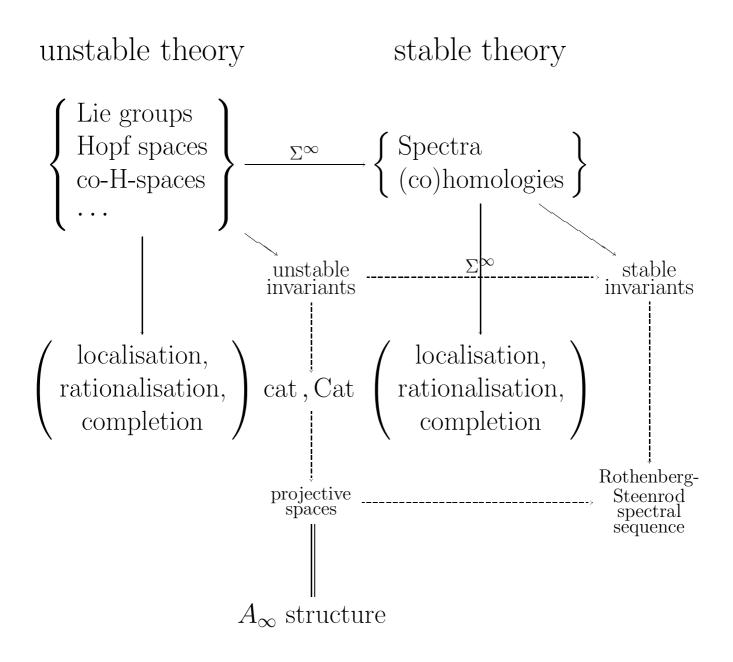
Ganea's Problems and Their Localised Versions

Norio IWASE (Kyushu University)



1 Ganea's problems

Problems [T. Ganea, 1971, (15 problems)]

- 1. Compute $\operatorname{cat} M$ for a manifold M.
- 2. $\cot X \times S^n = \cot X + 1$. Is it true?
- 4. Let E be the total space of a sphere bundle over a sphere. Describe $\operatorname{cat} E$ in terms of homotopy invariants of the characteristic map of E.
- 10. Is a co-H-space X homotopy equivalent to a wedge of a simply-connected space and circles?

Remark 1.1 According to the James' handbook on algebraic topology, the affirmative answers to

Problems 2 (LS category) and 10 (co-H-spaces) are supposed to be true and are called "the Ganea conjecture" in each area.

2 Lusternik-Schnirelmann category

Definition 2.1

$$\operatorname{cat}(X) = \operatorname{Min} \left\{ m \middle| \begin{array}{l} \exists \{U_0, ..., U_m : \text{ open in } X\} \\ m \middle| X = \bigcup_{i=0}^m U_i, \begin{array}{l} \operatorname{each} U_i \text{ is contractible } \underline{in} X \end{array} \right\}$$

A topological invariant gcat(X) is defined similarly but is not a homotopy invariant (R. H. Fox)

$$g \operatorname{cat}(X) = \operatorname{Min} \left\{ m \middle| X = \bigcup_{i=0}^{m} U_i, \text{ each } U_i \text{ is contractible} \right\}$$
$$\operatorname{Cat}(X) = \operatorname{Min} \left\{ m \middle| \exists_{\{Y(\simeq X)\}} g \operatorname{cat}(Y) = m \right\}$$

Theorem 2.2 (Lusternik-Schnirelmann)

The number of critical points of any C^{∞} map on a manifold M is greater than $\operatorname{cat} M$.

Theorem 2.3 (Ganea 1971)

 $\operatorname{Cat} X - 1 \le \operatorname{cat} X \le \operatorname{Cat} X \le g \operatorname{cat} X.$

So, there are two cats homotopy-theoretically, small and big. In fact, there is a lots of new variants of cats, like wcat, σ cat, cl, and their rational versions, local versions, etc.

But we know the two oldest cats cat and Cat are the strongest.

