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1 (Ganea’s problems

Problems [T. Ganea, 1971, (15 problems)]

1. Compute cat M for a manifold M.
2. cat X xS" =cat X + 1. Isit true?

4. Let E be the total space of a sphere bundle over
a sphere. Describe cat I/ in terms of homotopy

invariants of the characteristic map of F.

10. Is a co-H-space X homotopy equivalent to a

wedge of a simply-connected space and circles?

Remark 1.1  According to the James’ handbook

on algebraic topology, the affirmative answers to
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Problems 2 (LS category) and 10 (co-H-spaces) are

supposed to be true and are called “the Ganea con-

jecture” in each area.

2 Lusternik-Schnirelmann

Definition 2.1

y

cat (X) = Min <

m
WX:Um
1=0
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open in X}

" tractible i X
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A topological invariant gcat (X) is defined similarly
but is not a homotopy invariant (R. H. Fozx)

( HUy,....,Up : openin X}
m
geat (X)) = Min g m)| v — | |y, each Ujis con-
z’LJO Y tractible ;
\ o

’

Cat (X) = Min {m}EI{Y<:X>} gcat (V) = m}



Theorem 2.2 (Lusternik-Schnirelmann)
The number of critical points of any C°° map on a

manifold M 1is greater than cat M.

Theorem 2.3 (Ganea 1971)

Cat X — 1 <catX < CatX < gcat X.

So, there are two cats homotopy-theoretically, small
and big. In fact, there is a lots of new variants of cats,
like wcat , ocat, cl, and their rational verisions, local
versions, etc.

But we know the two oldest cats cat and Cat are the

strongest.



3 Aso structure

For a space X, its loop space 2.X has an Aso-structure,

i.e, there is a ladder of quasi-fibrations {p%X }.

*

*

OX < EAQX) L EM(QX) —— EMH QX)L L ER(QX)

* * * *
{

Qx

956
P Pm+1

P pikx

OX
9 Poc

{x} = PHQX)—- -« P"HQX)—— P"(QX) —---— P®(QX)
1
X

The existence of these kind of ladders is equivalent
with the existence of the higher homotopy associativity
(M }m>1 for the loop space 2X. The ladder de-
rived from the canonical higher homotopy {M,,%X Fm>1

enjoys a kind of universality (Stasheff 1963).
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Theorem 3.1 For a space X, cat X < m iff there
is a homotopy cross-section o(X) : X — P"(QX)
of XX . PM(QX) — P®(QX) ~ X

ekl ~ X.
We call this o(X) the structure map for cat X < m.

Definition 3.2 For a nilpotent space X, caty, X <

m iff there is a map o : X — P"(QX) such that

e%Xoa : X — X 18 a homotopy equivalence.

Stashefl’s Aso-form yields the following result.

Theorem 3.3 For any spaces X andY , cat X XY

< m iff there is a homotopy cross-section o(X xXY') :

XXY = Uiy jmm PUOX)XPIQY) of X xepl) .
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4 Problem 2 (the Ganea conjecture on LS
category)

The Hess-Jessup method on rational homotopy theory

proves the rational version of the conjecture.

Theorem 4.1 (Hess 1991, Jessup 1990)
catp X xS" =catg X +1, n > 2,

where caty denotes the rationalisation of cat.

For a manifolds, Rudyak improves a result of Singhot.

Theorem 4.2 (Rudyak 1997, Singhof 1979)
For a large class of manifolds M, cat M xS" =

cat M +1,n > 2

The following results were obtained using higher Hopt
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invariants defined on projective spaces associated with

Stasheft’s Aoo-structure of a loop space.

41 (integral case)

Let V be a (d — 1)-connected co-H-space and X a

(d — 1)-connected complex, d > 2 with cat X = m.

Theorem 4.3 Let X be of dim X < d-cat X +
d—2 and n > 1. Then the following statement

holds for W =XU;C(V) (f:V — X).
catW =cat X +1 iff H%X)(f)#().

Theorem 4.4 Under the same conditions as in

Theorem 4.3, the following equation holds for W =



XUrCWV) (f:V — X), when cat W = cat X + 1.
cat WxS" =cat W+ 1 iff Zan;X)(f)#O.

Using Toda’s result (1957,1962) on the non-existence
of elements of Hopf invariant one in m3(S19), we ob-

tain the following result.

Theorem 4.5 (I. 1998) There is a space ) such

that cat (QxS¥) = cat Q = 2, for any k > 1.

