)

and H̃∗(B̃∨Cn; Fp) for p = 2 and p = 3 are given by the following proposition.

Proposition 5.2. (1) Let x′q be the modulo 2 reduction of the element xq. Then in H̃∗(R̃n; F2),

the only non-trivial relation is: x′n+5Sq4 = x′n+1,

(2) Let u′q be the modulo 2 reduction of the element uq. Then in H̃∗(B̃∨Cn; F2),the only

non-trivial relation is: u′n+5Sq4 = u′n+1.

(3) Let x′′q be the modulo 3 reduction of the element xq. Then in H̃∗(R̃n;F3), the only

non-trivial relation is: x′′n+5P1 = τ ·x′′n+1.
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(4) Let u′′q be the modulo 3 reduction of the element uq. Then in H̃∗(B̃∨Cn; F3), the only

non-trivial relation is: u′′n+5P1 = u′′n+1.

Thus in H̃n+1(B̃∨Cn;F2) and H̃n+1(B̃∨Cn;F3), we have the following equations:

u′n+1 = h̃∗(x′n+1) = h̃∗(x′n+5Sq4) = h̃∗(x′n+5)Sq4 = τ j·u′n+5Sq4 = τ j·u′n+1,

u′′n+1 = ±h̃∗(x′′n+1) = ±h̃∗(τ−1·x′′n+5P1) = ±τ−1·h̃∗(x′′n+5)P1 = ±τ j−1·u′′n+5P1 = ±τ j−1·u′′n+1.

The upper line tells us that j = 0, while the lower line tells us that j = 1. It’s a contradiction.

Thus we obtain the following theorem.

Theorem 5.3. Rn cannot be split into a one-point-sum of a simply connected space and a

bunch of circles.

6. Self maps of Sn

This section provides an easy but rather crucial property for Rn for n ≥ 4. By putting

f : Sn → Sn and g : Sn → Sn be maps of degrees −8 and 9, we obtain

f + g ∼ 1Sn .(6.1)

Proposition 6.1. The compositions of f and g with Σn−3α and Σn−3β give the equations:

(1) f◦Σn−3α ∼ ∗, (2) g◦Σn−3α ∼ Σn−3α, (3) g◦Σn−3β ∼ ∗ and (4) f◦Σn−3β ∼ Σn−3β.

7. Homotopy section of B∨R̃n → Rn

In this section, we show that Rn is a co-H-space. To show this, it is sufficient to show the

existence of a homotopy section of p : B∨R̃n → Rn. We define a map s0 B∨Sn → B∨B̃∨Sn '
B∨∨

i∈Zτ
i·Sn as follows:

s0|B = inB : B → B∨
∨
i∈Z

τ i·Sn,

s0|Sn : Sn
{f,g}→ Sn∨Sn

]ψ(τ)∨1Sn→ τ ·Sn∨Sn Ψ(τ−1)∨1Sn→ B∨τ ·Sn∨Sn ⊂ B∨
∨
i∈Z

τ i·Sn.

By (6.1), we have p0◦s0 ∼ 1B∨(f + g) ∼ 1B∨1Sn = 1B∨Sn. Since n ≥ 4, we know that

πn+4(Sn∨Sn) ∼= πn+4(Sn)⊕πn+4(Sn), for dimensional reasons. Then by Proposition 6.1, it
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follows that

s0◦Σn−3α ∼ inSn◦Σn−3α : Sn+4 → B∨Sn ⊂ B∨
∨
i∈Z

τ i·Sn,

s0◦Σn−3β ∼ Ψ(τ−1)◦inτ ·Sn◦ψ̃(τ )◦Σn−3β : Sn+4 → Sn → τ ·Sn → B∨τ ·Sn ⊂ B∨
∨
i∈Z

τ i·Sn.

Hence we obtain that

s0◦(Σn−3α + ψ(τ )Σn−3β) = s0◦Σn−3α+ Ψ(τ )s0◦Σn−3β

∼ inSn◦Σn−3α + inτ ·Sn◦ψ̃(τ )◦Σn−3β = inSn∨τ ·Sn◦(Σn−3α + ψ̃(τ )◦Σn−3β).

Thus the map s0◦(Σn−3α+ ψ(τ )Σn−3β) is homotopic to the attaching map of the cell 1·en+5.

Hence it induces a map s : Rn → B∨R̃n so that p◦s is clearly the identity up to homotopy.

Since the universal cover of Rn is a suspension space for the dimensional reasons, we obtain

the following theorem.

Theorem 7.1. Rn is a co-H-space.

Remark 7.2. Although we know that Rn and B∨Cn have isomorphic homotopy groups in

each dimension, because they have the same (almost) p-type for any prime p.
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