3 A_{∞} structure

For a space X, its loop space ΩX has an A_{∞} -structure, i.e, there is a ladder of quasi-fibrations $\{p_m^{\Omega X}\}$.

$$\begin{array}{c|c}
\Omega X \stackrel{*}{\hookrightarrow} E^{2}(\Omega X) \stackrel{*}{\hookrightarrow} \cdots \stackrel{*}{\hookrightarrow} E^{m}(\Omega X) \stackrel{*}{\smile} E^{m+1}(\Omega X) \stackrel{*}{\hookrightarrow} \cdots \stackrel{*}{\hookrightarrow} E^{\infty}(\Omega X) \\
 & p_{1}^{\Omega X} & p_{2}^{\Omega X} & p_{m}^{\Omega X} & p_{m+1}^{\Omega X} & p_{\infty}^{\Omega X} \\
 & * \} \hookrightarrow P^{1}(\Omega X) \hookrightarrow \cdots \hookrightarrow P^{m-1}(\Omega X) \hookrightarrow \cdots \hookrightarrow P^{m}(\Omega X) \hookrightarrow \cdots \hookrightarrow P^{\infty}(\Omega X)
\end{array}$$

The existence of these kind of ladders is equivalent with the existence of the higher homotopy associativity $\{M_m^{\Omega X}\}_{m\geq 1}$ for the loop space ΩX . The ladder derived from the canonical higher homotopy $\{M_m^{\Omega X}\}_{m\geq 1}$ enjoys a kind of universality (Stasheff 1963).

Theorem 3.1 For a space X, cat $X \leq m$ iff there is a homotopy cross-section $\sigma(X): X \to P^m(\Omega X)$ of $e_m^{\Omega X}: P^m(\Omega X) \hookrightarrow P^\infty(\Omega X) \simeq X$.

We call this $\sigma(X)$ the structure map for cat $X \leq m$.

Definition 3.2 For a nilpotent space X, $\operatorname{cat}_p X \leq m$ iff there is a map $\sigma: X \to P^m(\Omega X)$ such that $e_m^{\Omega X} \circ \sigma: X \to X$ is a homotopy equivalence.

Stasheff's A_{∞} -form yields the following result.

Theorem 3.3 For any spaces X and Y, $\operatorname{cat} X \times Y$ $\leq m$ iff there is a homotopy cross-section $\sigma(X \times Y)$: $X \times Y \to \bigcup_{i+j=m} P^i(\Omega X) \times P^j(\Omega Y)$ of $e_m^{\Omega X} \times e_m^{\Omega Y}$.

4 Problem 2 (the Ganea conjecture on LS category)

The Hess-Jessup method on rational homotopy theory proves the rational version of the conjecture.

Theorem 4.1 (Hess 1991, Jessup 1990)

$$cat_0 X \times S^n = cat_0 X + 1, \quad n \ge 2,$$

where cat_0 denotes the rationalisation of cat.

For a manifolds, Rudyak improves a result of Singhof.

Theorem 4.2 (Rudyak 1997, Singhof 1979)

For a large class of manifolds M, cat $M \times S^n = \cot M + 1$, $n \ge 2$

The following results were obtained using higher Hopf

invariants defined on projective spaces associated with Stasheff's A_{∞} -structure of a loop space.

4.1 (integral case)

Let V be a (d-1)-connected co-H-space and X a (d-1)-connected complex, $d \geq 2$ with $\operatorname{cat} X = m$.

Theorem 4.3 Let X be of dim $X \leq d \cdot \operatorname{cat} X + d - 2$ and $n \geq 1$. Then the following statement holds for $W = X \cup_f C(V)$ $(f : V \to X)$.

$$\cot W = \cot X + 1$$
 iff $H_m^{\sigma(X)}(f) \neq 0$.

Theorem 4.4 Under the same conditions as in Theorem 4.3, the following equation holds for W =

 $X \cup_f C(V)$ $(f: V \to X)$, when $\operatorname{cat} W = \operatorname{cat} X + 1$.

$$\cot W \times S^n = \cot W + 1$$
 iff $\Sigma^n H_m^{\sigma(X)}(f) \neq 0$.

Using Toda's result (1957,1962) on the non-existence of elements of Hopf invariant one in $\pi_{31}(S^{16})$, we obtain the following result.

Theorem 4.5 (I. 1998) There is a space Q such that $cat(Q \times S^k) = cat Q = 2$, for any $k \ge 1$.