Theorem 4.6 (I. 1998) There is a series of
spaces Q(p,m,2n) for any odd primes p and in-

tegers m, n such that cat (Q(p, m,2n)) = m and

m+1, k<2n
m, k> 2n.

cat (Q(p, m, 2n)x S = {
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42 (p-local case)

Theorem 4.7 For k > 1 and an odd prime p,
cato (QxSk) = cato () = 2,

caty (QxS¥) =2 and caty Q) = 1,

Theorem 4.8 For k > 2n and a prime q # p,
caty (Q(p, m, 2n)><Sk) = caty Q(p, m,2n) = m,

catq (Q(p, m, 2m)x SF) =m = caty Q(p, m,2n) + 1.

Thus we also have many counter examples to the Ganea

conjecture on caty .

4.3 (rational case)

Let V be a (d — 1)-connected co-H-space and X a

(d — 1)-connected complex, d > 2 with catg X = m.
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Theorem 4.9 Let X be of dim X < d-catg X +
d—2andn > 1. Then for W = X UrC(V), where

f:V—= X, the following equation holds.
caty WxSt = catg W + 1.

This gives a positive partial answer to the Ganea con-

jecture on caty for n = 1.

5 Problem 4

Let r > 1, ¢ > 1 and E be a bundle over S9! with
fibre S™t1. Then E ~ S™1 U, edt! Uy edt T2 with
attaching maps o : S¢ — S™and ¢ ; ST+

Q= qr+l U, ed+1
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Fact 5.1 Let o = 1¢r41 the identity. Then clearly
cat () = 0 and cat E = 1. In addition, cat QxS" =

1 and cat ExS™ =2 forn > 1.

Fact 5.2 Let a # lgrt1. Hence 1 < cat@ <
2. Then cat@Q = 2 if and only if Hi(a) # 0. In
particular if Hi(a) = 0, we can easily obtain that
cat Q) = 1 andcat E = 2. In this case, it also follows

that cat QxS™ =2 and cat ExS"™ =3 forn > 1.

The method given in the previous section allow us to

compute further.

Theorem 5.3  Let Hi(a) # 0. Hence catQ =

2. Then forn > 1, cat@QxS™ = 3 if and only if
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YHi(a) # 0.

Theorem 5.4 Let Hi(a) # 0. Hence we have
2 < catE < 3. We have cat E = 3 if ¥ 2ho(a) #

0. Also we have cat E = 2 if Ho(v)) = 0 for some
choice of 7(Q) : Q@ — P%(QQ).

Theorem 5.5 Let Y 2ho(a) # 0. Hence we
have cat E = 3. We have for n > 1, cat ExS" =4
if ST 2ho(a) # 0. Also we have cat ExS™ = 3
if Y"Ho(vp) = 0 for some choice of (@) : QQ —

P2QQ).

Using Oka’s results on p-primary components of 72 (SY),

we obtain the following result.
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Theorem 5.6 Let p be an odd prime, 5 be the
co-H-map a1(3) : S — S3 and v be the suspension
map as(2p) = P Ban(3) : ST — S for the
prime p. Then X Ho(y(8-y)) is the composition of a

map +X3(5-y) with an appropriate inclusion map.

6 co-H-space

Fact 6.1 For a finite Hopf space X (e.g. a com-
pact Lie group), there is a homotopy equivalence

X ~ Slx ... xS'%D with H(D) = 0.
Dualising this, we can show the following result.

Theorem 6.2 (Oda,I.) Fora co-H-space X (e.g,
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a suspension space), there is a homology equiva-
lence X — STV ... vSWD with m(D) = 0 which

also induces an tsomorphism of fundamental groups.

7 Problem 10 (the Ganea conjecture on a
co-H-space)

Definition 7.1 A space X 1s “standard” iff there
18 a homotopy equivalence X =~ Stv ... vSIvD with

m1(D) = 0.

Problem 10 was studied in 70’s by several authors, e.g,
Berstein-Dror (1976), Hilton-Mislin-Roitberg (1978),

using the given co-H-structure itself on a co-H-space.
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Fact 7.2 For a co-H-space X, Ganea’s condition

1) is equivalent with the conditions 2) to 5) below.
1) (Ganea) X s “standard”.

2) (Berstein-Dror) The co-action of B along j :
X — B associated with the given co-H-structure

of X can be chosen as associative.