Theorem 4.6 (I. 1998) There is a series of spaces Q(p, m, 2n) for any odd primes p and integers m, n such that $\cot(Q(p, m, 2n)) = m$ and $\cot(Q(p, m, 2n) \times S^k) = \begin{cases} m+1, & k < 2n \\ m, & k \ge 2n. \end{cases}$

4.2 (p-local case)

Theorem 4.7 For $k \ge 1$ and an odd prime p, $\operatorname{cat}_2(Q \times S^k) = \operatorname{cat}_2 Q = 2$,

$$\operatorname{cat}_{p}(Q \times S^{k}) = 2 \ and \operatorname{cat}_{p} Q = 1,$$

Theorem 4.8 For $k \ge 2n$ and a prime $q \ne p$, $\operatorname{cat}_p(Q(p, m, 2n) \times S^k) = \operatorname{cat}_p Q(p, m, 2n) = m$,

$$\operatorname{cat}_q(Q(p, m, 2n) \times S^k) = m = \operatorname{cat}_q Q(p, m, 2n) + 1.$$

Thus we also have many counter examples to the Ganea conjecture on cat_p .

4.3 (rational case)

Let V be a (d-1)-connected co-H-space and X a (d-1)-connected complex, $d \ge 2$ with $\operatorname{cat}_0 X = m$.

Theorem 4.9 Let X be of dim $X \leq d \cdot \text{cat}_0 X + d - 2$ and $n \geq 1$. Then for $W = X \cup_f C(V)$, where $f: V \to X$, the following equation holds.

$$\cot_0 W \times S^1 = \cot_0 W + 1.$$

This gives a positive partial answer to the Ganea conjecture on cat_0 for n = 1.

5 Problem 4

Let $r \geq 1$, $q \geq 1$ and E be a bundle over S^{q+1} with fibre S^{r+1} . Then $E \simeq S^{r+1} \cup_{\alpha} e^{q+1} \cup_{\psi} e^{q+r+2}$ with attaching maps $\alpha: S^q \to S^{r+1}$ and $\psi: S^{q+r+1} \to Q = S^{r+1} \cup_{\alpha} e^{q+1}$.

Fact 5.1 Let $\alpha = 1_{S^{r+1}}$ the identity. Then clearly $\cot Q = 0$ and $\cot E = 1$. In addition, $\cot Q \times S^n = 1$ and $\cot E \times S^n = 2$ for $n \ge 1$.

Fact 5.2 Let $\alpha \neq 1_{S^{r+1}}$. Hence $1 \leq \operatorname{cat} Q \leq 2$. Then $\operatorname{cat} Q = 2$ if and only if $H_1(\alpha) \neq 0$. In particular if $H_1(\alpha) = 0$, we can easily obtain that $\operatorname{cat} Q = 1$ and $\operatorname{cat} E = 2$. In this case, it also follows that $\operatorname{cat} Q \times S^n = 2$ and $\operatorname{cat} E \times S^n = 3$ for $n \geq 1$.

The method given in the previous section allow us to compute further.

Theorem 5.3 Let $H_1(\alpha) \neq 0$. Hence cat Q =

2. Then for $n \ge 1$, cat $Q \times S^n = 3$ if and only if

 $\Sigma^n H_1(\alpha) \neq 0.$

Theorem 5.4 Let $H_1(\alpha) \neq 0$. Hence we have $2 \leq \cot E \leq 3$. We have $\cot E = 3$ if $\Sigma^{r+2}h_2(\alpha) \neq 0$. Also we have $\cot E = 2$ if $H_2(\psi) = 0$ for some choice of $\sigma(Q): Q \to P^2(\Omega Q)$.

Theorem 5.5 Let $\Sigma^{r+2}h_2(\alpha) \neq 0$. Hence we have cat E = 3. We have for $n \geq 1$, cat $E \times S^n = 4$ if $\Sigma^{n+r+2}h_2(\alpha) \neq 0$. Also we have cat $E \times S^n = 3$ if $\Sigma^n H_2(\psi) = 0$ for some choice of $\sigma(Q) : Q \to P^2(\Omega Q)$.

Using Oka's results on p-primary components of $\pi_*^S(S^0)$, we obtain the following result.

Theorem 5.6 Let p be an odd prime, β be the co-H-map $\alpha_1(3): S^{2p} \to S^3$ and γ be the suspension map $\alpha_2(2p) = \Sigma^{2p-3}\alpha_2(3): S^{6p-5} \to S^{2p}$ for the prime p. Then $\Sigma H_2(\psi(\beta \circ \gamma))$ is the composition of a map $\pm \Sigma^3(\beta \circ \gamma)$ with an appropriate inclusion map.

6 co-H-space

Fact 6.1 For a finite Hopf space X (e.g. a compact Lie group), there is a homotopy equivalence $X \simeq S^1 \times \cdots \times S^1 \times D$ with $H^1(D) = 0$.

Dualising this, we can show the following result.

Theorem 6.2 (Oda,I.) For a co-H-space X (e.g,

a suspension space), there is a homology equivalence $X \to S^1 \lor \cdots \lor S^1 \lor D$ with $\pi_1(D) = 0$ which also induces an isomorphism of fundamental groups.

7 Problem 10 (the Ganea conjecture on a co-H-space)

Definition 7.1 A space X is "standard" iff there is a homotopy equivalence $X \simeq S^1 \lor \cdots \lor S^1 \lor D$ with $\pi_1(D) = 0$.

Problem 10 was studied in 70's by several authors, e.g, Berstein-Dror (1976), Hilton-Mislin-Roitberg (1978), using the given *co-H-structure* itself on a co-H-space.

- Fact 7.2 For a co-H-space X, Ganea's condition
- 1) is equivalent with the conditions 2) to 5) below.
- 1) (Ganea) X is "standard".
- 2) (Berstein-Dror) The co-action of B along j: $X \to B$ associated with the given co-H-structure of X can be chosen as associative.
- 3) (Hilton-Mislin-Roitberg) The co-H-structure of X can be chosen to make the left (or right) co-shear map a homotopy equivalence.
- 4) (Hilton-Mislin-Roitberg) The co-H-structure of X can be chosen to be co-loop, i.e, it induces a natural algebraic-loop structure on [X, -].

5) (Hilton-Mislin-Roitberg) The co-H-structure of X can be chosen to make $e = i \cdot j$ loop-like from the left (or right).

Contrary to the above, some authors have obtained results not depending on the co-H-structure itself.

Theorem 7.3 (Henn 1983) An almost rational co-H-space X is "standard": $X \simeq S^1 \lor \cdots \lor S^1 \lor \lor S^{n_i}$ with $n_i \geq 2$.

So the rational version of the Ganea conjecture on a co-H-space is true.

Definition 7.4 A space X is of (almost) stable dimension $\leq k$, iff the homology of \widetilde{X} is concen-

trated in $H_{n+1},...,H_{n+k}$ for some $n \ge 0$ with H_{n+k} torsion free.

Theorem 7.5 (Komatsu 1992) Let X be the exterior of a boundary link. If X is a co-H-space (of stable dimension 1), then X is "standard".

Komatsu showed this using Fox's free differential calculous.

Theorem 7.6 (Saito-Sumi-I. 1998) Let X be of stable dimension ≤ 2 . If X is a co-H-space, then X is "standard".

The main tool to show this is the following result.

Proposition 7.7 If X is a co-H-space, then there is the following commutative diagram:

$$H_{*}(\widetilde{X}, \widetilde{B}) \xrightarrow{\cong} \mathbb{Z}\pi \otimes H_{*}(X, B)$$

$$p(X)_{*} \middle| commutative \middle| \mathbb{Z} \otimes_{\mathbb{Z}\pi}(-)$$

$$H_{*}(X, B) = H_{*}(X, B),$$

$$(7.1)$$

where $\pi = \pi_1(X)$.

This is obtained by the following lemma shown by using Bass' proof of $K(\mathbb{Z}\pi)=0$ on algebraic K-theory.

Lemma 7.8 If a $\mathbb{Z}\pi$ -module P is a direct summand of $\mathbb{Z}\pi \otimes M$ for some module M, then $P \cong \mathbb{Z}\pi \otimes P_0$ as $\mathbb{Z}\pi$ -modules for some module P_0 .