3)  (Hilton-Mislin-Roitberg) The co-H-structure
of X can be chosen to make the left (or right)

co-shear map a homotopy equivalence.

4)  (Hilton-Mislin-Roitberg) The co-H-structure

of X can be chosen to be co-loop, i.e, it induces

a natural algebraic-loop structure on | X, —]|.
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5)  (Hilton-Mislin-Roitberg) The co-H-structure
of X can be chosen to make e = 17 loop-like

from the left (or right).

Contrary to the above, some authors have obtained

results not depending on the co-H-structure itself.

Theorem 7.3 (Henn 1983)  An almost rational
co-H-space X is “standard”: X ~ Stv...vSl v

\/Z-S% with n; > 2.

So the rational version of the Ganea conjecture on a

co-H-space 1s true.

Definition 7.4 A space X is of (almost) stable

dimension < k, iff the homology of X is concen-
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trated in Hyyq,...,Hy, . for somen > 0 with H,

torsion free.

Theorem 7.5 (Komatsu 1992) Let X be the
exterior of a boundary link. If X 1is a co-H-space

(of stable dimension 1), then X is “standard”.

Komatsu showed this using Fox’s free differential cal-

culous.

Theorem 7.6 (Saito-Sumi-I. 1998) Let X be
of stable dimension < 2. If X 1s a co-H-space, then

X 18 “standard”.

The main tool to show this is the following result.
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Proposition 7.7 If X 1s a co-H-space, then

there is the following commutative diagram:
H.(X,B)  Zr@H(X, B)
(X))« commutative 2Ry (—) (7 1)
H«(X,B)—— H«(X, B),

where m = m1(X).
This is obtained by the following lemma shown by us-

ing Bass’ proof of K(Zm) = 0 on algebraic K-theory.

Lemma 7.8 If a Zm-module P 1s a direct sum-
mand of Zm @ M for some module M, then P =

Zm @ Py as Ziar-modules for some module F.

While there are only 2-torsions up to 2-stem, we

know 7T§(50> ~ 7,/247. 24 = 23 . 3. This causes a

18



problem to showing the Ganea conjecture on a co-H-

space. And a series of complexes is eventually found.

Theorem 7.9 (I. 1999) There is a series of co-

H-spaces {Ry, = (ST v S" 1y U e |n > 4} satis-

fying the following properties.

1) The almost p-localisation of Ry, is standard for
any prime p.

2) The almost rationalisation of Ry, is standard.

3) m(Ry) = W*(Sl \V (S”Jrl U e”+5)).

4) Ry is not standard.

[proof]  We know that m,,.4(S" ) & Z/24Z{v,, 11},

n > 4. Since 24 = 23 x 3, Cp, = St U, "' does
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not split into a wedge sum of spheres at primes 2 and
3. We define R, = (STv.S™ ) Uy e to satisfy
]:[*(Rm 7) = L Tp41, Tnis ),

]:[*(Rm FQ) = FQW{%%—H? xgz+5}7

]:[*(Rn; F?)) F?)W{xn—klv n+5}

I _
n+55q n—Hv and xn+573 Tanrlv

where 7 is the generator of m = Z. On the other hand.,

the following is clear.

]:[*(Sl V Cp; Z> = ZW{U’??H‘L Un+5}a
ﬁ*(sl V Cp; o) = FQW{U{nHa u;z+5}v

N

]:[*(Sl V Cp;F3) = F37T{un+17 n+5}

/ 4 /" 1 n
un+55q = Un41s and un+573 = Up41-
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Then one can easily see, at each prime, there is a
homotopy equivalence from R,, to STV C),, because the
homomorphism multiplying 1 or 7 is an isomorphism.

The key to show that R, is not standard is as follows:

Key Lemma 7.10 The set of invertible elements

in the group ring Zm 1s £ C 4.

If a homotopy equivalence f : R, — S Lv 0, exists,

it induces the Zm-module isomorphisms such that

JsTp1 = :|:7‘Zun+1
JsTpys = :liTjun—%
Reducing modulo 2 and 3, we have 1 = 7 and 1 = 7 —1.

[t’s a contradiction.
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To show that Ry, is a co-H-space, we use a character-
isation of a space with co-action given in [Saito-Sumi-

L]. QED.
This might suggest the following conjecture.

Conjecture 1  For any co-H-space X, the fol-

lowing are always true.

1) The almost p-localisation of X is standard for

any prime p.

2) (X)) is isomorphic with m«(BV C), for B =

Bm(X) and C = X/B.
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