While there are only 2-torsions up to 2-stem, we know $\pi_3^S(S^0) \cong \mathbb{Z}/24\mathbb{Z}, \ 24 = 2^3 \cdot 3$. This causes a

problem to showing the Ganea conjecture on a co-H-space. And a series of complexes is eventually found.

Theorem 7.9 (I. 1999) There is a series of co-H-spaces $\{R_n = (S^1 \vee S^{n+1}) \cup e^{n+5} \mid n \geq 4\}$ satisfying the following properties.

- 1) The almost p-localisation of R_n is standard for any prime p.
- 2) The almost rationalisation of R_n is standard.
- 3) $\pi_*(R_n) \cong \pi_*(S^1 \vee (S^{n+1} \cup e^{n+5})).$
- 4) R_n is not standard.

[proof] We know that $\pi_{n+4}(S^{n+1}) \cong \mathbb{Z}/24\mathbb{Z}\{\nu_{n+1}\},$ $n \geq 4$. Since $24 = 2^3 \times 3$, $C_n = S^{n+1} \cup_{\nu_{n+1}} e^{n+5}$ does not split into a wedge sum of spheres at primes 2 and

3. We define $R_n = (S^1 \vee S^{n+1}) \cup_{\Psi} e^{n+5}$ to satisfy

$$\widetilde{H}_*(\widetilde{R_n}; \mathbb{Z}) \cong \mathbb{Z}\pi\{x_{n+1}, x_{n+5}\},$$

$$\widetilde{H}_*(\widetilde{R_n}; \mathbb{F}_2) \cong \mathbb{F}_2 \pi \{x'_{n+1}, x'_{n+5}\},$$

$$\widetilde{H}_*(\widetilde{R_n}; \mathbb{F}_3) \cong \mathbb{F}_3 \pi \{x_{n+1}'', x_{n+5}''\},$$

$$x'_{n+5}Sq^4 = x'_{n+1}$$
, and $x''_{n+5}P^1 = \tau \cdot x''_{n+1}$,

where τ is the generator of $\pi \cong \mathbb{Z}$. On the other hand, the following is clear.

$$\widetilde{H}_*(\widetilde{S^1 \vee C_n}; \mathbb{Z}) \cong \mathbb{Z}\pi\{u_{n+1}, u_{n+5}\},$$

$$\widetilde{H}_*(\widetilde{S^1 \vee C_n}; \mathbb{F}_2) \cong \mathbb{F}_2\pi\{u'_{n+1}, u'_{n+5}\},$$

$$\widetilde{H}_*(\widetilde{S^1 \vee C_n}; \mathbb{F}_3) \cong \mathbb{F}_3\pi\{u''_{n+1}, u''_{n+5}\},$$

$$u'_{n+5}\mathcal{S}q^4 = u'_{n+1}, \text{ and } u''_{n+5}\mathcal{P}^1 = u''_{n+1}.$$

Then one can easily see, at each prime, there is a homotopy equivalence from R_n to $S^1 \vee C_n$, because the homomorphism multiplying 1 or τ is an isomorphism.

The key to show that R_n is not standard is as follows:

Key Lemma 7.10 The set of invertible elements in the group ring $\mathbb{Z}\pi$ is $\pm\pi\subset\mathbb{Z}\pi$.

If a homotopy equivalence $f: R_n \to S^1 \vee C_n$ exists, it induces the $\mathbb{Z}\pi$ -module isomorphisms such that

$$f_*x_{n+1} = \pm \tau^i u_{n+1}$$

$$f_* x_{n+5} = \pm \tau^j u_{n+5}$$

Reducing modulo 2 and 3, we have i = j and i = j-1. It's a contradiction. To show that R_n is a co-H-space, we use a characterisation of a space with co-action given in [Saito-Sumi-I.]. QED.

This might suggest the following conjecture.

Conjecture 1 For any co-H-space X, the following are always true.

- 1) The almost p-localisation of X is standard for any prime p.
- 2) $\pi_*(X)$ is isomorphic with $\pi_*(B \vee C)$, for $B = B\pi_1(X)$ and C = X/B.